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Abstract 

Inefficiencies in Uganda’s electricity sector, where high tariffs and low access persist despite 

surplus capacity has grown concerns to the researchers. This study aims to fill the policy and 

research gap by evaluating firm-level technical efficiency to support sustainable, affordable, and 

reliable electricity. Using secondary data from the Electricity Regulatory Authority (2016-2023), 

the study analyzes 36 generating firms through an input-oriented Data Envelopment Analysis 

(DEA) model and Tobit regression. Results show that only 22% of the firms operate efficiently, 

while 67% perform below 50% efficiently, mainly due to outdated technology, high operational 

costs, and regulatory barriers. Larger plants tend to be more efficient, while high workforce size 

and O&M costs reduce efficiency. One key recommendations is for policy makers to introduce 

performance-based regulations and incentives for firms that adopt modern technology. The study 

contributes new evidence by applying DEA in the developing country context and offering firm-

level insights into supply-side electricity efficiency, an area that remains underexplored.   

Key words: Technical Efficiency, Tobit Regression, & Data Envelopment Analysis (DEA) 

 

1.0 Introduction 

Energy plays a pivotal role in promoting socioeconomic transformation and sustainable 

development, as reflected in global development frameworks such as Sustainable Development 

Goal 7 (SDG 7), which emphasizes access to affordable, reliable, and modern energy for all. Over 

the past decades, rising global energy demand, particularly in developing countries, has 

necessitated the expansion of electricity generated to meet growing consumption needs. However, 

achieving universal access to energy is not merely a function of increasing supply; it also depends 
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on ensuring affordable, reliable, and sustainability, all of which are closely tied to the cost-

efficiency of electricity generation.  

A major challenge, however, is that electricity costs remain high in many countries despite surplus 

generation capacity. This contradiction suggests that structural and operational inefficiencies 

persist in electricity generation systems. Energy efficiency is increasingly recognized as a crucial 

factor in improving electricity sector performance and achieving sustainability goals in developing 

countries. Studies have shown that implementing energy efficiency measures can lead to 

significant energy savings, reduced peak demand, and increased energy access (Pudleiner et al., 

2017). Also, energy efficiency improvements are estimated to potentially deliver over a third of 

the necessary greenhouse gas emission reductions for climate stabilization (Fowlie & Meeks, 

2020). Efficient electricity generation also contributes to reduced dependence on fossil fuels and 

decreased greenhouse gas emissions (Rodriquez-Lozano & Cifuentes-Yate, 2021; Pinto et al., 

2023). 

Globally, the technical efficiency of electricity generation has been widely studied using models 

like Data Envelopment Analysis (DEA). For instance, Dogan and Tugcu (2015) found significant 

differences in efficiency across G-20 countries, with China and Russia outperforming their 

counterparts. Similarly, Rodriguez-Lozano and Cifuentes-Yate (2021) revealed global efficiency 

levels typically ranging from 60% to 90%. However, despite global improvements in primary-to-

final energy conversion, end-use efficiency has remained stagnant, and inefficiencies at the 

generation level persist (Pinto et al., 2023). This points to a global problem of slow progress in 

generation efficiency, which could undermine broader climate and development targets.  

In Sub-Saharan Africa (SSA), these inefficiencies are even more pronounced. Despite major 

energy sector reforms and capacity investments, the region continues to suffer from low 

electrification rates, frequent power outages, high technical losses, and poor infrastructure 

(Agoundedemba et al., 2023; Asantewea et al., 2022). A significant regional gap is the limited 

integration of renewable energy and underutilization of local energy resources, such as biomass 

(Jingura & Kamusoko, 2017). In East Africa specially, technical performance gaps of up to 20% 

have been observed in electricity systems, attributed to excess input use and output shortfalls 

(René, 2022). These inefficiencies are not only operational but also institutional and structural, 

with limited incentives for performance improvement.  
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Uganda, like many Sub-Saharan Africa, illustrates this paradox. Despite an installation generation 

capacity of 1,346.6 MW and a peak demand of only 785 MW, leaving a substantial surplus of 562 

MW, electricity tariffs remain among the highest in the region (MoEMD, 2023). This raises critical 

concerns about inefficiencies in the electricity generation process. Moreover, Uganda’s electricity 

access rate remains at 55%, far below the regional average for developing countries. This suggests 

that excess capacity is not translating into improved access or lower prices, possibly due to high 

generation costs, technical losses, or scale inefficiencies. Policy responses have also been 

inadequate. While Uganda’s 2023 National Energy Policy and Draft Energy Efficiency and 

Conservation Bill aim to improve energy efficiency, they focus almost exclusively on demand-

side interventions (e.g. in households, industry, transport), with limited attention to the generation 

side. This represents a significant policy gap, as generation inefficiencies directly affect the 

affordability and reliability of power supply.  

Academically, most efficiency studies in the energy sector have also focused on consumption, 

environmental impacts or national-level trends. There is a lack of firm-level analysis, especially in 

developing countries and within the supply side of electricity sector. Studies such as those by 

Wasseh et al. (2023) and Hou et al. (2022) highlight efficiency patterns at a broad level but 

provided limited insights into the operational dynamics of individual electricity-generating firms. 

As such, firm-level inefficiencies remain poorly understood in countries like Uganda, impending 

targeted reforms.  

