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Abstract 
 
This paper assesses how market fundamentals affect asset return volatility by 

drawing on evidence from the U.S. natural gas futures market. One of the novel features 
of this paper is the use of the deviation of temperatures from normal (weather surprise) as 
a proxy for demand shocks and a determinant of the conditional volatility of natural gas 
futures returns.  I estimate a GARCH model using daily natural gas futures data from 
January 1997 to December 2000. The empirical result shows that the weather surprise 
variable has a significant effect on the conditional volatility of natural gas prices and the 
inclusion of the weather surprise variable in the conditional variance equation reduces 
volatility persistence. Combined with the evidence that volatility is considerably higher 
on Monday and the day when natural gas storage report is released, these results show 
that information about market fundamentals are important determinants of natural gas 
price volatility. Aside from these findings, I also document that returns of the first month 
futures are more volatile than those of the second month futures, which is consistent with 
Samuelson’s (1965) hypothesis that commodity futures price volatility declines with 
contract horizon.  
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I. Introduction 

Why are asset prices volatile? There has been considerable discussion on whether 

market fundamentals or other random factors such as “sunspots”, “animal spirits”, or 

mass psychology determine asset price volatility.1 The purpose of this paper is to assess 

how market fundamentals affect the volatility of returns by drawing on evidence from the 

U.S. natural gas market.  

Volatility, by nature, is a response to shocks (Engle, 2001). If we could find a proxy 

for shocks to demand-and-supply conditions, we would be able to test whether these 

fundamental factors drive price volatility. One of the novel features of this paper is the 

use of the deviation of temperatures from normal (weather surprise) as a proxy for 

demand shocks and a determinant of the conditional volatility of natural gas futures 

returns. Weather affects about fifty percent of the U.S. natural gas demand. This includes 

space heating in residential and commercial sectors, and those used by electric power 

sector.2 As shown in figure 1, the industrial demand of natural gas does not vary much in 

short-term and even if it does de facto, the information is not available to the market. 

Thus weather is the most important single factor that causes short-term natural gas 

demand variations and weather information reaches the market on a highly frequent basis 

(daily, even hourly). In a competitive commodity market where the demand is highly 

variable, storage is crucial in balancing demand and supply conditions. The weekly 

natural gas storage report has been released since January 1994. Information about the 

weekly change of natural gas storage levels can shift the distribution of daily prices and 

                                                 
1 For a complete discussion about volatility anomaly, see Shiller (2003). 
2 According to data from the Energy Information Administration, Department of Energy, in 2001, the annul 
natural gas deliveries to residential,  commercial, and electric power sectors are 4809 Bcf, 3037 Bcf, and 
2686 Bcf respectively, accounting for 25%, 16%, and 14% of total natural gas consumption of that year. 
Also see footnote 3. 
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for a given storage level, unexpected weather changes may cause price innovations and 

create uncertainty about future supply conditions. According to the theory of storage, the 

spot and forward prices of storable commodities are integrated when the storage is held 

from one period to the next.3 Empirically, this implies that the weather surprise may 

result in high conditional volatility in both spot and futures markets.  

Under a GARCH framework, I study the impact of weather surprise on short-term 

price dynamics in the natural gas futures market. The empirical result shows that the 

weather surprise has a statistically significant and economically non-trivial effect on both 

the conditional mean and the conditional variance of natural gas prices and the inclusion 

of the weather surprise variable in the GARCH model reduces volatility persistence. This 

finding, along with the fact that the volatility is considerably higher on Monday and the 

day when the natural gas storage report is released, suggests that information about 

market fundamentals is an important factor in the dynamics of natural gas futures returns. 

The major contribution of this paper is to provide direct evidence that fundamental 

factors are important factors in explaining commodity price dynamics.  Ng and Pirrong 

(1994) use the storage-adjusted forward-spot price spread to proxy demand and supply 

conditions and find that the spread has significant effects on both spot and forward price 

volatilities for a group of industrial metals. While the forward-spot price spread certainly 

reflects the underlying fundamental factors, it might be influenced by speculative trading 

in the forward market. In contrast, the weather surprise variable used in this paper is a 

more direct and purely exogenous measure of demand shocks.  

                                                 
3 The theory of storage has a long history, see Working (1949), Brennan (1958), Samuelson (1971). Recent 
contributions to this literature include Williams and Wright (1991), Pindyck (1994), Deaton and Laroque 
(1996), and Chambers and Bailey (1996). 
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Although natural gas futures is one of the most heavily traded futures contracts in 

the United States, academic studies on the determinants of price volatility in this market 

is rather limited. Pindyck (2003) has tested whether there is a significant trend in 

volatility and whether the demise of Enron increased volatility in natural gas and oil 

markets. He finds a statistically significant and positive time trend for natural gas, and to 

a lesser extent for oil. But the trends are too small to have any economic importance. He 

doesn’t find a statistically significant impact of the Enron event for either commodity. 

Murry and Zhu (2004) study the impact of the introduction and exit of EnronOnline 

(EOL) — Enron’s online trading system — on the natural gas cash and futures market. 

They find no evidence that EOL reduced volatility in most of the price series of their data. 

Examining intraday volatility, Linn and Zhu (2004) show that natural gas price volatility 

is considerably greater around the time when the natural gas storage report is released. 

They attribute this phenomenon to the heterogeneity in the interpretation of key data 

describing the state of market. Consistent with Murry and Zhu (2004), I also find 

volatility significantly higher on Monday and the day when the natural gas storage report 

is released. Moreover, I also provide support for the Samuelson’s (1965) hypothesis that 

commodity futures volatility declines with contract horizon. To my knowledge, the 

“Samuelson effect” has never been documented in this market before.  

