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applied to equilibrium electricity spot prices of the PJM market. An empirical analysis indicates that 

the problem of unobserved spatial correlation in the network can be modeled by the Spatial Error 

Model providing an additional insight about the spot electricity prices in the PJM market. The topology 

of the network and the structure of the market are responsible for the spatial correlation, which should 

not be ignored by careful research. 
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 Introduction 

 

Worldwide liberalization of the electricity markets – the introduction of competition, opening 

the electricity markets to new providers, reduction of external inferences – aims to boost competition 

for generation entities, load serving firms and ancillary services.  In deregulated electricity markets, 

participants can act strategically, thus reduce the transparency of the electricity prices and causing 

welfare loss.  Relationships between prices and operating decisions have been thoroughly and 

systematically studied in last decade.  Analyses of electricity prices in deregulated electricity markets 

revolve around three main questions: (1) Do electricity markets perform efficiently? (2) What model 

do prices follow? (3) How important is financial deregulation to market performance?  While 

enhancing competition in electricity markets, the changes have made electricity a traded commodity 

that is sold and bought through various exchange markets in real time as well as with futures and 

options, meaning that trading and risk management have become key tools for running a successful 

business. Moreover, financial regulation of energy markets plays a significant role and is becoming 

increasingly relevant to the electricity sector as trading continue to develop.  Doing business in the new 

electricity markets therefore requires adequate models of price dynamics that capture the main 

characteristics and features of electricity prices.  

Electricity is not a typical commodity since it cannot be economically stored.  This unique 

feature of electricity is the key determinant of the high volatility of market-clearing prices.  Since 

inventories cannot be stored to smooth supply and demand shocks, generation and consumption have 

to be continuously balanced in real time, which creates substantial price volatility.  Risk associated 

with real time production and consumption shocks has impeded the conversion of energy market 

structure from monopolistic to a competitive, efficient form. As the electricity market structure has 

moved from a monopolistic to an increasingly competitive one, the following changes have occurred in 

US electrical energy markets:  

• Wholesale power markets have grown rapidly in recent years (US Department of Energy 

Report, 2000)  

• Increasing uncertainty of market prices, and consequent development of methods to hedge 

risk, including the formation of formation of day ahead markets and futures markets 

(Bessembinder and Lemmon, 2002, Longstaff and Wang, 2002, Routlegde, Seppi and Spatt 

(2001)) 



 2

• Improved trading contracts and standards and development of financial transmission rights 

(PJM annual report 2002, Gibson and Schwartz (1990)) 

In addition, it seems plausible that volume of trades will continue to grow in the future. Hence, 

it is likely that with the further elaboration and decentralization of the power market, new trading 

standards and entirely new energy-related markets may emerge.  Together, these factors motivate 

additional research on electricity markets, price modeling, high-frequency empirical studies, and 

analysis of the welfare impacts of the structural changes.  

This paper addresses the issue of modeling spot prices, because spot prices are one of the key 

factors in strategic planning and decision support systems of a majority of market players, and are the 

underlying instrument of a number of electric power derivatives. The goal of the paper is to propose a 

model for electricity spot price dynamics that takes into account the key characteristics of electricity 

price formation in the PJM interconnection such as seasonality, weather-dependence, trading in the 

day-ahead market and spatial attributes of the distribution system.  

There is a large and growing literature on electricity markets, their deregulation, efficiency, 

electricity prices formation and risk management. Recent important theoretical works on electricity 

spot and forward prices include work by Bessembinder and Lemmon (2002), Routledge, Seppi and 

Spatt (2001) and Longstaff and Wang (2002). Bessembinder and Lemmon develop an equilibrium 

model of electricity market for spot and forward prices in a production economy and provide some 

empirical evidence supporting their model. Routledge, Seppi and Spatt construct a model with rational 

expectations for electricity prices, assuming that storable commodities such as gas and coal are 

available to be converted into electricity.  While Routledge, Seppi and Spatt (2000) present a 

theoretical model for general commodities, Escribano, Peaea and Villaplana (2002), and Lucia and 

Schwartz (2002) focus on energy contracts, Empirical evidence about the forward premium, i.e. 

difference between the forward and expected spot price, for storable commodities is presented by 

French (1986), Fama and French (1987), Hazuka (1984). 

Electricity is not a typical good since its flow is not easily controlled. Given the grid, injections 

on the nodes and knowledge of the Kirchhoff’s Current Law, one can only predict electricity flows i.e. 

accurately estimate the electricity flow distribution within a grid. There is one degree of freedom – 

injections on some nodes and loads on the other nodes. Changing production and load in different 

locations can manipulate both the direction and intensity of electricity flows within a given grid. 

Transmission and distribution lines are the only means by which electricity can be delivered to users.  

The topology of transmission lines plays a significant role in electricity price formation, since the 
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pricing mechanism of electricity depends on the ability to deliver at a specified time and place. 

Therefore, the topology of the grid is a major determinant of electricity prices in all deregulated 

markets. Although participants in a competitive electricity market act independently, individual 

behavior does influence the performance of the entire system, because all electricity market 

participants act simultaneously under the physical constraints of the system and economic constraints 

of the market.  