To fill these theoretical, empirical, and policy gaps, this study adopts a robust framework 

combining Efficiency Measurement Theory (Charnes et al., 1978) and Scale Efficiency Theory 

(Banker, 1984) with DEA. This integration enables the evaluation of both technical and scale 

efficiency, offering deeper insights into performance variations among electricity-generating 

firms. Technical efficiency at the generation level is often influenced by multiple factors, including 

fuel type, plant size, ownership structure, age of the facility, technology innovation, and 

managerial practices (Nguyen et al., 2022; Benini & Cattani, 2022; Hou et al., 2022). Operational 

constraints such as inputs shortages, maintenance delays, and regulatory inefficiencies also 

significantly affect generation performance (Sengupta & Mukherjee, 2022; Bernstein, 2020).   

Therefore, the objective of this study is to evaluate the technical efficiency of electricity-generating 

firms in Uganda and to identify the key drivers influencing their performance. By focusing on 
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firm-level analysis within a developing country context, the study contributes to the underexplored 

domain of supply-side electricity efficiency and offers evidence-based policy guidance to enhance 

the sustainability, affordability, and reliability of Uganda’s electricity sector 

2.0 Literature Review 

This chapter explore the theoretical and empirical literature review on technical efficiency, to have 

the ground understanding of the concept and identify the gaps in available literature. 

2.1 Theoretical Review 

The Efficiency Measurement Theory, introduced by Charnes et al. (1978), and further explained 

in a study by Cook & Seiford (2009), provides a non-parametric framework for assessing the 

relative efficiency of decision-making units (DMUs) by comparing weighted outputs to weighted 

inputs. It constructs an efficiency frontier defined by the most efficient units, assigning objectives 

weights based on observed data. While the model is flexible and widely applied across sectors due 

to its ability to handle multiple inputs and outputs, it does not separate technical efficiency from 

scale inefficiency, meaning a unit might appear inefficient due to operating at an inappropriate 

scale rather than poor resource use.  

 The Scale efficiency theory, developed by Banker (1984), and elaborated by Banker and Thrall 

(1992), suggests that a decision-making unit (DMU) can enhance productivity by operating at its 

most productive scale size. Integrating into Data Envelopment Analysis (DEA), this theory 

distinguishes between increasing, constant, or decreasing returns to scale, helping assess whether 

inefficiency stems from scale mismatches. In the energy sector, it aids in identifying optimal plant 

sizes and efficient resources use, thereby informing cost-effective and sustainable infrastructure 

planning. The theory has been widely applied and explained by scholars such as Fare et al. (1985), 

Banker et al. (1984), Cooper et al. (2006), and Bernstein (2020).  

The strength of this theory is rooted in the ability to identify the optimal scale of operation, 

allowing firms to maximize output without overextending resources of facing diminishing returns, 

and its ability to distinguish between technical efficiency and scale efficiency, enabling firms to 

understand whether inefficiencies are due to size of operation or the way processes are managed. 

However, it is very sensitive to outliers in the data set 
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2.2 Empirical Review of literature 

Recent studies have identified several key factors influencing technical efficiency in electricity 

generation, including firm ownership, plant age, and investment in infrastructure. State-owned 

enterprises typically show lower efficiency compared to private firms, and plant age can negatively 

impact performance, as observed in Kenya’s thermal power plants (Njeru et al., 2020). Grid 

connection, deregulation, and private sector involvement have been linked to improved efficiency 

and productivity (Nguyen et al., 2022; René, 2022). Technological advancements, such as 

investments in modern equipment, higher wages for employees, and the adoption of systems like 

supercritical turbines, have also played a crucial role in enhancing energy efficiency and reducing 

emissions, as seen in research from India (Murty & Nagpal, 2020) and Europe (Tillman, 2015). 

Despite these improvements, there are significant gaps in understanding technical efficiency, 

particularly in low-income and conflict-affected regions like sub-Saharan Africa, where limited 

infrastructure and regulatory challenges hinder progress. Most existing research has focused on 

manufacturing and consumer-side efficiency, with less attention given to electricity-generating 

firms (supply side). Addressing these gaps could provide valuable insights into optimizing 

technical efficiency in electricity generation, ensuring better energy access, and promoting 

sustainable, affordable energy solutions in these underserved regions, such as Uganda, where the 

electricity sector is still developing. 

The number of employees and maintenance costs are key operational factors that influence the 

efficiency of electricity-generating firms. Research in the Portuguese electricity sector found that 

moderate working hours and competitive wages, which are closely tied to labor management and 

maintenance-related expenditures, contribute positively to technical efficiency (Hou et al., 2022). 

While a sufficient workforce is essential for maintaining operational reliability and minimizing 

downtime, excessive staffing or poor labor utilization can lead to inefficiencies. Similarly, studies 

emphasize that appropriate allocation of maintenance costs, particularly when aligned with 

proactive, leadership-driven maintenance strategies, enhances power plant performance (Wai 

Foon & Terziovski, 2014). Evidence from Kenyan thermal power plants further supports this, 

revealing that firms with effective maintenance and operational practices achieve higher efficiency 

scores, whereas inefficiencies are often linked to underutilized human resources and outdated 
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systems (Njeru et al., 2020). These findings underscore the importance of balancing employee 

numbers and maintenance investments to optimize firm-level efficiency. 

