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What is in Red AI? Scoping the Energy and Environmental 
Impacts of  Artificial Intelligence
BY REID LIFSET AND ALAN PORTER

The energy consumed in training generative and other 
computationally-intensive forms of artificial intelligence 
(AI) is attracting increasing attention from computer 
scientists, energy modelers, policy makers, and the 
public. However, the development and use of AI has 
other potential energy and environmental impacts. 
Building on bibliometric analysis, this article describes 
impacts that are the focus of current research—energy 
use in training AI—those starting to be characterized in 
the research literature—energy use in inference—and 
those impacts that exist or are hypothesized to exist but 
have drawn little attention from researchers—including 
indirect impacts from the use of AI, rebound effects, and 
misleading inferences in environmental management 
and policy relying on the use of AI.

Artificial intelligence (AI) has the potential to enable 
increases in energy efficiency and other improvements 
in the energy system (Donti and Kolter, 2021; Rolnick et 
al., 2022). Researchers and AI developers are keen to 
propose ways to use digital technology for environmen-
tal improvement. Scans of the literature on AI and the 
environment suggest that research on environmentally 
beneficial applications are legion (Mosavi et al., 2019; 
Haupt et al., 2022; He et al., 2022).

In 2020, Schwartz et al. published “Green AI” in the 
Proceedings of the Association for Computing Machinery 
arguing that the AI research community “needed to 
make efficiency an evaluation criterion for research 
alongside accuracy and related measures in the 
development of AI”. They dubbed AI research that is 
more environmentally friendly and inclusive as “Green 
AI” and that which is not as “Red AI.” That paper along 
with seminal work in the same period, such as that by 
Strubell et al. (2019), prompted attention and efforts by 
computer scientists to address energy consumption in 
AI.

The potential negative energy and environmental 
impacts, however, are not limited to the direct energy 
consumed and the resulting greenhouse gas (GHG) 
emissions from the development of AI. Those impacts 
can include indirect impacts arising from the use of AI, 
impacts other than energy consumption and attendant 
emissions, and environmentally harmful changes in 
production and consumption. This short piece draws 
on an ongoing bibliometric analysis to develop search 
algorithms to identify research on Red AI (Porter, Lifset 
and Lee, 2024). For brevity, we adopt and stretch the 
term “Red AI,” using it as shorthand for diverse poten-
tial energy and environmental impacts of AI.

Here, we describe the scope of potential environ-
mental impacts—some of which are the focus of 
current research and others which have not drawn 
much or any attention. This is not a literature review, a 

synthesis of current quantita-
tive findings, nor a bibliometric 
analysis, but an effort to draw 
attention to the range of po-
tential impacts that can benefit 
from the attention of energy 
and environmental research-
ers. The references provided 
are not comprehensive but 
rather are intended as an en-
trée to literature. 

There are many different 
types of AI, but here we focus primarily on genera-
tive AI, the approach that underlies the now familiar 
chatbots. Generative AI can create new data—such 
as text, images, video, code, and audio—rather than, 
as with other types of AI, making a prediction about a 
specific dataset. Development of generative AI requires 
training, a process where the AI model is fed very large 
amounts of data, asked to make decisions based on the 
information, and then adjusted based on the AI out-
put’s accuracy. Because it is computationally intensive, 
generative AI models are typically energy intensive.

Direct Energy and Environmental Impacts

In response to calls for Green AI, computer scientists 
are increasingly looking for ways to reduce energy and 
GHG impacts of AI compute, that is, the development 
and use of software and hardware used in AI (OECD, 
2022). This includes proposing ways to make training 
more computationally efficient (e.g., Treviso et al., 
2023); devising tools to measure energy consumption 
or emissions from AI models (e.g., Bannour et al., 2021; 
Lannelongue and Inouye, 2023); and, debating likely 
trajectories of energy in AI development (Bender et 
al., 2021; Patterson et al., 2022; Luccioni, Jernite and 
Strubell, 2023; Castro, 2024). Much of the growing com-
puter science literature focuses on methods to reduce 
the computational intensity of AI (Verdecchia, Sallou 
and Cruz, 2023).

Less common are analyses of energy consumed in 
the use of AI, known in computer science as “inference” 
(Luccioni, Jernite and Strubell, 2023). In part, this is be-
cause, while training typically occurs in data centers, in-
ference may be disbursed among sites, equipment, and 
devices. While individual instances of inference typically 
consume little energy, inference has the potential to 
be a much greater consumer of energy because of the 
scale of usage (Kaack et al., 2022; Vries, 2023). Research 
on energy consumed in specific uses of AI is limited. 
Some research on the carbon footprint of medical uses 
of AI  is emerging (e.g., Yu et al., 2022; Doo et al., 2024) 
Energy consumed by AIs in the serving of digital adver-
tising, a ubiquitous phenomenon, has attracted little 
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research (Pärssinen et al., 2018; Wu et al., 2022; Pesari, 
Lagioia and Paiano, 2023).  