The effect of simultaneous constraints can be illustrated by an ideal market under Cournot 

competition. In amarket for a homogeneous good, with N producers and fixed demand, the profit-

maximizing production of any producer depends on the production of all other participants. In the case 

of an electricity market, each generating unit’s production depends not only on how much others 

generate but also on how many transmission lines are available to deliver the product and the capacity 

and congestion of the lines, which are also affected by the production of all other participants. 

The novelty of my approach is the utilization of the spatial feature of the PJM market which is 

divided into twelve transmission zones. The PJM interconnection’s pricing mechanism and price data 

availability is designed in such a way as to allow considering each zone as a hypothetical generating 

unit. Both forward and spot prices are reported for each hypothetical producer hourly.  This facilitates 

a high-frequency empirical analysis taking into account spatial characteristics of the interconnection.  

Consequently, I assume that the electricity spot price can be represented as a function of its lagged 

values, the forward price, weather conditions, and demand, which is equal to load.  I assume that there 

is a unique price generating process, but the disturbances are spatially correlated due to the grid 

topology and the omitted variables problem. My main finding is that the spatial aspect plays an 

essential role in electricity prices formation and that ignoring the spatial characteristics and the grid 

topology may cause biased results and vague conclusions. 
 

OVERVIEW OF ELECTRICITY CHARACTERISTICS 

Non-storability 

The non-storability of electricity makes this commodity special and prevents researchers from 

using standard methods to analyze electricity market and its performance. Althought it is possible to 

consider electricity to be a storable commodity if the supply stack consists mostly of hydropower 

generation as in Norway, in the case of thermal generation electricity cannot be considered as a 

storable commodity.  Therefore, reaction to a sudden change in demand will necessarily occur with a 

time gap that can be significant.  In particular, the non-storability of electricity subverts the cost-of-
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carry argument and intertemporal arbitrage-based methods, which are used in the classical financial 

approach to risk assessment and valuation. Since electricity cannot be economically stored, it is 

necessary to develop specific tools to analyze power markets. 

Supply and Demand 

 Uncertainty about quantity demanded and supply shortages influences price formation in 

electricity markets. To better understand this, it is essential to disentangle overcapacity and shortage in 

supply as well as demand weather-dependence and non-receptivity to price changes. 

In an economically efficient and unconstrained electricity market, generation units are 

dispatched according to marginal cost; i.e., it is rational to dispatch first the generating unit with the 

lowest marginal cost, followed by units with higher marginal cost in merit order.  Every generating 

unit has its minimum production as well as its maximum production, which are determined by both 

physical and economic considerations. So, the supply curve is relatively smooth and production is 

elastic in the range between minimum and maximum generation, but after the unit’s capacity ceiling is 

reached its supply curve becomes vertical.  These facts complicate the economic dispatch problem and 

bring uncertainty to it since demand is not known a priori.  

Demand for electricity is affected by different factors such as industrial, commercial and 

domestic use, which contribute to variation within the day, week and season. Cyclical deviations may 

be predicted with a high degree of certainty. Nonetheless, some important sources of disturbance such 

as weather conditions, wind speed, temperature, and humidity make electricity demand highly 

inelastic. Supply shortages follow unpredicted demand jumps and unexpected generating plant and 

transmission lines maintenance problems, and so, are not generally foreseen. Innate characteristics of 

the generating units’ capacity limit, demand insensitivity to price fluctuations, weather-dependence of 

consumption, complexity of grid network and risk associated with supply-demand balancing -- all 

contribute significantly to the volatility of electricity prices.  

Seasonality  

Seasonality is another feature of electricity prices and generation, which fluctuate in response 

to the variation of demand. Demand shifts and subsequent price movements are primarily influenced 

by exogenous factors such as weather conditions and economic and domestic activities.  Moreover, the 

non-storability of electricity plays a part in seasonality of electricity prices because it reduces the 

possibility of a lagged use. For instance, electricity use is low at night and high at noon, but it is not 

possible to generate electricity at night in order to balance demand increases during the day. There are 

three kinds of seasonality detected in different studies in electricity prices and load: diurnal, weekly 
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and annual. Diurnal seasonality can be explained by the large change in consumption between day and 

night, i.e. peak and off-peak hours. Weekly seasonality comes from differences in industrial activity 

between work days and weekends. Annual seasonality is related to weather conditions such as the 

season, temperature, and wind speed.  
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It is usual to assume that seasonality is generated by deterministic factors. It is possible to 

demonstrate seasonality without a mathematical formula. Figures 1 and 2 illustrate seasonal patterns in 

prices and production. Visual examination of the left panel shows that weekly prices display a seasonal 

pattern over a yearly cycle. The right panel represents intra-day seasonality in prices. Note that load 

exhibits exactly the same behavior, although it is less volatile than electricity price.   