Operation and maintenance (O&M) costs significantly influence the efficiency of electricity-

generating firms. Effective O&M practices, such as committed leadership, regular maintenance, 

and adequate investment in infrastructure, have been shown to improve technical efficiency (Wai 

Foon & Terziovski, 2014; Hou et al., 2022). Conversely, factors like aging infrastructure and 

public ownership are associated with lower efficiency, while grid connectivity has a positive effect 

(Njeru et al., 2020). These findings suggest that optimizing O&M practices, along with 

implementing market reforms and encouraging competition, can enhance firm performance in the 

electricity sector (Hou et al., 2024). 

Research on the impact of firm age on performance presents mixed findings across different sectors 

and contexts. Sattar et al. (2013) found that firm age significantly affects performance, with older 

firms tending to perform worse due to higher levels of short-term debt. Similarly, Ismail and 

Jenatabadi (2014) observed that firm age moderates the relationship between internal operations, 

economic conditions, and overall performance in the airline industry. In contrast, Megawati 

(2019), in a study of 162 manufacturing firms using purposive sampling, found that firm size and 

leverage significantly influenced performance, while firm age and growth did not. This finding 

aligns with Ekadjaja and Wijaya (2021), who also reported that firm age does not significantly 

impact firm performance. However, in the energy sector, Njeru et al. (2020) reported an average 

technical efficiency of 71% in Kenyan thermal power plants and identified plant age as a key 

contributor to inefficiencies. These contrasting results suggest that the influence of firm or plant 

age on performance may vary across industries and may depend on factors such as debt structure, 

sector-specific dynamics, and operational practices. 

Technological and organizational innovations are widely acknowledged as key drivers of energy 

efficiency across sectors, particularly in electricity generation. Huang et al. (2022) demonstrated 

that adopting robots in production processes can significantly improve firms' energy efficiency by 

streamlining operations and minimizing energy waste. In addition to internal technological 

upgrades, the type of energy source used in electricity generation plays a crucial role in 

determining firm-level efficiency. Saglam (2018) found substantial variation in the efficiency of 

different renewable energy technologies, with geothermal energy being the most efficient and solar 
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thermal the least. Expanding on this, Mekuye et al. (2024) noted that renewable energy sources 

are generally more efficient and sustainable than their nonrenewable counterparts, which 

contributes to improved overall performance of electricity-generating firms. These insights 

suggest that both the adoption of advanced technologies and a strategic shift toward more efficient 

renewable energy sources are essential for enhancing firm efficiency in the electricity sector. 

The relationship between firm size and efficiency in energy generation and manufacturing is 

complex and varies across different contexts. While some studies, such as Shumais (2020), find 

no significant relationship between firm size and efficiency, others report that larger plants tend to 

be more efficient (Kusz et al., 2024). Specifically, in Austrian biogas plants, smaller facilities 

(under 100 kW) showed scale inefficiencies, with increasing returns to scale being observed as 

plant size grew (Eder & Mahlberg, 2018). However, Kusz et al. (2024) found that small biogas 

plants in Poland achieved similar technical efficiency levels as larger ones, suggesting that smaller 

plants can still be efficient under certain conditions. Beyond firm size, other factors also play a 

crucial role in determining efficiency. Ownership structures, the adoption of solar PV technologies, 

the regulatory environment (Bernstein, 2020), and subsidies (Eder & Mahlberg, 2018) have been 

identified as key influences, with subsidies showing a negative relationship with managerial 

efficiency. In the manufacturing sector, firm size has been found to reduce technical inefficiencies 

in the electrical and electronic industries (Megawati, 2019), and Costa-Campi et al. (2015) 

highlighted that firm size is a significant determinant of energy efficiency improvements in 

Spanish manufacturing firms. These findings emphasize that while firm size can influence 

efficiency, its effect is also moderated by other operational and external factors. 

3.0 Methodology 

3.1 Research design:  

The study used a quantitative research design to compare the technical efficiencies of the 

generators and identifying the factors influencing the technical efficiency in energy generation. 

This design is suitable because it facilitates the rigorous, objective measurement of technical 

efficiency across multiple generators using DEA, offering a clear, data-driven perspective on 

performance of the DMUs.  

3.2 Population study 
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The study focused on 50 electricity generating companies in Uganda (MoEMD, 2023). This 

included all the companies or entities involved in the generation of electricity, such as public 

companies, private companies, and any other public or private power plants operating in the 

country.  

3.3 Data Source and processing  

This study use a time series data (secondary data) from Uganda’s Electricity Regulatory 

Authority's (ERA’s) website (https://www.era.go.ug/index.php/stats), covering the period from 

2016Q1 to 2023Q4, selecting the generation statistics. This was based on the availability of the 

data or observations.  

After obtaining the data from ERA, to ensure that the data is complete and accurate, cleaning (to 

cater for missing values and correcting anomalies), transforming the variables, and categorizing or 

aggregating data, were done.  After thorough data cleaning, 36 electricity generating firms 

(utilities) were maintained for further analysis using STATA software Version 15.  