This remainder of this paper proceeds as follows. Section II provides background 

information about the U.S. natural gas market. Section III discusses the empirical strategy 

and data. Section IV reports the estimation results. Section V concludes.  
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II. Natural Gas Market 

The Energy Information Administration (EIA) at the Department of Energy 

classifies natural gas consumption into four sectors: residential, commercial, industrial, 

and electric power.4 Figure 1 presents monthly natural gas production and consumption 

in the U.S. from January 1991 to December 2001. While the production and industrial 

use of natural gas are relatively stable over time, the total consumption is highly seasonal 

due to the obvious seasonality of demand in residential, commercial, and electric power 

sectors. The total consumption peaks in December and January arising from residential 

and commercial customers’ space heating demand, troughs in summer when the space 

heating demand is low. In the summer, it has a “local peak” around July and August as 

cooling demand increases the electric power use of natural gas. Apparently, the heating 

and air-conditioning demand are driven by weather, and temperature in particular. Since 

industrial use of natural gas does not vary much in short term (daily), weather variation 

provides a good instrument for the variability of natural gas demand.   

In a competitive commodity market where the demand is highly seasonal such as 

the natural gas market, inventory plays a pivotal role in smoothing production and 

balancing demand-supply conditions. Total consumption of natural gas exceeds 

production in winter months but falls below it in summer months (Figure 1). 

Consequently, as shown in Figure 2, natural gas inventory displays a strong seasonal 

pattern: it builds up from April to October (“injection season”) while withdraws from 

                                                 
4  Residential consumption includes gas used in private dwellings for space heating, air-conditioning, 
cooking, water heating, and other household uses. Commercial consumption includes gas used by 
nonmanufacturing establishments such as hotels, restaurants, wholesale and retail stores, and natural gas 
vehicles. Industrial consumption includes gas used for heat, power, or chemical feedstock by 
manufacturing, mining, construction and agriculture industries. Electric power consumption includes gas 
used as fuel in the electric power sector. For a complete definition of these categories, see www.eia.doe.gov. 
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November to March (“withdraw season”). The American Gas Association (AGA) 

conducted a weekly survey of inventory levels for working gas in storage facilities across 

the United States and released the weekly natural gas storage report from January 1994 to 

the end of April 2002, after which EIA has taken over this survey and prepared the report. 

The report tracks the overall natural gas inventory levels as well as the inventory levels in 

three regions — consuming east, consuming west, and producing region — as of 9:00 am 

each Friday. The report is released on Wednesday or Thursday of the subsequent week.5  

Natural gas futures contracts began trading at the New York Mercantile Exchange 

(NYMEX) on Aril 3, 1990. The underlying asset of one contract is 10,000 million British 

thermal units (MMBtu) of natural gas delivered at Henry Hub, Louisiana. Trading 

terminates at the third-to-last business day of the month prior to maturity month. The 

delivery period is over the course of the delivery month and “shall be made at as uniform 

as possible an hourly and daily rate of flow” (NYMEX website). 

The Henry Hub is the largest centralized natural gas trading hub in the United 

States. It interconnects nine interstate and four intrastate pipelines. Collectively, these 

pipelines provide access to markets throughout the U.S. East Coast, the Gulf Coast, the 

Midwest, and up to the Canadian border. Natural gas production from areas around the 

Henry Hub, including the Gulf of Mexico and the onshore Louisiana and Texas regions 

encircling the Gulf of Mexico, accounts for about 49 percent of total U.S. production in 

2000 (Budzik, 2001).  

Natural gas futures market is highly liquid with daily trading volumes of 30,000-

50,000 contracts for the nearest month and 10,000-30,000 contracts for the second 

                                                 
5 The definition of each region can be found at http://tonto.eia.doe.gov/oog/info/ngs/notes.html. The storage 
report is now released on Thursday by EIA. When AGA was in charge, it was released on Wednesday.  
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nearest month in recent years (Linn and Zhu, 2004). For example, on March 2, 2004 the 

trading volume of the April contract was 41,561 with a notional value of roughly $2.32 

billion while the trading volume of May contract was 18,300 with a notional value of 

about $1.04 billion.  

 

III. Empirical Methodology and Data 

A. An Initial Look at Daily Returns 

In order to investigate the weather effect on natural gas price dynamics, I obtained 

daily trading data of natural futures from the Commodity Research Bureau (formerly 

Bridge). I use futures price rather than spot price data because the latter is generally not 

reliable. Spot prices are not recorded at a centralized exchange, but reported by such 

reporting agencies as Bloomberg, Platts, and Natural Gas Intelligence. Because the 

reporting agencies base their price estimates on informal polls of traders who have no 

obligation to report their real trading prices and because each reporter has her/his own 

definition of “price”,6 it is not unusual that prices from different reporting agencies are 

not the same, and sometimes the difference can be large (EIA Report, 2002, pp.19).  

Returns are calculated as the daily change of the logarithm of the settlement prices 

of natural gas futures: ln(Pt/Pt-1).  Both to check the robustness of estimation and to test 

Samuelson’s (1965) hypothesis that volatility declines with the time horizon of futures 

contracts, I compiled two return series (RET1 and RET2) from the nearest contract and 

the second nearest contract. As is typical of commodity futures market, traders are often 

forced to cover their positions at the last trading day of a contract’s life such that trading 

volume and open interest decline while price volatility increases substantially.  To avoid 
                                                 
6 For example, spot price may include discounts and premiums. 
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the “thin market” problem, I replaced the return of the nearest contract at the last trading 

day of each month with that of the second nearest contract in constructing the RET1 

series. 