There are also mathematical methods such as Fourier analysis, fast Fourier transform analysis 

and moving average seasonality analysis, which allow us to detect seasonality problem in continuous, 

discrete, periodic and even a-periodic series. For discrete and periodic series the Fast Fourier transform 

is appropriate. Fig. 3 illustrates the frequency spectrum of PJM hourly locational marginal prices and 

load. In analyzing the spectrum, the daily, weekly and annual frequencies are clearly visible. Lower 

frequencies for 12, 6, and 3 hours are also observed. However, they do not give any additional 

information and are simply the resonance of “daily” peak. These peaks for 12 hours, 6, and 3 hours are 

called harmonics (multipliers of 24) and indicate that data exhibit a 24-hours period but it is not 

sinusoidal. 
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Mean reversion 

Empirical studies show that prices in many electricity markets can be characterized as mean 

reverting process. For instance, Bhanot (2000), Lucia and Schwartz (2002), and Knittel and Roberts 

(2001) model electricity prices as a mean-reverting process. That is, electricity prices fluctuate around 

their mean althoughthe mean itself may evolve over time.  It is plausible to assume that the electricity 

price mean depends on demand, supply and market structure.  There are at least two theoretical 

explanations for the mean reversion phenomenon.  First, shifts in demand push prices up, as more 

expensive generators are called upon in turn and the market moves along the supply curve.  Second, 

since weather evolves as a mean reverting process, and since equilibrium prices are highly affected by 

demand (which is weather dependent), it is natural to assume that electricity prices exhibit mean 

reversion. There is a large literature devoted to electricity price formation processes, treated as mean 

reverting, for instance Knittel and Roberts (2001), Delaloye, Bernezet and Meisser (EGL AG report 

2001), Lucia and Schwartz (2001).  Although mean reverting models are very attractive, there is also 

literature describing electricity prices as non-mean reverting. Moreover, the recently developed 

alternatives to mean reverting and mean reverting with jumps models are non-constant volatility 

(GARCH/ARCH). For instance, one can find the GARCH models of electricity prices and their 

derivatives in Escribano, Pena and Villaplana (2002), Longstaff and Wang (2002). 
 

PJM Market 

The PJM Interconnection is a regional transmission organization (RTO) established in 1997 as 

the first auction-based market in the USA. The PJM energy market coordinates the continuous buying 
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and selling of energy in real-time and day-ahead markets, forward and bilateral markets and self-

supply. PJM Interconnection ensures production, transmission and the interconnection reliability of the 

centrally dispatched control area. It establishes and supports the trading rules and standards; facilitates 

the market-clearing prices; monitor market activities to ensure open and fair access.  

PJM coordinates the movement of electricity in all or parts of Delaware, Maryland, New 

Jersey, Ohio, Pennsylvania, Virginia, West Virginia and the District of Columbia. The PJM 

interconnection consists of two  independent areas: PJM East and PJM West. PJM West is represented 

by one transmission zone, whereas PJM East is divided into eleven transmission zones. All twelve 

transmission zones are responsible for security of transmission system, balancing of generation and 

switching coordination. There are approximately 245 market participants in PJM energy market, 

including power generators, transmission owners, electricity distributors, and large consumers.  Market 

members fall in four main market sectors: generation-owner, transmission-owner, electric distribution 

and end-users.  Depending on market conditions, each participant from any market sector can be either 

buyer or seller.  However, all sectors have their specific rules and requirements, which must be 

fulfilled. 

The PJM energy market uses a Locational Marginal Pricing model (LMP) that reflects the 

value of energy at the specific location and times it is delivered. If the lowest-priced electricity can 

reach all locations (i.e. there is no transmission congestion), prices are the same across all locations. 

However, if there is transmission congestion, so energy cannot flow freely to certain locations, more 

expensive generating units have to be dispatched out of merit order to meet demand.  As the result, the 

locational marginal price (LMP) is higher in those locations. 

The PJM energy market consists of Real-Time and Day-Ahead markets. The Day-Ahead 

Market is a forward market in which hourly LMPs are calculated for the next operating day based on 

demand bids, generation supply bids and scheduled bilateral transactions. The Real-Time Market is a 

spot market in which current LMPs are calculated every five minutes based on actual system operating 

conditions. PJM transactions are settled hourly, and both real time and day ahead LMPs are available 

for each of the twelve transmission zones.  

DATA 

The data consist of hourly Real-Time and Day-Ahead Location Marginal Prices from the PJM 

market spanning the period of April 1, 2002 to December 31, 2003. For each of the 641 days in the 

sample, the data sets contain information on hourly real-time LMP ($) for each zone, and the 24 

settlement LMP ($) for the day-ahead forward market, where delivery will be made at the respective 
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hour during next day. The data contain the power delivery (MW) for each day hourly from both PJM-

East and PJM-West hubs. The data are provided directly from the PJM website www.pjm.com. 

Table 1 reports the summary statistics for the electricity spot and forward prices over the period 

of April 1, 2002 to December 31, 2003. Both spot and forward prices are quoted in dollars per 

megawatt hour, $/MWh. As shown in Table 1, both the average spot and forward prices do not vary 

much among the zones. However, standard deviations are smaller for forward prices, meaning that 

forward prices are less volatile. Median spot prices are lower than mean spot prices, indicating a 

righward skewness of the spot price's distribution. Although the same pattern can be observed in the 

forward prices, the differences between mean and median spot prices are smaller than the differences 

between mean and median forward prices. Minimum of the spot prices is higher than minimum of the 

forward prices in absolute values. And the spot peak prices are much bigger than the forward peak 

prices.  