3.4 Data analysis 

The purpose of this study is to examine the technical efficiency among the electricity generating 

firms in Uganda and categorize factors that affect technical efficiency. Based on the Efficiency 

Measurement and Scale Efficiency Theories, the conceptual model integrates both technical and 

scale efficiency.  

The study therefore employed a mathematical model of Data Envelopment Analysis (DEA), a non-

parametric technique, particularly an Input-Orientation DEA model (Toloo et al., 2020; Tharwat 

et al., 2019; Ji & Lee, 2010). This model is used to test if a DMU can reduce (minimize) the inputs 

while keeping outputs constant (Piran et al., 2020; Khan & Karam, 2019).   

DEA models can also be subdivided in terms of returns to scale. Charnes et al. (1978) originally 

proposed the efficiency measurement of the DMUs for constant returns to scale (CRS), where all 

DMUs are operating at their optimal scale. Later Banker et al. (1984) introduced the variable 

returns to scale (VRS) efficiency measurement model, allowing the breakdown of efficiency into 

technical and scale efficiencies in DEA. 

https://www.era.go.ug/index.php/stats
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At the second stage, using a Tobit regression Model, the values of Technical Efficiency (TE) 

derived were regressed on the input variables (regressors) to identify the factors influencing 

technical efficiency of generating firms. Therefore, the second stage model had the following form; 

𝑇𝐸𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ … … … … … … + 𝛽𝑛𝑥𝑛 + 𝜀𝑖                 (5) 

Where 

𝑇𝐸 = 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 

𝛽𝑖 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑎𝑖𝑏𝑙𝑒𝑠, 𝑖 = 1, 2, 3, … … 𝑛 

𝛽0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)  

𝑥𝑖 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑖𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 

𝜀𝑖 = 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑚𝑟 

Therefore the model specification is; 

𝑇𝐸 = 𝛽0 + 𝛽1𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 𝛽2𝑂&𝑀 𝑐𝑜𝑠𝑡𝑠 + 𝛽3𝑃𝑙𝑎𝑛𝑡 𝑠𝑖𝑧𝑒 + 𝛽4𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 +

𝛽5𝐹𝑖𝑟𝑚𝑎 𝑎𝑔𝑒 + 𝜀                                                                                                       (6) 

Where;  

𝑇𝐸 = 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑖𝑟𝑚 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡,  

𝛽𝑖 = 𝑎𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑜𝑟𝑠  

𝜀 = 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑚𝑟 

The Tobit regression model is a vital tool in econometrics and various other fields for analyzing 

censored data (Karim & Salh, 2020). It provides a framework to understand both the occurrence 

and magnitude of outcomes when the dependent variable is subject to censoring. By appropriately 

modeling the data-generating process, the Tobit model yields unbiased and consistent parameter 

estimates, offering deeper insights into the factors influencing the censored dependent variable 

(Michels & Musshoff, 2022; Sedeeq & Meran, 2022; Jacobson & Zou, 2024). 

3.5 Variable under the study and integration into the model 

Table 1: Variables under study and the data source 

Variable Symbol Variable definition/ interpretation Source of Data 

Measurement 

units 

Technical Efficiency TE 

Technical efficiency score of a 

generating firm (DMU) 

Author’s 

compilation Percentage 

Total Revenue TR Total revenues generated in a year ERA (Website) UGX Million  
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Number of 

employees NE 

Number of employees of each generating 

firm (DMU) at the end of a year ERA (Website) Number 

Operation & 

Maintenance cost O&M 

Total operational and maintenance costs 

(Salary, repair, raw materials, fuel etc.) ERA (Website) UGX. Million. 

Power plant size Psize Installed capacity of power plant ERA (Website) MWh 

Energy generated  TEG Total energy generated by a firm ERA (Website) MWh 

Energy source Source Type of energy source  ERA (Website) N/A 

Age   Age 

Years since the power plant started 

electricity generation ERA (Website) Years 

 

In this study, Total revenues (TR) was used as the output variable, while Energy generated (TEG) 

as energy generated, number of employees (NE), Operation and Maintenance Costs (O&M), Plant 

size (Psize) as the installed capacity of the plant, Energy source (Source), and Age (Years of 

existence in electricity generation), were considered in this study. Some of these variables were 

used to calculate the technical efficiency of each DMU and also to establish factors influencing 

the technical efficiency in the DMUs.  

 

4.0 Results 

4.1 Descriptive statistics 

From Table 2, the average energy generated in the period of study is 838,137MWh, average 

number of employees is 517 people per year, while average Operation & maintenance costs is 

UGX: 522,761.8 Million shillings.  

Table 2: Descriptive statistics of the variables 

Variable Obs. Mean Std. Dev. Min Max 

Total Energy Generated 36 838,137 2,384,326 18502.45 10,100,000 

Number of Employees 36 516.5 566.9875 56 3323 

Operation & Maintenance 36 522,761.80 2,232,713 804 12,500,000 

Source: Author’s computation 

4.2. Multicollinearity test 

Table 3. Results of Multicollinearity test 

Variable VIF 1/VIF 

Total Revenue 1.31 0.72451 
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Energy generated 1.4 0.65432 

Number of Employees 1.3 0.76724 

Operation & maintenance costs 1.3 0.767247 

Mean VIF 1.31   

Source: Author’s computation 

From the table, since the mean VIF =1.3 is less than 10 (threshold) (Gujarati, 2004), the results 

show that there is no severe multicollinearity in the variables considered.  