The sample period is from January 2, 1997 to December 29, 2000. I start from 

January 2, 1997 because I estimate market expectations for the volume of weekly natural 

gas in storage in 1997 using data from December 31, 1993 through December 27, 1996. 

The end of sample period is limited by the availability of weather data.  Table 1 reports 

the autocorrelation coefficients for the two return series and the squared returns. While 

the returns do not display any significant serial correlation even at large number of lags, 

the autocorrelation of squared returns are positive and significant, indicating the existence 

of time-varying volatility.    

Table 2 presents the mean returns and standard deviations of RET1 and RET2 

over the entire time period as well as a breakdown by seasons and by weekdays. The 

grand mean returns are 0.0506 percent and 0.0787 percent per day for RET1 and RET2 

respectively, or 12.65 and 19.68 percent per annum.7 The standard deviation measures 

unconditional volatility. Several patterns in this table are noteworthy. First, in all cases, 

the standard deviations are higher than the means, implying a rather high volatility in this 

market. Second, the standard deviation of RET1 is consistently higher than that of RET2; 

the difference between the two grand variances is significant at 1% level using one-sided 

F test. The “Samuelson (1965) effect” is evident. Third, while little can be said about the 

intraweek pattern of mean returns, the standard deviation on Monday is generally higher 

than other days.  Roll (1984) found a similar pattern in the orange juice market. Fourth, 

                                                 
7 The conversion from daily returns to annual returns is based on 250 trading days per year.  
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the standard deviations in winter are usually larger than other seasons, which is not 

surprising since natural gas demand peaks in winter and supply is tight.  

 

B. Econometric Model  

Theories of storable commodity prices (Deaton and Laroque (1992, 1996); 

Chambers and Bailey (1996), Routledge et al. (2000)) suggest that shocks to natural gas 

demand and supply conditions may result in mean price shifts or fluctuations around the 

mean in both spot and futures markets. While it seems obvious that the arrival of weather 

information will establish a new price equilibrium in the spot market, the rational for 

weather surprise to influence futures prices is more complicated. It stems from the nature 

of natural gas production and distribution. Limited by productive capacity, natural gas 

production is relatively price-inelastic in a short-term of several days or weeks. While the 

productive capacity has generally tracked natural gas drilling activity, statistically there is 

a 1-3 months lag between the natural gas drilling and effective productive capacity due to 

well completions and wellhead infrastructure constructions (EIA report, 2003). 

Furthermore, when the pipeline utilization rate is high, the deliverability of pipeline 

network may be limited and natural gas in the producing region may not be transported to 

the consuming market. Therefore, a positive (negative) weather surprise will lead to an 

unexpected decrease (increase) in natural gas inventory levels, which will in turn put 

upward (downward) pressure on futures price levels and increase the uncertainty about 

future supply conditions. To empirically assess how weather surprises affect the 

dynamics of natural gas futures returns, I estimate a GARCH model that allows 
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exogenous variables to affect both the conditional mean and the conditional variance. The 

following exogenous variables are included: 

Crude oil return ( CRET ): the return of first month crude oil (West Texas 

Intermediate) futures.  Crude oil is a close substitute of natural gas, thus crude price 

fluctuation should have a direct impact on the conditional mean of natural gas returns. 

Since the crude oil market is generally considered a world market, it is reasonable to 

assume CRET  is exogenous.  

t

t

 Storage surprise ( ): the forecast error of the change of the amount of 

natural gas in storage. A detailed explanation about the construction of this variable is 

offered in subsection III.D. Storage affects both the mean and the variance. First, 

commodity price is inversely related to and convex at storage levels (Pindyck, 1994), so 

periodic information about the amount of natural gas in storage may shift the mean of 

returns to the extent that it surprises the market. Thus the forecast error of the amount of 

natural gas in storage will be negatively related to the conditional mean — the price will 

increase (decrease) when the actual amount of gas in storage falls below (exceeds) the 

market expectation. Second, just as the release of macroeconomic news will create 

uncertainty in financial markets (Ederington and Lee, (1993); Anderson et al. (2003)), the 

release of the weekly natural gas storage report may generate uncertainty in this market.  

tSTKERR

During the sample period, AGA consistently compiled and released the natural gas 

storage report. It was announced after the close of NYMEX trading on Wednesday prior 

to March 2, 2000, after which it was released at the interval of 2:00-2:15 pm on 

Wednesday during NYMEX trading hours. Using intraday trading data from January 1, 

1999 to May 3, 2002, Linn and Zhu (2004) find that the impact of storage announcement 

 9



on volatility dissipates in 30 minutes. In other words, the price will be in a new 

equilibrium after 30 minutes of trading following the release of the storage report. 

Therefore, the storage surprise will shift the daily distribution of returns from week to 

week. I define the STKERR  as t

τSTKERRSTKERRt =  when STKDAYt =1; 

                 = 0 otherwise 

where is the weekly forecasting error of the amount of gas in storage for 

week 

τSTKERR

τ , and STKDAYt is a dummy variable equal to one on Thursday8 prior to March 2, 

2000 and on Wednesday afterwards. I include STKDAYt in the variance equation to test if 

there is a significant “storage announcement” effect on volatility.  

