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1. Overview
Within energy technology policy experience and learning curves2 have since 1990’s moved from 
obscurity to mainstream, but there are currently indications of fading expectations on the curves as 
efficient policy tools. In 1999, the International Energy Agency initiated an international 
collaboration on experience curves for energy technology policy (IEA 2000, Appendix C) and the 
initiative was followed up in the two first  IEA Energy Technology Perspectives reports (IEA, 2006, 
2008). The analyses in these reports contrast with the perfunctory treatment of the curves in the latest 
report from 2012. Kahouli-Brahmi (2008) found the curves to be standard features in most energy 
models but today there appear few papers developing the methodology.

The view of the learning curves as just expressing useful correlations between price and cumulative 
output is one obvious reason for the diminishing interest. The results from the last ten years of efforts
only seem to verify concerns about uncertainty and instability of learning rates expressed in 2006 by 
both the Stern Report and the first IEA Energy Technology Perspectives report (Stern, 2006, p. 362, 
412; IEA, 2006, p. 231). The lack of theoretical understanding leads to confusion about extrapolated
learning rates and interpretation of the learning phenomenon itself (Nemet, 2009; Nordhaus, 2009; 
Yeh and Rubin, 2012). Uncertainty about the theoretical status of the learning curves hampers their 
use as reliable policy tools and undermines the legitimacy they can give to deployment programmes.

This paper addresses the theoretical status of learning curves and the stability of technology learning.
The shape of the learning curve follows from two established bodies of scientific knowledge, namely, 
non-equilibrium thermodynamics and second order cybernetics. Earlier work based on cybernetic 
theory (Wene, 2007, 2010, 2011) has explained measured distributions of learning rates. Present and 
earlier results demonstrate that experience and learning curves describe fundamental and stable 
properties of human systems of interaction in a competitive environment.

2. Methods: The Learning System moves in Eigentime
Ferioli and Zwaan (2009) insist on calendar time for explaining learning curves.  However, the 
distinction Observer-Observed is important both in non-equilibrium thermodynamics and in second 
order cybernetics. This is expressed through the introduction of eigentime, i.e., internal time for the 
observed system different from the calendar time of an external observer. Fock (1937) introduced the 
concept of eigentime in physics. For thermodynamic systems Prigogine (1947) proposed 
thermodynamic time with respect to which entropy production remains constant. This time scale is 
called eigentime by Andresen and Gordon (2002) and used in their analysis of biological systems.

For the learning system the eigentime is the same between consecutive doublings of cumulative output, 
i.e., the rate of doubling is constant in eigentime. This paper applies results from non-equilibrium 
thermodynamics and cybernetics to a learning system moving in its natural eigentime.

- Non-equilibrium thermodynamics. Competitive markets act as boundary conditions keeping 
the learning system in a non-equilibrium steady state, but in the near-equilibrium region under 
normal market conditions. The growth of entropy is at minimum when the internal entropy 
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production is constant in eigentime (Andresen et al, 1994). Assuming that the learning system 
follows the path of minimum entropy provides the equation for the learning curve.

- Second order cybernetics. The cybernetic theory for technology learning considers the 
learning system to be operationally closed. According to the closure theorem such system 
develops eigenbehaviour, which in a mathematical formalism can be characterised by en 
eigenfunction and an eigenvalue. The eigenfunction for the eigentime operator is the equation 
for the learning curve and the eigenvalue provides learning rates.

3. Results
Results are relevant for energy policy design as well as theoretical understanding:

- Stability of the learning curve and learning rates. Thermodynamic theory and cybernetic 
theory lead to the same shape for the learning curve. Entropy production is a Lyapounov 
function, which means that if the system is perturbed it will strive to return to the state at 
which its entropy production is the lowest, i.e. to the original learning curve.

- Equation of motion. Together with the earlier results (Wene, 2007, 2011) the findings on 
eigenfunctions to the eigentime operator can be generalised to provide an equation of motion 
for the learning system.

- Application to PV modules. Observations on PV modules over four decades and five orders of 
magnitude of cumulative output can be compared to the theoretical predictions of shape and 
rate for the learning curve. One conclusion is that learning has continued at the learning rate
predicted by the cybernetic theory during the silicon scarcity bubble 2005-2008. This result is
also consistent with the prediction from stability theory. The bubble cost is USD100 billion.

4. Conclusion.
Analyses based on two well-established theories concur about the shape and stability of the learning 
curve. Development of the two approaches will provide insights about management of perturbations 
and about relation between operational closure and stability of dynamic systems. The results on PV 
modules emphasise the need for coordination among government deployment programmes in order to 
avoid costly bubbles on the global markets.
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