4.3 Data Envelopment Analysis results  

Using DEA, the study conducted a benchmarking approach to determine performance (technical 

efficiency) of the utilities in a specified period. 36 generating companies or utilities were 

considered as the Decision-Making Units (DMUs). This means that the sample had 36 data values 

which is greater than 30 sample size, enough for analysis. DEA analysis enables the efficiency of 

each DMU to be calculated in order to make comparisons between the units of the group analyzed, 

highlighting the best. According to Koopmans (1951), a firm will be considered efficient if there 

is any improvement in the input or output without affecting or harming (worsening) some other 

input or output. Also, with a study by Alirezaee and Afsharian (2010) an efficient DMU in CRS 

model is also considered efficient in the VRS model.  

Technical Efficiency score were generated using DEA Model in STATA software, for each DMU. 

For this study, VRS model (Banker et al., 1984) was applied as the best technique to achieve the 

purpose of the study. See table 4 for results. The scores in the table were sorted depending on the 

ranks, considering those with high scores first (100%) to those less than 100% efficiency score.  

4.3.1 Technical Efficiency Score by firms 

From Table 4: Data Envelopment Analysis (DEA) results by generators 

 

No Generators rank 

Efficiency 

Scores 

(theta) 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TEG) 

islack 

(TR) 

1 Bujagali  1 1 . 0 . . 

2 Emerging Solar Power  1 1 . . 0 . 

3 Isimba  1 1 . 0 . . 

4 Kabalega Hydromax  1 1 . . . . 
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5 Kiira & Nalubaale 1 1 0 . . 0 

6 NKUSI (PA Technical) 1 1 . . . . 

7 Nyamwamba 2 8 1 . . 482508 85891.8 

8 SM Hydro 1 1 . . . 0 

9 ACCESS Solar 9 0.872205 . . 8445.4 . 

10 UEGCL Namanve (Jacobsen) 10 0.859978 . . 794843 . 

11 Tororo Solar (North) 11 0.73972 . . 205531 19032.9 

12 Kakaka 12 0.502665 . . 211697 34980.4 

13 Tororo PV Power  13 0.410587 . . 252063 33403.7 

14 Hydromax Nkusi (Waki) 14 0.384575 . . . 0.000103 

15 TIMEX Bukinda 15 0.383014 . . 22029.5 . 

16 ZIBA 16 0.371187 . . . . 

17 XSABO Solar 17 0.351845 . . 20670.3 . 

18 Nyamagasani 2 18 0.336801 . . 124281 22614 

19 Kilembe Mines Ltd (KML) 19 0.333675 . . . 20270.2 

20 SINDILA 20 0.32907 . . 45506.1 8454.77 

21 Ndugutu 21 0.309966 . . 21288.7 2151.64 

22 Rwenzori Hydro  22 0.295498 . . 106949 11399.5 

23 SITI 2 23 0.294499 . . 184139 10856 

24 Muvumbe Hydro (U) Ltd 24 0.282221 . . 3320.49 . 

25 Kikagati 25 0.263281 . 320.99 482241 156213 

26 Achwa 1&2 26 0.26278 . . 1924397 61033.9 

27 Elgon Hydro SITI 27 0.248041 . . 5963.84 . 

28 Electromaxx (U) Ltd 28 0.233961 . . 628906 . 

29 Lubilia  29 0.224496 . . 5883.99 . 

30 Maji-Power Bugoye Ltd 30 0.219021 . . 496033 38046.6 

31 Kasese Cobolt Company Ltd 31 0.214418 . . . . 

32 Mahoma 32 0.194277 . . 893.937 0.001457 

33 Rwimi 33 0.165583 . . 450381 39808.5 

34 Ecopower - Ishasha 34 0.135528 . . 85356.8 5863.01 

35 AEMS-Mpanga 35 0.13504 . . 482568 22481.6 

36 Nyamwamba  36 0.10913 . . 473205 135760 

Source: Author’s computation 

From the results in Table 4 reveal that only 22% of the total electricity generating firms achieved 

100% technical efficiency during the study period (2016-2023). However, a significant portion, 

66.6% of the electricity generating firms operate at less than 50% technical efficiency, with 41.7% 

of these performing below 30% technical efficiency. 77.8% the electricity generating firms 

considered have their efficiency scores range from 10% to 87%, indicating substantial 

inefficiencies in power generation across sector. 
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Most electricity generating plants in Uganda show no slack in the number of employees or 

operation and maintenance costs (O&M), indicating efficient use of labor and maintenance 

resources. However, Kikagati exhibits a notable slack of 320.995 in O&M costs, suggesting it 

spends more on maintenance than necessary for efficient operation.  

Slack values in total energy generated reveal inefficiencies in production. Generating plants under-

produce relative to their input use. Additionally, positive slack values in total revenues, indicate 

under-performance in revenue collections with current resource levels. These inefficiencies pose 

challenges for the electricity sector and broader economic growth, as underperforming plants 

contribute sub-optimally to the energy supply. Nevertheless, the absence of slack in workforce 

deployment suggests higher labor efficiency. Overall, the findings highlights significant potential 

for improving energy generation and revenue efficiency across Uganda’s electricity sector.  