Weather Surprise (W ): this is a proxy for the demand shock and defined as the 

forecasted deviation of heating degree days (HDD) and cooling degree days (CDD) from 

normal. I defer a complete discussion of this variable to subsection III.C. This variable 

also enters both the mean and the variance equation. In the mean equation, a positive 

(negative) demand shock is expected to increase (decrease) the price level.

t

9  In the 

variance equation, a quadratic form of this variable is used to capture the possible 

nonlinear effect of the demand shock on volatility — a greater demand shock might 

increase the volatility at an increasing rate. Alternatively, one can use the absolute value 

of the weather surprise (|Wt|) variable in the variance equation which yields qualitatively 

similar results as those that are reported in section IV. However, the log likelihoods from 

the nonlinear specification are always larger than those from the specification with |Wt|. 
                                                 
8 If Thursday is a holiday, then STKERR will influence the next trading day. 
9 I pre-tested whether  W should be included in the mean equation and find it not significant at 

conventional levels and the inclusion of this variable has little effect on the empirical result that follows. 

2
t
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Finally, to test if the Monday effect holds for the conditional volatility, I include a 

dummy variable for Monday (Mon) in the variance equation.  

Since the exploratory data analysis suggests that there is no significant 

autocorrelation and seasonality in the mean returns but strong autocorrelation in the 

squared returns, I estimate the following model10  

ttttt WaSTKERRaCRETaaRET ε++++= 3210                                                  (1) 

),0(~| 1 ttt hN−Ωε  

 h           (2) 2
4321

11

2
ttt

q

j
jtj

p

i
itit WWSTKDAYMONh φφφφγεβα ++++++= ∑∑

=
−

=
−

  

C. Measuring Weather Surprise 

Weather affects the natural gas industry on both the demand and supply side. 

Temperature is the main driver of heating and cooling demand. Severe weather 

conditions (e.g. a hurricane that hits Gulf Coast) may cause shut-downs of natural gas 

wells production, which may be good candidates for event-studies. In this paper I will 

concentrate on the temperature surprises, because my interest is to find an instrument for 

demand shocks and to examine its effect on volatility.    

It seems natural to use a weather forecast error to measure the weather surprise. In 

an influential paper, Roll (1984) examined the relationship between the returns of orange 

juice futures and the forecast error of temperature in Florida and found a statistically 

significant relation but the R2 is too low. His findings are often cited as evidence of 

                                                 
10 In fitting the data, I start with a constant mean and GARCH (1, 1) model and find no evidence in favor of 
GARCH-in-mean and asymmetric GARCH models.  
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excess volatility or noise trading.11  Unfortunately, the historical weather forecast data 

from the National Weather Service (NWS) is not available to me. As an alternative 

approach, I use the average deviation of temperature from the normal over the forecasting 

horizon to proxy the weather surprise. Following the NWS’s convention, the normal 

temperature of day t is defined as previous 30 years’ average on day t.12 Temperature is 

expressed as degree days (DD), which is the sum of heating degree days (HDD) and 

cooling degree days (CDD).  

DDt =CDDt+HDDt                                                                                            (3)   

CDDt =Max (0, Tavet -65°F)                                                                            (3.a)   

HDDt =Max (0, 65°F-Tavet)                                                                             (3.b) 

where Tavet is the average temperature of day t. HDD and CDD are widely used in 

the energy industry and traded at the Chicago Mercantile Exchange (CME) as weather 

derivatives. HDD measures heating demand while CDD measures cooling demand. Thus 

DD measures both the heating demand in the winter and cooling demand in the summer. 

The weather surprise variable in equation (1) and (2) is then defined as 

)(1
1

it

m

i
itt DDNORMDD

m
W +

=
+ −= ∑                                                                   (4) 

where m is the weather forecast horizon. DDt+i is the forecasted degree days on day 

t+i, DDNORMt+i is the normal degree days on day t+i. I use realized temperature data 

instead of weather forecast data in equation (4) and set m=7 because 7-day forecast is the 

longest detailed weather forecast provided by the NWS. However, the empirical result 

that follows is not sensitive to the choice of m; when m is set to be greater than 7 (i.e. 8, 

                                                 
11 see DeLong et al. (1990, pp. 725) ; Hirshleifer (2001, pp. 1560); and Daniel et al. (2002, pp.172). 
12 In section III.C, t denotes calendar day whereas in section III.B, it denotes trading day.  
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9, …, 14), the results are even stronger. Admittedly, the weather surprise is a crude 

measure, but I believe it roughly captures the variation of the “true” weather surprise. The 

more the temperature deviates from normal, the greater is the weather surprise. 

The temperature data are taken from the Lamb-Richmond data set that is compiled 

by two meteorologists Peter Lamb and Mark Richmond at the University of Oklahoma. 

The original data source is the National Climatic Data Center (NCDC), a division of the 

National Oceanographic and Atmospheric Administration (NOAA), Department of 

Commerce. Based on analysis of weather station histories, the Lamb-Richmond data set 

corrects erroneous measurements and discontinuities in the original data due to failures of 

recording equipment or changes of measurement equipment and station location. The 

data set consists of daily minimum temperature (Tmin), daily maximum temperature 

(Tmax), daily precipitations (prcp) measured from midnight to midnight (local time) in 

766 weather reporting stations east of the Rocky Mountains from 1949 to 2000. A closer 

look at the data reveals that temperatures are highly correlated within a state, even within 

a Census region. For example, the correlation coefficients of daily Tmin series among the 

38 weather reporting stations in the Great Lakes region range from 0.88 to 0.98. In the 

estimation that follows, I only use the data from weather reporting stations that are close 

to a large city in a natural gas consuming region. 

The Lamb-Richmond data set does not contain weather stations west of Rocky 

Mountains. While the Henry Hub is the main delivery point to the consuming east region, 

in an integrated market (Wall, 1994), weather in the west of the country may impact the 

Henry Hub price, particularly the futures price. Therefore, the use of east-of-Rocky-
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Mountains weather data might underestimate the weather impact, and hence provide a 

lower bound for the estimated effect on natural gas price. 

