
 

Overview 

Energy is considered as the capacity to do work (Holden et al., 2021). An energy system is the process chain from the 

extraction of primary energy resources to production, transformation, transportation, distribution, and consumption 

by end-users to satisfy human demands for energy services such as cooking, lighting, heating, cooling, appliances, 

mobility, and others (International Institute for Applied Systems Analysis, 2012). Energy system models (ESMs) are 

computer algorithms that replicate actual energy systems by translating the system’s components and flows into 

tractable mathematical equations, creating simplified images of real-life applications in an organized model structure. 

They are decision support tools that allow examining parts of or whole engineered systems through scenarios of 

hypothetical futures under specific conditions, such as the presence or absence of policy (Farzaneh, 2019). ESMs have 

been under development over six decades ago, with a history dating back to the 1960s (Spittler et al., 2019). During 

the 1970s in response to the threats posed by the 1973 Arab oil embargo, these modeling tools focused on decoupling 

energy markets dependency on certain types of fuels (i.e., oil and gas) to maintain energy security and avoid the 

adverse effects of national economic crises (Rath-Nagel & Voss, 1981). With the rise of climate change as a critical 

global issue in the 1990s, these tools evolved into the testing of adaptation and mitigation strategies for the abatement 

of greenhouse gas (GHG) emissions to limit the rise in global temperature levels (Lopion et al., 2018; Pfenninger et 

al., 2014). With the enactment of the Paris Agreement in 2016, ESMs proliferated rapidly owing to advancements in 

computational power and the availability of electronic data sources which revolutionized the modeling process 

(Plazas-Niño et al., 2022). The current surge of ESMs in the literature poses a challenge in the selection of appropriate 

modeling tool(s) for user specific needs. The consideration of suitable modeling tool(s) hinges on a multitude of factors 

such as the nature of the case study, research objectives, intended outcomes, computational and technical requirements, 

model fidelity, level of uncertainty, and availability of relevant resources (e.g., time, budget, people, skills, information 

and data including type, quantity, quality, and scale), among various others. Most studies using ESMs either follow 

an arbitrary selection or provide poor justifications such as minimal description of the general positive attributes of 

the selected tool(s) or citing prior usage in similar contexts as a form of justifying the choice. Such justifications may 

obscure bias favoring certain tool(s) over others for convenience or familiarity purposes than by suitability for the 

specific problem at hand. The argument here does not emphasize the search for a “perfect” or “ideal” tool(s) as perhaps 

one may not exist but rather identify the “right” or “representative” tool(s) that “best” matches the specific 

requirements of a modeling undertaking. Therefore, the objective of this study is to standardize the selection process 

of ESMs through the application of a comprehensive framework developed using expert elicitation. The framework 

streamlines a systematic assessment for ESMs with different properties, to guide researchers and practitioners towards 

a more informed decision-making process in selecting the most suitable tool(s) tailored to specific needs. 

Methods 

The approach adopted to develop the standarized framework involved (i) the definition of assessment criteria and then 

(ii) assigning weights to these criteria to undergo a systematic selection process for ESMs. The criteria definition was 

initially guided by outcomes gained from an extensive literature review of studies and applications employing ESMs. 

A consultation using experts’ ratings followed to assign the weights to the defined criteria. Specifically, the main 

criteria and supporting sub-criteria were incorporated into a semi-quantitative survey, designed as an online 

questionnaire with various questions formats ranging from multiple choice to free-text responses. The survey was 

circulated to members of the Open Energy Modeling (openmod) initiative community for energy system modeling 

who provided prior consent to undertake the survey. Multiple stakeholders from nine different entities, including 

academia, research institutions, private companies, and non-governmental organizations across nine respective 

geographical origins, participated in the survey. These participants are model owners and developers representing a 

sample population with up-to-date and in-depth knowledge about ESMs. They were asked to rank the importance of 

the defined criteria based on a five-point Likert scale – (1.0) Very Unimportant, (2.0) Unimportant, (3.0) Neutral, (4.0) 

Important, (5.0) Very Important. They were also asked to validate the proposed criteria and suggest other relevant 

criteria to the selection of ESMs that may have not been considered initially and rank their importance respectively. 

This resulted in slight modifications to the original criteria based on collected inputs and feedback received by the 

experts via online discussions and dialogues. Accordingly, the relative weights for the final criteria were calculated 

by dividing the score of each criterion by the total score of all criteria summed together. 
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Results 

A total of thirty well-defined main criteria, each detailed by several sub-criteria, were identified to resemble key 

properties pertinent to ESMs (Table 1). These assessment criteria feature both technical and non-technical attributes 

for an across-the-board analysis that extends beyond the scientific modeling aspect to include user specific needs. The 

“technical” criteria (n = 20) refer to the fixed and inherent built-in “modeling” capabilities primarily used for 

“characterization” purposes but can also be used to influence the choice of ESMs to some degree. Meanwhile, the 

“non-technical” criteria (n = 10) represent the additional generic “non-modeling” aspects defined explicitly for the 

“selection” component of the process. The relative weights assigned to each criterion resemble a prioritization scheme 

for the specifications deemed necessary to initiate the energy system modeling process based on insights from energy 

experts. The criteria are also mapped to the corresponding modeling stage in which each will be applied. The modeling 

process constitutes eight stages in order of (1) conceptualization, (2) data collection, (3) configuration, (4) calibration, 

(5) validation, (6) interpretation, (7) iteration, and (8) reporting. 