4.3.2 Technical Efficiency Score by Firm Age 

From Table 5: Data Envelopment Analysis (DEA) results by years of existence  

 DMU rank 

Efficiency 

Scores 

(theta) 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

More than 10 Years of existence 

Kiira& Nalubaale 1 1 0 . 0 . 

Kasese cobolt 6 1 . . 40234 1032561 

Kilembe Mines Ltd 4 1 . . 114710 253809 

UEGCL Namanve 5 1 . . 68489.2 1002357 

Electromaxx (U) Ltd 10 0.503243 . . 376389 1765226 

Maji-Power Bugoye 8 1 . . 934988 2796444 

AEMS-Mpanga 9 0.580402 . . 872040 2460420 

Bujagali 1 1 . 0 . . 

Ecopower-Ishasha 7 1 . . .    40390 1205673 

Kabalega Hydromax 1 1 . . .   

Between 6 to 10 years of existence 

 DMU rank theta 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

Access Solar 4 0.872971 0.878974 . . 8452.95 

Elgon Hydro Siti 15 0.255685 31.7575 . . 6229.47 

Muvumbe Hydro (U) Ltd 14 0.294286 67.2663 . . 3886.69 

Rwimi 18 0.201675 . . 61056.5 584857 

Tororo PV  power 7 0.457831 . . 40198.4 288865 
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Tororo Solar (North) 5 0.803212 . . 24147.4 232008 

Hydromax Nkusi (Waki) 6 0.468206 270.579 . 3112.91 . 

Isimba 1 1 . 0 . . 

Lubilia 17 0.23028 22.9882 . . 6075.65 

Mahoma 16 0.234984 18.9336 . 8329.77 21470.1 

Nkusi (PA Technical) 1 1 . . . 0 

Nyamwamba 19 0.137443 . 4707.81 72517.9 644913 

Xsabo Solar 9 0.355957 15.4635 . . 20803.6 

Achwa 1&2 11 0.329057 . 5273.19 39965.8 2443198 

Emerging Solar Power 1 1 . . . 0 

Ndugutu 13 0.311675 . . 2342.86 21852.7 

Sindila 10 0.334802 . . 9077.73 47480.9 

SITI 2 12 0.322803 . . 16467.7 212073 

Ziba 8 0.411841 159.07 . . 0.009758 

Between 1 to 5 years of existence 

 DMU rank theta 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

Timax Bukinda 1 1 . . . . 

Kakaka 5 0.720178 . . 0.000604 2646.03 

Nyamagasani 2 7 0.557648 . . 0.00049 3602.88 

Nyamwamba 2 1 1 . . 0 . 

Rwenzori Hydro 6 0.692551 . . . 4046.47 

Kikagati 1 1 . 0 . . 

SM Hydro 1 1 . . . . 

Source: Author’s computation 

Table 5 highlights varying technical efficiency levels among electricity generating firms in Uganda 

based on their operational age. Firms older than 10 years show high average efficiency (90%) but 

still face inefficiencies in energy generation and revenue. Mid-age firms (6-10 years) perform the 

worst, averaging 47.5% efficiency, with several showing significant slacks. Newer firms (1-5 

years) demonstrate better performance (85.3% average), likely due to modern technologies and 

streamlined operations, though minor inefficiencies remain. Overall, while older and newer firms 

tend to be more efficient, operational improvements are needed across all age groups to address 

persistent output and revenue inefficiencies.  

4.3.3 Technical Efficiency by Energy Source 

From Table 6: Data Envelopment Analysis (DEA) results by Energy source  
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 Firms rank 

Efficiency 

Scores 

(theta) 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

HYDRO POWER PLANTS 

Kiira & Nalubale 1 1 0 . 0 . 

Kasese Cobolt Company Ltd  23 0.223963 . . . 0.023432 

Kilembe minES Ltd (KML) 16 0.333675 . . 20270.2 . 

Maji-Power Bugoye  24 0.223068 . . 41738.3 514608 

AEMS-Mpanga 28 0.137962 . . 26407.1 506996 

Bujagali 1 1 . 0 . . 

ECOPOWER-Ishasha 27 0.150769 . . . 126639 

Kabalega HydromaxX 1 1 . . . . 

Elgon Hydro SITI 19 0.278857 . . . 16535.2 

Muvumbe Hydro (U) Ltd  18 0.296266 . . . 9790.3 

RWIMI 26 0.172423 . . 42136.9 478239 

Hydromax Nkusi (WAKI) 11 0.389922 . . . . 

Isimba  1 1 . 0 . . 

Lubilia 21 0.259901 . . . 17499.4 

Mahoma 22 0.228896 . . . 9660.43 

Nkusi (PA Technical) 1 1 . . . . 

Nyamwamba  29 0.10913 . . 135760 473205 

Achwa 1&2 25 0.212023 . . . 1406978 

Ndugutu 13 0.365141 . . . 39835.9 

Sindila 12 0.372069 . . . 76603 

SITI 2 17 0.327757 . . 6900.16 231697 

Ziba 10 0.398622 . . . . 