 

D. Modeling Storage Surprise 

To form a measure of market expectations about the change of the volume of 

natural gas inventories, I estimate a time-series model augmented with observed weekly 

temperature variables. As shown in Figure 2, the weekly natural gas inventory series 

displays a clear seasonal variation. Following Campbell and Diebold’s (2002) 

methodology in modeling daily temperatures, I employ a parsimonious Fourier series 

instead of weekly dummies to model the seasonality. The use of Fourier series greatly 

reduces the number of parameters to be estimated and enhances numerical stability.13  

Given the importance of temperature in the determination of natural gas demand, I 

include a natural gas consumption weighted temperature variable (TEMP) in the model. 

The weighting scheme is as follows. From the many temperature variables recorded in all 

weather stations in each Petroleum Administration for Defense Districts (PADD) and 

sub-districts, I choose the one that yields the highest correlation coefficient with the 

corresponding regional natural gas consumption from 1990 to 2000.14 These regionally 

“representative” temperature variables are then weighted by the natural gas consumption 

of the region to construct a single temperature series. 

                                                 
13 I compared the out-of-sample forecast performance of model (5) with a seasonal ARIMA model 
augmented by weekly temperature variables. Both the mean absolute error (MAE) and the root mean 
squared error (RMSE) from the Fourier series of model (5) are slightly smaller. 
14 The descriptions and maps of PADD can be found at the appendix of EIA’s annual report “Petroleum 
Supply Annual”. As the Lamb-Richmond data set does not include weather data west of the Rocky 
Mountains which corresponds to PADD V, only the weather data of PADD I through PADD IV are used in 
constructing the TEMP variable. 
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Finally, one might suspect that non-seasonal, non-temperature related factors may 

also be operative in the weekly storage dynamics. For example, reporting errors in the 

natural gas storage survey may produce serial correlations. Therefore an autoregressive 

lag structure is used in the error term.  

Putting various pieces together, I use the following model to obtain an out-of-

sample forecast series:   

2
210)( τττ TEMPbTEMPbbSE ++=∆                                 

                      ∑
=

+++
K

k
tkk

ww
1

)]
52

)(2cos()
52

)(2sin([ µτπθτπλ                                 (5) 

tltl

L

l
t ηµρµ += −

=
∑ )(

1
    where tη ~ N (0, 1)                                                       (5.a) 

where  is the market expected storage change from the Friday of week )( τSE ∆ τ -1  to the 

Friday of week τ ; TEMP  is the natural gas consumption weighted weekly (Friday to 

Friday) average temperature in week 

τ

τ ; w(τ) in the Fourier series is a repeating step 

function that cycles through 1,…,52 (i.e. each week of the year takes one value between 1 

and 52). On the basis of Schwartz Information Criterion (SIC), I set the number of lags in 

the Fourier series K=2 and in the autoregressive series L=1. The resulting residuals 

tη appear to be serially uncorrelated and the model fits data well, with R2 ranging 

between 0.92 and 0.94.  

Based on model (5), each week’s forecast E )( τS∆  was made using all available 

storage data from January 1994 up through the prior week. The natural gas inventory data 

are downloaded from the EIA website. The storage surprise is then defined as the 

difference between the announced storage change and the expected storage change: 
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)( τττ SESSTKERR ∆−∆=                                                                     (6) 

The weekly series STKERR  obtained from (6) is expanded to daily using the 

method in subsection III.B and aligned to the return series in equation (1) for empirical 

estimation. 

τ

  

IV. Estimation Results  

The model outlined in the subsection of III.B was estimated using the method of 

maximum likelihood. The number of lags in equation (2) is determined to minimize the 

SIC and to ensure no serial correlation in both residuals and squared residuals. It turns out 

a parsimonious GARCH (1, 1) model fits the data well. For the weather surprise variable 

(Wt and Wt
2), I start with Chicago’s weather data first. Bopp (2000, pp.261) documents 

that the Henry Hub price is more closely related to Chicago’s temperature than any other 

cities in the consuming east including New York, Boston, St.Louis, and Atlanta using 

spot price data in 1997. Two facts may explain this result. First, the Great Lakes region is 

the largest natural gas market that is tied to the Henry Hub and is often stressed by cold 

weather. Second, Canadian cold spells often hit the Great Lakes first and then other cities 

in the plains and east coast so that when there is a “cold snap” in Chicago, the market 

may expect the “cold snap” to spread to other areas. Table 4 reports the estimation result 

using Chicago’s weather data. In the summer when the cooling demand is the main 

concern, the temperature deviation in Chicago probably does not provide a good measure 
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for the real shock to the market, so I re-estimate the model with the average of the 

weather surprise in Chicago and Atlanta15. The result is reported in Table 5.  

 The results in Table 4 and Table 5 are not materially different. Models in Table 5 

yield slightly larger log likelihood values, implying the use of Chicago and Atlanta 

weather does improve the model a little bit. In what follows, I base the discussion on 

Table 5. In the mean equation, consistent with the theory of the price of a substitute, the 

crude oil return (CRETt) is positive and significant at 1% level. A one percentage point 

increase in crude oil return leads to 0.21-0.24 percentage point increase in natural gas 

return. The storage surprise variable (STKERRt) is negative and usually significant at 5% 

or 10% level. When the announced storage level is above (below) the market expectation, 

price tends to decrease (increase), which is consistent with the theory of storage. The 

weather surprise variable (Wt) is positive and significant at 1% level. Price will increase 

(decrease) when the expected demand is high (low), that is, when the forecasted degree 

days are above (below) normal.  

