IAEE Members and subscribers to The Energy Journal: Please log in to access the full text article or receive discounted pricing for this article.

Prepress Content: The following article is a preprint of a scientific paper that has completed the peer-review process and been accepted for publication within The Energy Journal.

While the International Association for Energy Economics (IAEE) makes every effort to ensure the veracity of the material and the accuracy of the data therein, IAEE is not responsible for the citing of this content until the article is actually printed in a final version of The Energy Journal. For example, preprinted articles are often moved from issue to issue affecting page numbers, and actual volume and issue numbers. Care should be given when citing Energy Journal preprint articles.

Drilling Deeper: Non-Linear, Non-Parametric Natural Gas Price and Volatility Forecasting

Abstract:
This paper studies the forecast accuracy and explainability of a battery of day-ahead (Henry Hub and Title Transfer Facility (TTF)) natural gas price and volatility models. The results demonstrate the dominance of non-linear, non-parametric models with deep structure relative to various competing model specifications. By employing the explainable artificial intelligence (XAI) approach, we document that the price of natural gas is formed strategically based on crude oil and electricity prices. While the conditional volatility of natural gas returns is driven by long-memory dynamics and crude oil volatility, the informativeness of the electricity predictor has improved over the most recent volatile time period. Although we reveal that predictive non-linear relationships are inherently complex and time-varying, our findings in general support the notion that natural gas, crude oil and electricity are interconnected. Focusing on the periods when markets experienced sharp structural breaks and extreme volatility (e.g., the COVID-19 pandemic and the Russia-Ukraine conflict), we show that deep learning models provide better adaptability and lead to significantly more accurate forecast performance.

Download Executive Summary Purchase ( $25 )

Keywords: Natural gas, Forecasting, Volatility, Energy commodities, Neural networks, Deep learning, Machine learning

DOI: 10.5547/01956574.45.4.dbaj

References: Reference information is available for this article. Join IAEE, log in, or purchase the article to view reference data.

Published in Volume 45, Number 4 of the bi-monthly journal of the IAEE's Energy Economics Education Foundation.

 

© 2024 International Association for Energy Economics | Privacy Policy | Return Policy