
   

Overview 
The phenomenon of unit cost reduction associated with increased production (learning-by-doing) has long been 
documented for manufactured products. In recent decades this has been extended to energy. The most common 
approach for characterizing this relationship is the use of a log-linear experience curves (or learning curve) relating 
reductions in the unit cost of a technology to its cumulative production or installed capacity. This model formulation 
also has become a common method of representing endogenous technical change in energy-economic models used 
for policy analysis. Yet, there are significant uncertainties in the underlying drivers of technological change, and the 
“proper” formulation of an experience curve (e.g., the appropriate equation, shape, and parameters of an experience 
curve). There is uncertainty in how best to use learning curves for making projections and to inform policies. 
We review theory of technological change and the underlying drivers for cost reduction reported in the literature. 
We conducted a comprehensive literature review and a meta-analysis for eleven power generation technologies 
including fossil-based power plants and renewable electric technologies. We draw lessons and insights potentially 
applicable to the development and use by energy modelers on how to use learning curves for the following power 
generation technologies: Pulverized coal (PC) plants with and without carbon capture and sequestration (CCS); 
Integrated gasification combined cycle (IGCC) plants with and without CCS; Natural gas combined cycle (NGCC) 
plants with and without CCS; Natural gas-fired combustion turbines; Dedicated biomass plants; Nuclear plants 
(third-generation); Conventional hydroelectric plants; Geothermal plants; On-shore and off-shore wind turbines; 
Solar photovoltaic (PV) and concentrating solar thermal plants (CSP). We review the studies in terms of those that 
used one, two, or multiple factor experience/learning curves. 

Methods 
There is a large literature that has empirically observed a relationship between unit costs of production and 
cumulative production across numerous technologies and products. The relationship has been referred to as an 
“experience curve” or “learning curve” and has been shown to generally take the following generic form [1], which 
can be represented by Y = axb, Where Y is the unit cost of production, x is the cumulative experience (which in the 
energy innovation literature is typically represented by cumulative installed capacity or cumulative energy 
production) a is the unit production cost of the first unit, and b is a constant capturing the rate of cost reduction.  
The learning rate (LR) is defined as the rate at which the per-unit cost of a technology is expected to decline with 
every doubling of cumulative production. The factor 2b is called the progress ratio, a parameter also commonly 
reported in the literature. Numerically it is simply equal to (1 – LR). The original derivation of this model form 
reflected the phenomenon called “learning by doing” (LBD). However, it is often argued that the statistical 
correlations between a reduction in unit cost and the cumulative installed capacity of an energy technology offers 
little explanation for the underlying factors and processes of technological change. There is also no inference in the 
causality between these two variables [2,3,4]. Despite several decades of research, our understanding of the factors 
that contribute to technological change and cost reductions is still rather limited. Various theories have been 
proposed to explain observed reductions in unit cost as cumulative output increases. Generally, they fall into three 
categories: (1) costs fall due to changes in production that include process innovations, worker familiarity in the use 
of tooling, improved management, and economies of scale; (2) costs fall due to changes in the product itself 
including product innovations, re-design and standardization; and (3) costs fall due to changes in input prices [5]. 
Some researchers suggest that the overall learning rates derived from empirical experience curves many over-
estimate the actual contribution of true learning-by-doing [2,4], as these models do not account for R&D spending, 
knowledge spillovers, increased capital investments economies-of-scale, the effect of other public policies, and the 
effect of changes in input prices. A particular concern is that models that “miss critical pathways or ascribe influence 
inappropriately could potentially arrive at erroneous, incomplete, or misleading policy conclusions” [4]. These 
concerns have led to the development of other learning models that incorporate multiple parameters, which we 
review in our meta-analysis. 