In the variance equation, consistent with the literature (Murry and Zhu, 2004), the 

conditional volatility is considerably higher on Monday and the day when the natural gas 

storage report is released. Notice, the Monday effect maybe reflects weather influence as 

well. In Ederington and Lee (1993), the volatility on Monday is about the same as other 

weekdays when there is no macroeconomic news announcement. Fleming et al. (2004) 

find the differences between the variance ratios for weather-sensitive markets (natural gas 

is one of them) and those for equity market are more pronounced over the weekend than 

weekdays. They posit that this phenomenon is because the flow of weather information 

                                                 
15 I have also experimented the weather surprise variable with a broader average of Chicago, New York, 
Atlanta, and Dallas. The results are similar with those reported in Table 5. EIA/DOE monitored the 
temperature of these cities in its weekly natural gas update in the summer.  
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does not stop over the weekend whereas information flows for equity market are more 

concentrated during weekdays.  The significantly positive STKDAYt coefficient indicates 

that the release of the weekly natural gas storage report generates considerable volatility 

and confirms the findings of Murry and Zhu (2004) and Linn and Zhu (2004).  

The weather effect (Wt and Wt
2) in the variance equation is statistically significant 

at 1% level and economically non-trivial. In column (4) of Table 5, the estimated 

coefficients for Wt and Wt
2 are 0.046 and 0.008 in RET1 and 0.044 and 0.008 in RET2 

respectively. One standard deviation increase in Wt (5.39°F) would increase the variance 

of daily returns by 0.000048 and 0.000046, which is about 4-5% of the average daily 

variances of 0.0011 and 0.0009. 16  This result, together with the significant storage 

announcement effect and Monday effect which is also potentially driven by weather, 

underpins the importance of fundamental factors in determining volatility. A log 

likelihood ratio test easily rejects the null hypothesis that the coefficients of Monday, 

STKDAY, and Wt and Wt
2 are jointly equal to zero at 1% level across all model 

specifications.  

Recent literature on volatility persistence suggests that the persistence in the 

conditional variance may be generated by an exogenous driving variable which is itself 

serially correlated. Hence the inclusion of such an exogenous variable in the conditional 

variance equation would reduce the observed volatility persistence (see Lamoureux and 

Lastrapes, 1990; Kalev et al., 2004). This implies the inclusion of the exogenous 

variables in equation (2) could reduce the observed volatility persistence. In a GARCH (1, 

1) model, the sum ( 11 γβ + ) measures the degree of volatility persistence (Enders, 2004, 

                                                 
16 The returns are expressed in percent, so the unit of variance is 1/10000. Persistence in variance accounts 
for the majority of average variance.  
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pp. 134). The half-life of a volatility shock measures the time it takes for a shock to fall to 

half of its initial value and is determined by (Pindyck, 2003): 

Half-life time = log (.5) /log ( 11 γβ + )                                                     (7) 

The estimated half-lives are reported in the last rows of Table 4 and Table 5. When the 

exogenous variables are not included in the variance equation, the half-life is about 21 

trading days for RET1, and 15 trading days for RET2. When the exogenous variables are 

included, the half-life time reduces to 12 trading days for RET1 and 8 trading days for 

RET2. This result further corroborates the importance of fundamental factors in volatility 

determination.  

 To test if the “Samuelson effect” holds in the natural gas market, I obtained the 

estimated conditional variances from RET1 and RET2 and denote them as h1t and h2t 

respectively. The fitted values of h1t are greater than those of h2t in 954 of 998 cases, 

which is direct evidence of Samuelson’s (1965) hypothesis that the closer-to-maturity 

contract is more volatile than those farther to maturity. Moreover, the estimated 

coefficients of the variance equation from RET1 always exceed those from RET2, 

regardless of what weather data are used. These results imply that a shock has a stronger 

impact on the nearest contract than it does on the second nearest contract.   

 

V. Summary and Conclusion 

This paper is motivated to assess how market fundamentals affect asset return 

volatility by drawing on evidence from the U.S. natural gas futures market. I use a 

weather surprise variable as a proxy for demand shocks and investigate its effect on 

return volatility under the GARCH framework. The empirical analysis reveals a 
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significant impact of the weather surprise on both the conditional mean and conditional 

volatility of natural gas futures returns. Combined with the evidence that volatility is 

considerably higher on Monday and the day when the natural gas storage report is 

released, these results show that information about market fundamentals is an important 

determinant of natural gas price volatility.  

My findings contribute to our understanding of what causes price volatility in the 

natural gas market and should be of interest to both academic researchers and 

practitioners. Volatility is a key determinant of the value of contingent claims, such as 

options on commodity futures. Likewise, risk-hedging decisions rely critically on 

assumptions about volatility. Furthermore, volatility can also alter producers’ perception 

about the opportunity cost of production and has a “feedback” to the supply-and-demand 

balance in longer-term (Pindyck, 2004).  
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Figure 1 
Monthly Natural Gas Production and Consumption 
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Data resource: www.eia.doe.gov 
 
 
Figure 2 

Weekly Natural Gas Storage 
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Data resource: www.eia.doe.gov 
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Table 1  
Autocorrelations of Natural Gas Futures Returns 

 

Lag RET1 (RET1)2 RET2 (RET2)2 

1 -.012 .119*** -.000 .092*** 

2 -.013 .151*** -.028 .153*** 

3 .012 .122*** .012 .127*** 

4 .052 .173*** .047 .202*** 

5 -.013 .083*** -.001 .075*** 

6 -.017 .094*** -.021 .071*** 

7 .050 .186*** .057 .129*** 

8 .009 .075*** -.002 .077*** 

9 -.033 .084*** -.028 .075*** 

10 .018 .115*** .005 .082*** 

Q(12) 11.68 166.75*** 10.52 140.08*** 

Note: The sample size is 1002. Q(12) is the Ljung-Box statistic for the twelfth order 
autocorrelation, which is distributed with 21 degrees of freedom. The 5% critical 
value is 21.  