TIMEX Bukinda 9 0.447933 . . . 45340.8 

Kakaka 8 0.530173 . . 28916.1 238010 

Nyamagasani 2 14 0.364199 . . 14361.3 154940 

Nyamwamba 2 7 1 . . 85891.8 482508 

Rwenzori Hydro 15 0.334243 . . 5122.88 149862 

Kikagati 20 0.263281 . 320.995 156213 482241 

SM Hydro 1 1 . . . 0 

SOLAR POWER PLANTS 

 Firms rank theta 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

ACCESS Solar 1 1 . 0 . . 

Tororo PV Power  5 0.457831 . 2605.85 9503.42 22138.8 

Tororo Solar (North) 4 0.893033 . 2524.95 1163.21 3772.15 

XSABO Solar 1 1 . 0 0 0 

EMERGING Solar Power 1 1 . . . . 

THERMAL POWER PLANTS 
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 Firms rank 

Efficiency 

Scores 

(theta) 

islack 

(NoE) 

islack 

(O&M) 

islack 

(TR) 

islack 

(TEG) 

UEGCL Namanve  (JACOBSEN) 1 1 . 0 . . 

ELECTROMAXX (U) Ltd 2 0.720155 0.0002 31276.6 100306 133901 

Source: Author’s computation 

The results show notable differences in technical efficiency among electricity generating firms 

based on their energy source Hydro, Solar, and Thermal. Hydropower plants exhibit a wide 

efficiency range, with some operating efficiently while others show low scores (13.7% - 22.3%) 

and high slack values in energy generation, indicating underutilization of capacity.  

In contrast, solar plants generally perform better. Access solar, XSABO solar, and Emerging Solar 

power operate at full efficiency, while Tororo PV Power (45.7%) Tororo Solar (North) (89.3%) 

show moderate inefficiencies, mainly in revenue and energy output. However, their slack values 

are relatively low, suggesting fewer issues in resources utilization compared to hydropower firms. 

Generally, Hydro power plants show more inefficiencies than solar power or thermal plants, 

suggesting that further optimization and resource management improvements are necessary, 

especially for the hydroelectric sector.   

4.4 Analysis of the factors influencing Technical Efficiency using Tobit regression model 

Table 7 shows the analysis results by a Tobit regression model of factors influencing technical 

efficiency in electricity generation in Uganda. Both CRS and VRS models were applied. However, 

in this study, the VRS model results were considered important and appropriate method to achieve 

the purpose of the study.  

Table 7. Tobit results under both CRS and VRS model  

 

Tobit regression - CRS Model Tobit regression - VRS Model 

Number of Observation 36 Number of Observation 36 

Uncensored 32 Uncensored 28 

Left censored 0 Left censored 0 

Right censored 4 Right censored 8 

LR Chi2(5) = 32.11 LR Chi2(5) = 36.41 

Prob value>chi2= 0.000 Prob value>chi2= 0.000 

Pseudo R2 = 0.59397  Pseudo R2 = 0.7762 

CRS_TE Coef. t-values P-values VRS_TE Coef. t-values P-values 
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Plant Size 0.31534 6.21 0.000 Plant Size 0.41187 6.3 0.000 

Number of 

Employees -0.05403 -0.77 0.448 

Number of 

Employees -0.19808 -2.52 0.017 

O&M costs -0.22257 -4.99 0.000 O&M costs -0.24001 -4.75 0.000 

Firm Age 0.21829 2 0.054 Firm Age 0.18192 1.5 0.143 

Energy source   Energy Source 

Solar -0.10529 -0.73 0.468 Solar -0.3245 -2.03 0.051 

Thermal -0.21802 1.24 0.224 Thermal -0.33381 -1.7 0.635 

Constant 1.73138 4.65 0.000 Constant 2.85172 6.54 0.000 

Source: Author’s computation 

The censored regression model under the CRS DEA framework shows that plant size positively 

and significantly boosts efficiency (Coef. = 0.31534, p-value = 0.000), while firm age shows a 

marginal positive effect (Coef. = 0.21829, p-value = 0.054). Conversely, high O&M costs 

significantly reduces efficiency (Coef. = -0.22257, p-value = 0.000), whereas workforce (number 

of employees) and energy source have a negative but statistically insignificant impacts.   

The Tobit regression results under VRS DEA Model highlight key factors influencing technical 

efficiency (VRS_TE). Plant size positively and significantly effects technical efficiency (Coef. = 

0.41187, P-value=0.000), suggesting that larger plants perform better under VRS conditions.  In 

contrast, number of employees negatively effects technical efficiency (Coef. =-0.19808, p-value = 

0.017), suggesting potential inefficiencies from overstaffing. Similarly, high O&M costs 

significantly reduces efficiency (Coef. = -0.24001, P-value =0.000). This enforces the need for 

cost-effective management practice. Energy source also has a negative and statistically significant 

impact, with solar energy (Coef. = -0.3245, p-value 0.051), showing a lower likelihood of 

inefficiency compared to hydro energy.  This study consider the results by VRS model as the 

appropriate results for policy implication.  

5.0 Discussion, Conclusion and Recommendations  

5.1 Discussion of the Results 

The technical efficiency results indicate that 22% of the electricity-generating firms operate at full 

capacity, while significant 77.85 exhibited efficiency scores ranging from 10%-87%. Notably, 

67% of them operate below 50% efficiency, with 41.7% falling below 30%. These findings 

highlight significant inefficiencies within the sector, potentially due to suboptimal input utilization, 

outdated technology and regulators constraints.   
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Studies, such as Ajayi et al. (2020), indicate that regulation and energy policies can negatively 

impact energy sector productivity, often due to inefficient resource use and outdated technology. 