Tables 2 and 3 present the summary statistics for the average hourly spot and forward 

electricity prices. The average spot prices vary throughout the day, running from a low for the early 

morning to a high for the peak late afternoon. Both average hourly spot and forward prices clearly 

exhibit intraday variation. It is interesting that mean forward prices are higher than the mean spot 

prices during the peak afternoon hours, while median spot prices are almost always lower than median 

forward prices, indicating that spot prices have a more pronounced upward skewness.  Standard 

deviations are high for afternoon prices for both forward and spot markets, and the standard deviations 

for the spot prices are always higher than standard deviations for the forward prices. The maximum 

spot price is about 15 times higher than its mean values during afternoon hours, whereas the maximum 

forward price is about only 4 times higher than mean values for these hours. This summary of the price 

statistics demonstrates the key feature of electricity prices: their right-skewed distribution. The model 

presented in Routledge, Seppi and Spatt (2001) implies the same pattern of skewness. 

For Figures 6, 7 and 8, I use the data spanning the period of January 1, 2002 to December 31, 

2003 in order to capture annual seasonality as well as daily and weekly seasonality. Two zones are 

excluded from this analysis since they have operated since April 1, 2002.   

Figure 6 shows time series of average over zones electricity spot prices for a representative 

subset of hour. As it can be seen, there is a considerable time series variation in the spot prices, 

particularly during peak hours. Figure 7 plots the forward prices for the same subset of hours. The 

forward prices exhibit similar properties as the spot prices, though they are less volatile. 
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Hourly electrical load for PJM Eastern and PJM Western hubs measured in gigawatt hours 

represents electrical usage. Figures 1, 2, 3 and 8 illustrate that the load data are with strong hourly, 

weekly and annual seasonality. Table 4 presents the summary statistics for electricity gross load, i.e. 

from both eastern and western hubs over the period of April 1, 2002 to December 31, 2003. Mean 

values of the load are bigger than median values. Demand for peak afternoon hours tend to be higher 

and more volatile than for other hours. Figure 8 displays that summer demand is more volatile than 

winter demand. Moreover, average summer load is higher than average winter load. 

Finally, the weather data is collected from the National Weather Station. The data on weather 

conditions are represented by temperature for PJM East (Philadelphia) and PJM West (Pittsburgh). 

Electricity load and weather conditions are used as explanatory variables in the economic model 

constructed in next section. 
 

PRICE MODELING  

The PJM Interconnection is divided into twelve transmission zones controlled by independent 

companies. Both real time and forward prices are given hourly for each of the twelve transmission 

zones. All zones act as independent markets, although they are tightly related through the constraints 

imposed by the transmission lines. These interconnections allow implementation of a spatial 

econometric approach to model price formation process in the PJM interconnection.  Electricity is not 

a simple good; it complies only with the laws of physics. For instance, one cannot control the 

distribution of electricity in a network but only predict it using Kirchhoff’s Current Law.  Knowing the 

features of a network allows one to identify flows but one cancontrol them only by changing  either the 

network or initial conditions. As a result, what is observed at one point is determined (in part at least) 

by what happens elsewhere in the system.  This can formally be expressed as a spatial process: 

),...,,( 21 Nj LMPLMPLMPfLMP =  

Every observation of a variable LMP at location j is formally related to the magnitudes for the 

LMP variables in other spatial units in the system through the function f. By imposing a particular form 

for the spatial process, i.e. on the functional relationship f, a number of characteristics of the spatial 

dependence may be estimated and tested empirically. One approach to infer an appropriate form for the 

spatial dependence departs from the data and is based on a number of statistical indicators. The crucial 

issue in spatial econometrics is the problem of formally expressing the law in which the structure of 

spatial dependence is to be incorporated in the model. The first question of spatial dependence is the 

need to determine which other units in the spatial system have an influence on the unit under 
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consideration.  Formally, this can be expressed most simply in the topological notion of nearest 

neighborhood. Spatial autocorrelation is based on the notions of binary contiguity between spatial 

units. If two spatial units have a common border of non-zero length they are considered to be 

contiguous. In the case of PJM interconnection there is no contiguity among some zones. For instance, 

zone APS is not coherent itself, and it is composed of two geographically isolated areas (see FIG 9). 

This fact impedes application of a spatial model. However to circumvent this obstacle, I treat each 

isolated geographical area as a zone. This approach simplifies the modeling without impairing the 

results. At the core of the locational marginal pricing model is the fact that prices are set to equate 

supply and demand and are the same across all zones unless there is transmission congestion. If at least 

one transmission line is congested, the LMPs are different across zones. So, treating 16 PJM’s 

geographical areas as independent zones can help to resolve non-contiguity problem.  

 

For each area I specify the following regression equation: 

Sit = 0α + 1α *weatherit + 2α *forwardit + 3α *loadit + it
j
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 t = 1,…,T; i = 1,…,N,  

N = 16 and T = 15336 

Sit  stands for a spot price of zone i at time t;    

 forwardit is a forward price for delivery at date t to zone i contracted 24 hour earlier;    

 loadit  is a load at date t for i zone. Since PJM interconnection is divided into 2 independent 

areas: PJM-West and PJM-East, all zones are either in PJM-West or in PJM-East. So, those 

zones in PJM-East have the same load.  

weatherit is a temperature observed at zone i at time t.  