Table 1: Summary matrix of the established main assessment criteria and their importance weights. 

Category (Index) Main Criteria* Description Weights (Windex) Modeling Stage  

Technical (T01) Scope and Function Main purpose and analysis theme of the model WT01 = 0.034 Conceptualization 

Technical (T02) Mathematical Formulation Algorithms and governing equations used to represent the energy system WT02 = 0.037 Conceptualization 

Technical (T03) Programming Language Software language the model is developed in WT03 = 0.030 Conceptualization 

Technical (T04) Analytical Approach Computational technique used for model analysis WT04 = 0.033 Conceptualization 

Technical (T05) Data Requirements Types, quantities, and granularity of data needed to run the model WT05 = 0.034 Data Collection 

Technical (T06) Geographical Boundary  Spatial areas covered by the model WT06 = 0.036 Configuration and Calibration 

Technical (T07) Spatial Resolution Level of detail in the model’s spatial data WT07 = 0.036 Configuration and Calibration 

Technical (T08) Temporal Resolution Frequency at which time-dependent variables are modeled WT08 = 0.037 Configuration and Calibration 

Technical (T09) Time Horizon Period over which the model’s projections are made WT09 = 0.033 Configuration and Calibration 

Technical (T10) Time Step Discrete time intervals used in calculations WT10 = 0.035 Configuration and Calibration 

Technical (T11) Sector Coupling Integration of different energy sectors within the model WT11 = 0.039 Configuration and Calibration 

Technical (T12) Sustainability Metrics Environmental, economic, and social analysis of the modeled energy system WT12 = 0.029 Configuration and Calibration 

Technical (T13) SDGs Representation Integration of the United Nations 17 goals, 169 targets, and 248 indicators  WT13 = 0.025 Configuration and Calibration 

Technical (T14) Technology Dynamics Ability to account for technological changes in the model WT14 = 0.031 Configuration and Calibration 

Technical (T15) Technology Coverage Range of energy technologies included in the model WT15 = 0.033 Configuration and Calibration 

Technical (T16) Commodity Coverage Range of energy commodities included in the model WT16 = 0.032 Configuration and Calibration 

Technical (T17) Emissions Accounting Range of greenhouse gas emissions and air pollutants included in the model WT17 = 0.033 Configuration and Calibration 

Technical (T18) Constraints Setting Ability to define and apply restrictions or limits in the model WT18 = 0.030 Configuration and Calibration 

Technical (T19) System Agility Flexibility of the model to adapt to changing conditions over time WT19 = 0.040  Configuration and Calibration 

Technical (T20) Uncertainty Analysis Ability to evaluate uncertainty in inputs, parameters, or assumptions WT20 = 0.035 Validation and Interpretation 

Non-technical (N21) Licensing and Accessibility Model’s availability and ease of access to users WN21 = 0.037 Conceptualization 

Non-technical (N22) Model Age How up-to-date the model’s structure, assumptions, and data are WN22 = 0.022 Conceptualization 

Non-technical (N23) Applicability The user-base and target audience of the model WN23 = 0.030 Conceptualization 

Non-technical (N24) Usability Ease with which users can interact with the model WN24 = 0.032 Conceptualization 

Non-technical (N25) Modularity and Interoperability Model’s ability to be modified or integrated with others WN25 = 0.034 Conceptualization 

Non-technical (N26) Complexity Level of detail and sophistication in the model’s structure and processes WN26 = 0.028 Conceptualization 

Non-technical (N27) Continuous Development Extent to which the model is actively updated and improved over time WN27 = 0.035 Iteration 

Non-technical (N28) Transparency Openness of the model’s design and assumptions WN28 = 0.037 Iteration 

Non-technical (N29) Visualization Model’s ability to display results in a clear and understandable format WN29 = 0.033 Reporting 

Non-technical (N30) Documentation Quality of the model’s instructions and explanatory materials WN30 = 0.039 Reporting 

*Each of these thirty main criteria is further divided into several supporting sub-criteria for the categorization of ESMs, which are not shown in this table due to space limitations. 

Conclusions 

To conclude, this study developed a standardized framework to facilitate a systematic selection process for ESMs in 

prospective modeling endeavors. The framework is expected to improve consistency, reduce biases, and ensure that 

ESMs are chosen based on a clear set of criteria relevant to specific modeling goals, thus advancing energy system 

analyses and corresponding outcomes into more effective policy planning and formulation. Moving forward, the 

subsequent steps entail applying the developed framework following the shortlisting of multiple commonly used and 

broadly applicable ESMs. Data will be collected for these ESMs based on the assessment criteria provided in the 

framework. Multi-criteria decision-making (MCDM) will then be used to perform a comparative analysis where each 

ESM is evaluated against the others, and the scores for ESMs will be assigned taking into consideration the respective 

weights of each criterion. Finally, an uncertainty analysis will be conducted to verify the ranking of the ESMs 

according to the thirty identified criteria to arrive at the final selected tool(s) to use on a case study application. 
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