However, targeted measures like regulatory reforms, modern infrastructure investments, and 

capacity building can enhance efficiency. Rahimi and Ipakchi (2010) emphasize demand-side 

management and technological innovation as key to optimizing electricity generation. Likewise, 

Bigerna et al. (2016) highlight the effectiveness of incentive-based regulations, particularly in 

emerging economies where state-owned utilities often struggle with efficiency. 

Firm age significantly influences efficiency, with older firms (>10 years) exhibiting relatively high 

average efficiency (90%) but some inefficiencies in output. Firms aged 6–10 years struggle with 

workforce inefficiencies and revenue constraints, with 74% operating below 50% efficiency. 

These results are consistent with Alam and Arshad (2020), who found that firm maturity often 

leads to better efficiency due to experience and economies of scale. Conversely, the study 

contradicts findings by Chen et al. (2019), who suggest that younger firms often exhibit higher 

efficiencies due to their adoption of modern technologies and lean operational structures. The 

performance of firms in the 1–5-year range, with efficiency above 55%, supports this alternative 

argument. 

The Tobit regression results highlight that plant size positively affects efficiency, whereas 

workforce size, O&M costs, and energy source negatively impact efficiency. These findings align 

with the work of Rickels et al., (2020), who noted that hydro plants in developing economies face 

operational and maintenance challenges that lower their efficiency. Meanwhile, the higher 

efficiency of solar and thermal power plants is supported by studies like Owusu and Asumadu-

Sarkodie (2016), who attribute this to lower maintenance costs and higher capacity utilization. 

These results suggest a need for improved operational strategies to enhance efficiency in the 

electricity sector. 

The VRS model results suggest that improving technical efficiency in electricity generation 

requires strategic interventions in plant size, workforce management, cost control, and energy 

technology. The positive impact of plant size indicates that scaling up generation plants or 

enhancing operational capacity can improve efficiency, while the negative effect of workforce size 

suggests the need for labor optimization through better management, automation, and training. The 

significant influence of O&M costs highlights the importance of adopting cost-effective 
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maintenance strategies, such as predictive maintenance and automation, to reduce inefficiencies. 

Additionally, the negative effect of solar energy on efficiency underscores the need for investment 

in advanced storage solutions, hybrid systems, and grid integration technologies to enhance 

renewable energy performance. Policymakers should focus on creating regulatory frameworks and 

incentives that promote efficiency, including tax breaks for firms adopting best practices in cost 

and labor management, as well as increased investment in research and development to improve 

energy generation efficiency. 

5.2 Conclusion 

Uganda’s electricity generation sector faces inefficiencies, with 77.8% of the generating firms 

operating below optimal efficiency, largely due to outdated technology, regulatory constraints, and 

high operational costs. Hydropower plants, the dominant energy source, are less efficient than solar 

and thermal plants, highlighting the need for improved maintenance strategies and diversification 

of energy sources. Larger power plants tend to be more efficient, while high workforce size and 

O&M costs negatively impact performance. Furthermore, older firms perform better, while mid-

age-firms struggle, indicating the need for targeted support and efficiency-enhancing policies. 

Addressing Uganda’s electricity generation and overall economic growth.  

 5.3 Recommendations   

Policymakers should implement efficiency-driven regulations, providing incentives for firms 

adopting modern technology while enforcing accountability for underperforming ones. 

Performance-based regulations, tax breaks, and efficiency audits should be introduced to ensure 

firms operate optimally. Additionally, policies should support diversification of Uganda’s energy 

mix, encouraging hybrid systems like solar-hydro integration to improve overall efficiency. 

Electricity generating companies must enhance operational efficiency by adopting predictive 

maintenance strategies, digital monitoring, and automation to minimize downtime and operational 

costs. Hydropower plants, which exhibit the most inefficiencies, should focus on resource 

optimization and benchmarking against efficient firms. Workforce management should also be 

optimized through better training programs, lean staffing, and process automation to improve 

productivity. 
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Investors and financial institutions should prioritize funding for firms demonstrating strong 

efficiency metrics, adopting a performance-based lending model. Special financial support 

programs should be introduced for mid-age firms (6–10 years) that struggle with efficiency, 

enabling them to scale up operations and invest in cost-saving technology. Investments in smart-

grid technology and energy storage systems should also be encouraged to enhance electricity 

generation and distribution efficiency. 

Uganda’s energy sector must focus on cost-effective maintenance strategies and improving labor 

productivity to address inefficiencies. Capacity-building programs and technical support should 

be provided to underperforming firms to help them transition into high-efficiency operations. A 

combination of regulatory reforms, investment incentives, and technological advancements will 

be key to improving electricity generation efficiency and ensuring sustainable energy growth. 

5.4 Future areas for Research 

 Future studies should look at exploring panel or longitudinal data for long time period to 

analyze how efficiencies involve overtime. 

 Also, other authors should explore employing alternative statistical or econometric 

models could provide deeper and detailed insights about efficiencies in energy sector, 

specifically in electricity generation in Uganda.  
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