Hj is an hour dummy (12 pm dummy is omitted) 

Wl  is a week dummy (Sunday dummy is omitted) 

Si,t-1  is a spot price of zone i at time t-1 (to capture intra-day seasonality as well as reduce non-

stationarity ) 

Spatial dependence can arise from latent variables that are spatially correlated. It seems likely 

that unobserved characteristics such as line congestion, generating unit production capacity, generating 

plant maintenance problems at certain locations, and the like may exhibit spatial dependence. The most 

plausible model that may capture most of latent spatial correlation is Spatial Error Model (SER) 

εβ += XS     (2) 
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TSSSS ),,,( 1621 K= , where each iS  is 15336x1 vector-column,  

X is (15336*16)x57 matrix, and ε  is (15336*16)x1 vector-column 

u+Ω= ελε   (3) 
where Ω is known as a normalized row-stochastic matrix, λ  is a scalar coefficient of spatial 

correlation in errors. It captures the underlying structure of neighboring zones by “0-1” values. That is, 

if two zones have a common border of non-zero length a value of 1 is assigned. For any two 

neighboring zones i and j, I assume that area j’s explanatory variables do not correlate with error term 

of area i.  

For T spot prices in N zones, Ω  is a (NT x NT) weighting matrix that assigns to spot price in 

the area j the average value of variable S in the areas surrounding the area j. In this model all neighbors 

are given equal weight, and all areas are equally influenced by their neighbors taken together (sum of 

elements in each row ofΩ is unity). These assumptions may be relaxed if more information about the 

relative importance of neighboring zones is available.  

The error term ε has two components. The vector u is a (NT x 1) vector of random errors with 

zero mean, constant variance and no correlations to the explanatory variable, i.e. E(u) = 0, VAR (u) = 

Iu
2σ  and E(X`u) = 0. A spatial error term, ελΩ , can be interpreted as the following: the error terms 

for observations in any area j contain λ  times the average error found in neighboring areas, εΩ . 

Spatial correlation in errors, 0≠λ , may result when unobserved spatially correlated variables drive 

prices, such as grid topology and physical characteristics of the transmission lines. Any unobserved 

regional differences may result in unobserved errors being different in different areas, but related in 

surrounding areas. 

For a model with an error structure as in (3), ordinary least squares estimation is inefficient. If 

OLS is performed ignoring the spatial structure of errors the estimates of β are still unbiased, but the 

estimates of variance are biased and may lead to spurious inference. Therefore, maximum likelihood 

estimation is used. The results of estimating the spatial autoregressive error model are represents in 

TABLE 0.  The SEM estimates indicate that after taking into account the influence of the explanatory 

variables, we still have spatial correlation in the residuals of the model because the parameter λ  is 

significantly different from zero. As a confirmation of this, consider the results from an LR test: 
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LR tests for spatial correlation in residuals 

LR value 420371 

Marginal Probability 0.00000000 

chi-squared(1) value 6.63500000 

 

Recall that this is a test of spatial autocorrelation in the residuals (H0 is of no spatial 

correlation) from a least-squares model, and the test results provide a strong indication of spatial 

dependence in the least-squares residuals. Note also that this is the only test that can be implemented 

successfully with large data sets.  

Observing the reported results in Table 0, one can draw several conclusions.  The information 

about the load and the forward prices captures much of the variation in real time prices. The first 

explanation of this fact is that day-ahead commitments are done to mitigate risk associated with real-

time uncertainty.  Therefore, the real time LMPs are, in a sense, predetermined by day-ahead contracts. 

In addition, load represents demand, which actually determines generation, and in turn, spot prices. 

Even though load is only an approximation of demand, one can treat it as an upper bound for demand, 

since it impossible to consume more than it is produced. Thus, load may explain spot prices fairly well.  

The estimates of the Hj and Wk, hourly and weekly dummies, are included in order to capture 

the intra-day and weekly seasonality. The estimates of hourly dummy variable coefficients are all 

significantly positive except H3, whereas the estimates of weekly dummy are all significantly negative. 

This captures the weekly cyclical pattern in spot prices due to variations in residential, commercial and 

industrial use. Electricity prices tend to increase from early morning until late afternoon, and tend to 

decrease until midnight. Moreover, electricity spot prices are lower in weekends than on weekdays, as 

is reflected in the dummy variables estimates.  

The estimates of the lagged electricity spot prices have even more intriguing behavior. Most of 

the even-hour dummies are negative, whereas most of the odd-hour dummies are positive. The only 

exceptions are the dummies for lagged spot prices from 18 till 24, which are all positive and significant 

except the dummy for lag 20. The other insignificant estimates for hour dummies are lags for 8, 9, 13 

and 17. The insignificance of hour dummies can be driven by the fact that the variables “weather” and 

“load” are included into the model. These variables capture the great portion of the spot prices 

changes. Another explanation to this can be the fact that electricity spot prices are highly volatile. This 

non-stationarity in the prices may cause the result.  
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There is a significant estimated “spatial” parameter λ̂  which means that there is strong spatial 

correlation in the residuals. The main message is that spatial dependence of spot prices in the PJM 

market is important and one should not ignore this spatial correlation, even though it is driven by 

unobserved (to the researcher) processes. The best way to circumvent the spatial unobserved factors is 

to model them as a specific error process. This can be done in several ways: accounting for the 

topology of the network or assuming spatial process in disturbances. In any case, the spatial 

characteristics of the electricity market should be taken into account while modeling the electricity 

prices and their derivatives. Although the coefficient λ̂  is considered to be a nuisance parameter, 

usually of little interest in and of itself, it is necessary to correct for or filter out the dependence. It is 

worth noticing than since E(u) = 0, irrespective of the value of λ̂ , the mean of S is not affected by the 

spatial error dependence.  
 