Results 
We found that there is a wide variation in reported learning rates. Some studies include both learning-by-doing and 
learning-by-researching (reflecting R&D spending), and report both values. In general, there are wide variations 
even within the same technologies, and no clear trend of learning rates associated with a certain type of 
technologies, time periods, or regions. Though we also found a narrower range of smaller learning rates associated 
with fossil power plants, whereas renewable technologies (wind, solar, biopower) have a wide range of learning 
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rates including values as high as 45% to 53%. With the exception of nuclear power, all the studies we reviewed 
report cost reductions with increased installed capacity.  
Some energy models have experimented with incorporating learning curves and explored the impacts on model 
results. In general, when one-factor learning curves are adopted, models with endogenous technological learning 
(ETL) (via learning curves) tend to project higher penetrations of advanced technologies and have lower overall 
costs compare to models that do not take ETL into account. The conclusions are much more complicated when both 
learning-by-doing and learning-by-researching (R&D) are included in the model. In general, R&D investments also 
lead to cost reduction. The results are summarized in Table 1.  

Table 1: Summary of studies characterizing historical learning rates for electric power generation technologies. 

 Technology  
Number of 

studies 
reviewed 

Number of 
studies with 
one factor 

Number of 
studies with 
two factors 

Range of learning 
rates for “learning by 

doing” (LBD)  

Range of rates for 
“learning by 

researching” (LBR)  

Years covered 
across all 
studies 

Coal* 
      PC  2 2 0 5.6% to 12% 

 
1902-2006 

IGCC 1 1 0  2.5% to 7.6% 
 

Projections 
Natural Gas* 8 6 2   -11% to 34%  2.38% to 17.7% 1980-1998 
Nuclear 4 4         0 <0 to 6% 

 
1975-1993 

Wind (on-shore) 35 29 6  -3% to 32%  10% to 26.8% 1980-2010 
Solar PV 24 22 2  10% to 53% 10% to 18% 1959-2001 
BioPower 

      Biomass production 4 4 0  12% to 45% 
 

1971-2006 
Power generation** 7 7 0  0% to 24%  1976-2005 

Geothermal power 3 0 0 
  

1980-2005 
Hydropower 3 0 2  0.48% to 11.4%  2.63% to 20.6% 1980-2001 
              
*Does not include plants with CCS.   **Includes combined heat and power (CHP) and biodigesters. 

Conclusions 
The phenomenon of unit cost reduction associated with increased production (learning-by-doing) has long been 
documented for manufactured products. In recent decades this has been extended to model the cost of various 
energy supply technologies. Yet, there are significant uncertainties in the underlying drivers of technological 
change; in our understanding of the major factors that contribute to learning; and in the “proper” formulation of an 
experience curve (including the appropriate shape and parameters of an experience-based model). Thus, there is 
uncertainty in how best to use learning curves for making projections and analyzing policy scenarios.  
There are two key categories of uncertainties associated with the application of experience curves. One is the 
learning curve itself; the other concerns the conclusions drawn from the use of learning curves. Despite a rich 
literature in learning-by-doing and extensive documentation of historical learning for energy technologies, there 
remains a large degree of uncertainty as to how reliably historical learning curves can be used to estimate the future 
cost of the same or similar technology. Thus, the judgment of technology experts and modelers is still required and 
used to address a host of questions, such as: What is the appropriate learning rate? When does learning begin (and 
end)? What is the appropriate shape of a learning curve? What is the appropriate measure of experience?      
The second key uncertainty, regarding the integrity of policy-related conclusions drawn from the use of learning 
curves, is similarly a topic of discussion and debate. Without a better understanding and ability to model the 
underlying drivers of technology cost reductions, model projections based on learning rates obtained from one-factor 
learning curves may inappropriately lend support to policies that favor certain technologies or investment strategies. 
Over the longer term, continued research into the underlying factors that govern or influence technological 
innovations and diffusion may yield improved models that can more reliably forecast the implications of proposed 
energy and environmental policy measures. In the meanwhile, more concerted efforts are needed to explore, 
understand and display the consequences of uncertainties in current formulations of technology experience curves 
used to project the future cost of energy technologies 
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