Analysis of other instances of direct energy use by AI 
raises conceptual issues of causality, responsibility, and 
boundaries. The issue of causality can be illustrated 
through the examples of robots and autonomous vehi-
cles. If use of a robot results in environmental damage 
and the robot employs AI in its functions, it is not clear 
whether the damage should be deemed an impact of 
the AI—no more than the material of which the robot 
is composed would be viewed as causing the damage.1 
Autonomous vehicles (AVs) present another conun-
drum in defining Red AI. The environmental impact of 
AVs may arise primarily from the increases in trans-
portation and emissions that they engender, but AVs, 
unlike some other technologies, conspicuously would 
not exist at all without AI. A substantial literature exists 
on energy use by AVs, focusing efforts to estimate likely 
types and extent of use (Taiebat et al., 2018). A litera-
ture on the footprint of data processing and transmis-
sion including AI in autonomous vehicles is emerging 
(Sudhakar, Sze and Karaman, 2023).

Other Direct Environmental Impacts of AI

Data centers where much AI compute occurs face 
issues in addition to energy use. Water use is drawing 
increased public concern, especially in places where 
data centers are concentrated or water supplies are 
constrained (Doorn, 2021; Mytton, 2021; Lei et al., 
2024). In a review of research needs on the environ-
mental impacts of AI, the Organisation for Economic 
Cooperation and Development  has called for more 
attention to non-energy impacts of AI including biodi-
versity (OECD, 2022).

Embodied Energy and Carbon

As operational energy use in computation improves, 
the relative importance of the impacts of producing 
the equipment used in AI grows. Embodied energy and 
carbon are attracting increasing attention (Gupta et al., 
2022; Wu et al., 2022).

Generation of e-waste arising from AI

In some domains of the digital economy, changes in 
technology cause digital equipment to become ob-
solete. For example, in the mining of cryptocurrency, 
competition pressure has led to the rapid evolution 
of mining rigs with resulting turnover of equipment 
and generation of e-waste (de Vries and Stoll, 2021). 
Changes in the hardware used for AI could also in-
crease the generation of e-waste. 

Indirect Energy and Environmental Impacts of AI

Indirect energy and environmental impacts of AI are 
diverse and potentially legion with little systematic 
treatment. A modest but growing research literature 
on the indirect environmental impacts of digitization 
(Horner, Shehabi and Azevedo, 2016; Bieser and Hilty, 
2018; Vaddadi et al., 2020) does not address AI specifi-
cally. Such impacts include both shifts in consumer and 

producer behavior in response to changes in capabil-
ities and costs, and broader structural changes in the 
economy and society. Among the indirect impacts are 
increases in energy consumption arising from function-
ality, availability, or costs of digital platforms enabled 
by AI and internet search (Wu et al., 2022).

An important, but understated, indirect impact is 
increased production or consumption arising from 
efficiencies generated by AI. Such rebound effects are 
well known to and studied by energy economists (e.g., 
Herring and Sorrell, 2009), but, to our knowledge, only 
a small number of analyses of rebound effects from 
digitization have been conducted (e.g., Coroama and 
Pargman 2020; Gossart 2015). Very few papers have 
been published examining rebound arising from AI 
(Ertel, 2019; Adha and Hong, 2021; Willenbacher, 2021; 
Willenbacher, Hornauer and Wohlgemuth, 2022). 

Other Research on Red AI

Incorrect or misleading algorithms

Algorithms developed for environmental research or 
management could produce misleading guidance or 
damaging outcomes (Rillig et al., 2023). AI models can 
also incorporate racial or social bias or hallucinate, i.e., 
create false information, including nonexistent scien-
tific references (Zhu et al., 2023).  

Infrastructure risk, security risk, and cascading 
failures

Reliance on artificial intelligence could lead to risk to 
infrastructure if algorithms are faulty (Nishant, Ken-
nedy and Corbett, 2020; Galaz et al., 2021; Robbins 
and van Wynsberghe, 2022). While this risk appears 
to be little different than risk arising from other forms 
of digitally-based management systems, AI could lead 
to greater autonomy of digital management or the 
problem of the inability to understand the basis for 
decisions produced through AI (Vinuesa and Sirmacek, 
2021; Islam et al., 2022). Similarly, increased reliance 
on digital management, because of the capabilities of 
AI, could lead to security risks if the AI applications are 
vulnerable.

Other Environmental Concerns

There are other environmentally related concerns 
voiced in the research literature that have varying 
degrees of connection to energy issues. These include 
ethical critiques (e.g., Dauvergne, 2021), discussions of 
potential negative impacts of smart cities (e.g., Colding 
and Barthel, 2017), and the likely impact of AI on the 
sustainable development goals (SDGs) (Vinuesa et al., 
2020).

Much is unknown about Red AI. As noted above, the 
likely magnitude of the impacts arising from the growth 
of AI such as training AI models—currently a focus of 
study—is contested. The character and significance of 
other potential impacts such as misleading algorithms 
or increases in e-waste remain largely unexplored.
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Footnotes
1 Note, however, that embodied carbon in the robot, that is, the GHG 
emissions generated in the production of the materials used in the 
robot could be considered as arising from the use of the robot when 
taking a life cycle perspective.