Figure 4: Spatial Regression Residuals 

 

In Figure 4, the residuals appear to exhibit a white noise pattern, even though there are several 

outliers, which are associated with July 2002 spikes in the spot prices.  As can be seen in the next 

Figure 5, those spikes are underestimated. Note, that on the horizontal axes time series for all 16 zones 

are represented. Overall performance of the Spatial Error model is satisfactory, since it bring new 

insight into the electricity price modeling and help to estimate those prices well. 
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Figure 5: Spatial Regression Prediction vs. Actual Values 

 

 
CONCLUSION 

Spatial Error Correction model is adequate to model electricity prices. The problem of 

unobserved spatial correlation in the grid can be modeled by the SEM. The model provides an 

additional insight about the spot electricity prices in the PJM market. The topology of the network, the 

structure of the market and the rules imposed are responsible for the spatial correlation, which should 

not be ignored by careful research. Strong spatial correlation is supported by the estimating results as 

well as by the testing procedure. Though the estimation of the “spatial” parameter λ  is of little 

interest, it helps to bring out consistent estimates of explanatory variables. Therefore, the more robust 

estimates and inference can be drawn. 

Despite its attractiveness, the Spatial Error Model is not the only method available to model the 

electricity prices and derivatives. Future of electricity price modeling may be oriented towards models 

incorporating finer components and an additional information about the network topology, weather 

conditions and connections between the PJM zones. The additional information can be utilized either 

by spatial approach or by other modeling methods. 
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TABLE 0 EMPIRICAL RESULTS 
  

R-squared= 0.9575  Dependent 
Variable 

 = spot 
price       

Rbar-squared= 0.9575           
sigma^2 – price 
variance =  28.2206 

          

Nobs =  245376           

Nvars= 57           

Variable Coefficient t-stat z-
probability Variable Coefficient t-stat z-

probability 

LAMBDA -  
coefficient 
of spatial 
correlation 
in errors 0.873989 1525.025 0.000000 W2 -1.047673 -3.298046 0.000974
constant -1.51062 -3.04175 0.002352 W3 -1.038608 -3.268957 0.001079
Forward 0.094633 39.202605 0.000000 W4 -1.176472 -3.700931 0.000215
Load 0.000341 56.261643 0.000000 W5 -2.402390 -7.541134 0.000000
Weather -0.005134 -1.890890 0.058639 W6 -2.248101 -7.059417 0.000000
H1 1.554878 2.632255 0.008482 SP-1 0.636380 314.66930 0.000000
H2 2.751867 4.647731 0.000003 SP-2 -0.024641 -10.299547 0.000000
H3 0.892371 1.507536 0.131673 SP-3 0.065999 27.593960 0.000000
H4 1.934550 3.266269 0.001090 SP-4 -0.008969 -3.744530 0.000181
H5 3.871718 6.520954 0.000000 SP-5 0.028310 11.818739 0.000000
H6 6.665134 11.215298 0.000000 SP-6 0.005290 2.208343 0.027220
H7 12.100306 20.352131 0.000000 SP-7 -0.004517 -1.885884 0.059311
H8 7.633009 12.811040 0.000000 SP-8 0.000100 0.041598 0.966819
H9 6.675428 11.201983 0.000000 SP-9 -0.000857 -0.357723 0.720550
H10 8.944625 15.020178 0.000000 SP-10 0.016231 6.776468 0.000000
H11 11.349444 19.033389 0.000000 SP-11 -0.010214 -4.262887 0.000020
H12 5.633284 9.432713 0.000000 SP-12 0.012327 5.145328 0.000000
H13 6.426274 10.776080 0.000000 SP-l3 0.003152 1.315754 0.188257
H14 9.297441 15.601096 0.000000 SP-l4 0.006343 2.647526 0.008108
H15 3.984631 6.678424 0.000000 SP-15 -0.016918 -7.062682 0.000000
H16 6.386275 10.702484 0.000000 SP-16 0.009727 4.060185 0.000049
H17 10.210617 17.121062 0.000000 SP-17 -0.001043 -0.435384 0.663284
H18 9.976639 16.703579 0.000000 SP-18 0.012153 5.072358 0.000000
H19 3.089670 5.182182 0.000000 SP-19 0.008218 3.429571 0.000605
H20 5.981124 10.064997 0.000000 SP-20 0.002837 1.184228 0.236323
H21 9.944888 16.748813 0.000000 SP-21 0.018154 7.577409 0.000000
H22 3.172539 5.348542 0.000000 SP-22 0.009437 3.944627 0.000080
H23 -4.276026 -7.238470 0.000000 SP-23 0.017964 7.506443 0.000000
W1 -1.285534 -4.046841 0.000052 SP-24 0.039459 19.528656 0.000000

 



 16

REFERENCES 

 
Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic 

Ansein, L. 1990. Spatial Dependence and Structural instability in Applied Regression Analysis. 