2χ

          *** (**, *) denote significant at 1% (5%, 10%) level. 
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Table 2 
 

Natural Gas Futures Daily Returns by Day of Week and By Season 
(1/2/1997-12/29/2000) 

 Mean Returns  

 
 Winter Summer Shoulder All Seasons 

A.  RET1 (N=1002) 

Monday -0.43 
(4.72) 

0.23 
(3.45) 

-0.03 
(3.26) 

-0.12 
(3.96) 

Tuesday 0.02 
(3.72) 

-0.51 
(2.52) 

0.16 
(2.94) 

-0.06 
(3.20) 

Wednesday -0.01 
(3.30) 

-0.25 
(3.33) 

-0.08 
(2.95) 

-0.09 
(3.18) 

Thursday 0.01 
(3.47) 

0.08 
(2.77) 

0.22 
(3.88) 

0.10 
(3.44) 

Friday 0.13 
(3.42) 

0.79 
(2.02) 

0.53 
(2.24) 

0.44 
(2.72) 

All Days -0.05 
(3.74) 

0.07 
(2.88) 

0.17 
(3.09) 

0.05 
(3.31) 

  
 

   

B. RET2 (N=1002) 

Monday -0.21 
(4.07) 

0.22 
(3.27) 

0.15 
(2.90) 

0.02 
(3.51) 

Tuesday 0.12 
(3.28) 

-0.51 
(2.51) 

0.14 
(2.76) 

-0.03 
(2.93) 

Wednesday 0.07 
(2.83) 

-0.23 
(3.16) 

-0.06 
(2.68) 

-0.05 
(2.86) 

Thursday -0.02 
(3.17) 

0.03 
(2.76) 

0.11 
(3.49) 

0.04 
(3.17) 

Friday 0.14 
(3.26) 

0.86 
(2.06) 

0.44 
(1.96) 

0.43 
(2.58) 

All Days 0.02 
(3.32) 

0.07 
(2.80) 

0.15 
(2.79) 

0.08 
(3.02) 

Notes:  1). The returns are shown in percent; standard deviations are shown in parentheses. 
2). Winter is defined as November, December, January, February, and March. Summer 

includes June, July, and August. Shoulder months include April, May, September, and October. 
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Table 3 
Summary Statistics 

 

 Mean Std. Dev. Skewness Kurtosis 

RET1 (percent) 0.0506 3.319 -0.028 4.47 

RET2 (percent) 0.0787 3.019 -0.014 4.46 

CRET (percent) 0.0010 2.481 -0.053 6.22 

W1 (°F) -0.44 5.39 -0.66 3.41 

W2 (°F) -0.34 6.36 -0.52 3.61 
W1: the weather surprise computed using Chicago and Atlanta data. 
W2: the weather surprise computed using Chicago data 
 

 

 26



 
Table 4_A 

Estimation Result for RET1 
(Using Chicago weather) 

 (1) (2) (3) (4) 

Mean    

CRET 0.221*** 
(5.85) 

0.223*** 
(5.84) 

0.238*** 
(6.46) 

0.241*** 
(6.46) 

STKERR -0.022** 
(-2.51) 

-.022** 
(-2.54) 

-0.021** 
(-1.99) 

-0.021** 
(-1.96) 

W 0.043*** 
(2.95) 

0.042*** 
(3.00) 

0.046*** 
(3.58) 

0.046*** 
(3.27) 

Constant 0.087 
(0.98) 

0.084 
(0.97) 

0.065 
(0.75) 

0.055 
(0.57) 

     

Variance    

ARCH(1) 0.088*** 
(4.74) 

0.084*** 
(4.64) 

0.086*** 
(4.52) 

0.086*** 
(4.25) 

GARCH(1) 0.880*** 
(33.66) 

0.881*** 
(33.84) 

0.867*** 
(28.04) 

0.851*** 
(23.97) 

MON  2.482*** 
(2.75) 

4.842*** 
(5.23) 

5.338*** 
(6.05) 

STKDAY   5.827*** 
(5.60) 

6.312*** 
(6.03) 

Wt    0.013 
(0.83) 

Wt
2    0.003 

(1.63) 

Constant 0.328** 
(2.49) 

-0.116 
(-0.59) 

-1.651*** 
(-5.23) 

-1.807*** 
(-6.67) 

     
Log likelihood -2530 -2526 -2512 -2510 

Half-life time 
(days) 21.31 19.46 14.40 10.65 

 
 

 
 

Notes:   
(1) This table reports the MLE result using Marquardt method as built in Eviews. I checked 

with BFGS and BHHH method. The result is not materially different.  
(2) The adjusted R2 ranges from 0.04 to 0.043. 
(3) Z-statistics are reported in parentheses.  
(4) *** (**, *) denote significant at 1% (5%, 10%) level. 
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Table 4_B 

Estimation Result for RET2 
(Using Chicago weather) 

 (1) (2) (3) (4) 

Mean    

CRET 0.214*** 
(6.13) 

0.215*** 
(6.11) 

0.227*** 
(6.50) 

0.227*** 
(6.45) 

STKERR -0.021*** 
(-2.61) 

-.020** 
(-2.61) 

-0.020* 
(-2.10) 