Journal of Regional Science 30: 185-207. 

Case, A. C, 1991. Spatial Pattern in Household Demand. Econometrica 59-4 (July): 953-965 

Bessembinder, H., and Lemmon, M. 2002. Equilibrium Pricing and Optimal Hedging in Electricity 

Forward Markets. Journal of Finance 57 (June): 1347-82 

Bhanot, K. 2000. Behavior of Power Prices: Implication for the Valuation and Hedging of Financial 

Contracts. Journal of Risk 2: 43-62 

Bockstael, N. E, 1996. Modeling Economics and Ecology: the Importance of a Spatial Perspective. 

American Journal of Agricultural Economics 78 (December): 1168-1180.  

Escribano, A., Peaea, J., and Villaplana, P. 2002. Modeling Electricity Prices: International Evidence. 

Working paper, Universidad Carlos III de Madrid. 

Fama, E. F., and French, K.R. 1987 Commodity Future Prices: Some Evidence on Forecast Power, 

Premiums, and the Theory of Storage. Journal of Business 60 (January): 55-73 

French, K.R. 1986. Detecting Spot Price Forecast in Future Prices. Journal of Business 59 (April): 

S39-54 

Gibson, R., and Schwartz, E.S. 1990. Stochastic Convenience Yield and the Pricing of Oil Contingent 

Claims. Journal of Finance 45 (July): 959-76 

Hazuka, T. B. 1984. Consumption Betas and Backwardation in Commodity Markets. Journal of 

Finance 39 (July): 647-55. 

Knittel, C.R., and  Roberts, M. 2001. An Empirical Examination of Deregulated Electricity Prices. 

POWER WP-087, University of California Energy Institute. 

Lucia, J., and Schwartz, E. 2002. Electricity Prices and Power Derivatives: Evidence from the Nordic 

Power Exchange. Review of Derivatives Research 5: 5-50. 

Routledge, S., Seppi, D.J., and Spatt, C.S. 2000 Equilibrium Forward Curves for Commodities. 

Journal of Finance 55 (June): 1297-338 

Routledge, S., Seppi, D.J., and Spatt, C.S. 2001. The “Spark Spread”: An Equilibrium Model of Cross-

Commodity Price Relationship in Electricity. Working paper. Carnegie Mellon University.  

Longstaff, F.A., and Wang, A.W. 2002. Electricity Forward Prices: A High-Frequency Empirical 

Analysis. Working paper. Anderson School at UCLA. 



 17

Weron, R., Kozlowska, B., and Nowicka-Zagrajek, J. 2001. Modeling Electricity Load in California: a 

Continuous-Time Approach. Physica A (February): 8-10. 

Weron, R., Simonsen, I., and Wilman, W., 2001. Modeling Highly Volatile and Seasonal Markets: 

Evidence from the Nord Pool Electricity Market. Working Paper, Wroclaw University. 

 

 



 18

APPENDIX 
TABLE 1 

REAL TIME LMP 
Zone Mean Median   Std. 

deviation  
Minimum Maximum 

1 36.1219 27.27 26.6692 -90.9191 764
2 35.5618 25.963 28.4665 -10.4619 1162.7
3 36.1819 27.18 28.4597 -15.7201 873.8
4 34.3163 26.3738 25.4453 -36.8315 701.7
5 34.7923 26.1451 25.7489 -17.0329 760.6
6 35.0832 26.5022 25.8973 -17.0547 762.1
7 34.9757 27.3728 24.3889 -0.7976 372.6
8 35.7953 25.9566 29.6732 -9.1511 1293.6
9 33.7978 25.693 24.7302 -25.7152 713.2
10 35.9195 28.11 25.5311 -6.4582 702.6
11 32.2113 24.6769 22.0695 -3.7261 499
12 35.9123 28.2723 25.1426 0 639.4

DAY AHEAD LMP 
Zone 

Mean Median Std. 
deviation Minimum Maximum 

1 36.8703 31.84 22.3639 -0.21 249.22 
2 34.8402 29.03 21.5291 0.02 222.3 
3 36.7883 31.58 23.0529 -0.14 253.97 
4 35.4541 30.55 21.6008 -4.48 234.38 
5 35.2152 29.875 21.6549 -1.34 238.39 
6 35.9488 30.765 21.9599 -0.26 243.94 
7 36.2697 31.58 21.6719 1 453.88 
8 35.0019 29.03 21.7394 0.04 201.97 
9 34.4428 29.16 21.0697 -1.31 229.22 
10 36.6094 32.44 21.6024 0.54 419.92 
11 32.7019 28.08 18.6055 0.08 178.28 
12 36.2739 32.34 20.9506 0.54 230.54 
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TABLE 2:  SUMMARY STATISTICS FOR                  TABLE 3:  SUMMARY STATISTICS FOR 

                  HOURLY SPOT PRICES                                                                           HOURLY DAY-AHEAD PRICES  

 

REAL TIME LMP 

Hour Mean Median  Std. 
deviation  Minimum Maximum 

1 19.7801 16.7835 11.3418 0 99.9626 

2 19.1228 15.89 12.5752 -2.6564 128.94 

3 16.9145 15.1358 11.0293 -2.8624 92.2825 

4 16.2034 14.8764 10.4861 -2.2643 98.9831 

5 17.7759 15.5244 11.1212 -0.8027 95.7656 

6 22.3159 18.2105 13.867 0 104.96 

7 32.0198 23.8164 23.9027 0 152.13 

8 34.0347 25.8443 22.9784 0 156.7734 

9 34.0615 28.2042 19.0792 6.2 134.1095 

10 37.6962 32.1397 20.0545 13.2333 144.1349 

11 42.7668 39.5283 22.5126 12.4417 165.5187 

12 40.3353 34.79 22.2165 12.0139 176.25 

13 39.7247 33.3194 24.7563 12.1583 337.4869 

14 42.4746 35.8445 28.3672 11.0167 298.1324 

15 39.0913 30.2805 29.0318 7.1083 434.498 

16 39.1701 29.1998 37.0943 8.525 769.7577 

17 43.6945 37.71 34.103 9.8583 573.6589 

18 46.9266 40.8229 27.5079 9.4788 187.4499 

19 42.4205 35.6834 25.5337 10.2949 156.8059 

20 40.6347 35.5574 23.2575 8.5364 153.67 

21 43.4046 39.2389 22.7104 13.47 145.88 

22 37.3226 31.995 20.0564 12.2833 130.21 

23 25.4436 21.51 12.6268 10.03 113.8525 

24 21.4038 18.0661 10.7086 0 110.3795 

FORWARD LMP 

Hour Mean Median  Std. 
deviation  Minimum Maximum 

1 20.7661 17.8596 9.8586 6.245 81.6917 

2 17.9575 15.9988 8.6025 1.7125 77.0417 

3 16.8079 15.2237 8.2647 0.6767 72.45 

4 16.4375 15.0004 8.4973 0.6183 74.1017 

5 17.4092 15.5925 9.3708 0.1792 79.9333 

6 22.0107 18.5046 12.8447 0.555 100.6467 

7 31.6315 25.0542 20.9918 0.9317 153.8375 

8 33.8809 28.5325 19.3264 2.0883 155.7067 

9 35.1338 31.9033 17.0327 11.2875 152.8883 

10 38.0118 35.7463 16.4277 13.9217 152.6683 

11 40.3981 38.1517 17.1608 14.0358 153.7617 

12 40.2219 37.8838 17.3955 13.6742 149.8133 

13 39.4468 36.1242 18.5753 13.1333 161.9025 

14 39.9709 35.6863 21.1021 12.7175 200.2575 

15 39.8895 33.9258 23.5786 12.0658 221.7933 

16 40.488 33.7221 25.8531 12.21 223.5417 

17 43.879 38.9275 25.6871 12.8983 220.565 

18 48.6493 45.0975 24.3387 14.2667 210.2775 

19 47.233 42.8171 22.3651 15.99 155.2225 

20 44.845 42.15 20.0581 14.99 156.4425 

21 43.5164 40.6579 18.589 13.9492 155.4133 

22 36.9142 33.9913 15.8389 12.5617 123.4567 

23 27.4134 24.3762 11.2767 11.4667 106.975 

24 22.4996 19.1312 9.639 11.6767 98.675 
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TABLE 4:  SUMMARY STATISTICS FOR HOURLY LOAD 

LOAD 

Hour Mean Median Std. 
deviation Minimum Maximum 

1 31467 31060 4272 24044 43748 
2 30444 30015 4067.3 23353 42771 
3 29936 29457 3949.3 23131 42622 
4 29967 29320 3872.4 23104 42617 
5 30985 30183 3869.4 23609 43379 
6 33263 33190 4236.1 23913 45595 
7 36114 36041 5004.1 24894 49941 
8 38236 37738 5273.3 26153 52199 
9 39642 38943 5241.6 28488 54171 
10 40701 39834 5536.3 29660 57238 
11 41312 40121 5996.7 29424 59681 
12 41539 40126 6481.8 29190 61445 
13 41615 39900 6988.8 28545 62812 
14 41556 39800 7387.5 28028 63727 
15 41430 39515 7664.5 27469 64127 
16 41465 39385 7748.8 27240 64080 
17 41826 40263 7409.1 27140 63728 
18 42573 41710 6770.5 27169 62774 
19 42682 41929 6125.7 28322 61243 
20 42489 41571 5761.5 31124 60703 
21 41444 40492 5660.8 30964 59724 
22 39029 38456 5347.3 29342 55445 
23 36035 35643 5008.7 25786 50458 
24 33315 33022 4594.5 25376 46297 
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FIG. 6 Time series of average over zones electricity spot prices ($/MWh) FIG. 7 Time series of average over zones day-ahead electricity prices ($/MWh) 
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FIG. 8  TIME SERIES OF ELECTRICITY LOAD (1000’S MW). 

0

20

40

60

Jan2002......Dec2003

EAST HUB LOAD

0

20

40

60

Apr2002......Dec2003

WEST HUB LOAD

0

20

40

60

Jan-Feb2002...Dec2002...Jan-Feb2003...Dec2003

WINTER LOAD

0

20

40

60

June-Aug2002...June-Aug2003

SUMMER LOAD

0

20

40

60

Jan2002.....Dec2003

OVERALL LOAD

 
 

FIG. 9 PJM TRANSMISSION ZONES TAKEN FROM PJM WEB-SITE  

 

 
 