-0.019 
(-1.99) 

W 0.037*** 
(2.76) 

0.036*** 
(2.75) 

0.039*** 
(3.29) 

0.040*** 
(2.95) 

Constant 0.080 
(0.95) 

0.078 
(0.95) 

0.050 
(0.62) 

0.046 
(0.55) 

     

Variance    

ARCH(1) 0.075*** 
(4.43) 

0.070*** 
(4.33) 

0.074*** 
(4.43) 

0.070*** 
(4.03) 

GARCH(1) 0.88*** 
(29.70) 

0.884*** 
(30.86) 

0.863*** 
(27.47) 

0.842*** 
(23.61) 

MON  1.986*** 
(2.64) 

4.39*** 
(5.35) 

5.08*** 
(6.31) 

STKDAY   5.265*** 
(6.02) 

5.978*** 
(6.40) 

Wt    0.021 
(1.43) 

Wt
2    0.003** 

(2.17) 

Constant 0.371** 
(2.43) 

-0.002 
(-0.01) 

-1.403*** 
(-4.98) 

-1.602*** 
(-6.08) 

     

Log likelihood -2449 -2446 -2431 -2428 

Half-time 
(days) 15.05 14.72 10.70 7.55 

 
 

 
 

Notes:   
(1) This table reports the MLE result using Marquardt method as built in Eviews. I checked 

with BFGS and BHHH method. The result is not materially different.  
(2) The adjusted R2 ranges from 0.042 to 0.045. 
(3) Z-statistics are reported in parentheses. 
(4) *** (**, *) denote significant at 1% (5%, 10%) level. 
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Table 5_A 
 

Estimation Result for RET1 
(Using Chicago and Atlanta weather) 

 (1) (2) (3) (4) 

Mean     
 

CRET 0.22*** 
(5.86) 

0.221*** 
(5.85) 

0.236*** 
(6.41) 

0.241*** 
(6.36) 

STKERR -0.022** 
(-2.42) 

-.021** 
(-2.46) 

-0.021* 
(-1.94) 

-0.020** 
(-1.85) 

W 0.053*** 
(3.10) 

0.052*** 
(3.12) 

0.055*** 
(3.64) 

0.053*** 
(3.15) 

Constant 0.091 
(1.03) 

0.088 
(1.02) 

0.072 
(0.83) 

0.063 
(0.73) 

     

Variance     
 

ARCH(1) 0.088*** 
(4.81) 

0.084*** 
(4.69) 

0.085*** 
(4.57) 

0.078*** 
(4.59) 

GARCH(1) 0.880*** 
(34.29) 

0.88*** 
(34.08) 

0.868*** 
(29.11) 

0.867*** 
(29.94) 

MON  2.48*** 
(2.70) 

4.804*** 
(5.07) 

6.046*** 
(5.59) 

STKDAY   5.825*** 
(5.52) 

6.860*** 
(5.86) 

Wt 
   0.046*** 

(2.70) 

Wt
2    0.008*** 

(2.85) 
Constant 0.328** 

(2.53) 
-0.115 

(-0.596) 
-1.651*** 

(-5.16) 
-2.221*** 

(-5.84) 
     

Log likelihood -2529 -2526 -2512 -2505 

Half-life time 
(days) 21.31 19.23 14.40 12.25 

Notes:   
(1) This table reports the MLE result using Marquardt method as built in Eviews. I checked 

with BFGS and BHHH method. The result is not materially different.  
(2) The adjusted R2 ranges from 0.042 to 0.045. 
(3) Z-statistics are reported in parentheses. 
(4) *** (**, *) denote significant at 1% (5%, 10%) level. 
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Table 5_B 
 

Estimation Result for RET2 
(Using Chicago and Atlanta weather) 

 (1) (2) (3) (4) 

Mean     
 

CRET 0.213*** 
(6.15) 

0.214*** 
(6.12) 

0.225*** 
(6.45) 

0.228*** 
(6.40) 

STKERR -0.020** 
(-2.54) 

-0.020** 
(-2.53) 

-0.019** 
(-2.04) 

-0.018* 
(-1.88) 

W 0.043*** 
(2.75) 

0.042*** 
(2.72) 

0.045*** 
(3.23) 

0.043*** 
(2.78) 

Constant 0.085 
(1.01) 

0.083 
(1.01) 

0.058 
(0.71) 

0.055 
(0.67) 

     

Variance     
 

ARCH(1) 0.076*** 
(4.51) 

0.071*** 
(4.38) 

0.073*** 
(4.50) 

0.064*** 
(4.12) 

GARCH(1) 0.88*** 
(30.31) 

0.883*** 
(31.20) 

0.866*** 
(28.80) 

0.856*** 
(28.63) 

MON  1.987*** 
(2.61) 

4.36*** 
(5.24) 

5.78*** 
(6.14) 

STKDAY   5.27*** 
(6.05) 

6.45*** 
(6.70) 

Wt 
   0.044*** 

(2.80) 

Wt
2    0.008*** 

(3.10) 
Constant 0.370** 

(2.46) 
-0.002 
(-0.01) 

-1.413*** 
(-5.04) 

-1.954*** 
(-6.108) 

     

Log likelihood -2449 -2446 -2431 -2425 

Half-time 
(days) 15.40 14.72 11.01 8.30 

 
(1) This table reports the MLE result using Marquardt method as built in Eviews. I checked 

with BFGS and BHHH method. The result is not materially different.  
(2) The adjusted R2 ranges from 0.042 to 0.045. 
(3) Z-statistics are reported in parentheses. 
(4) *** (**, *) denote significant at 1% (5%, 10%) level. 
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