
   
 

Overview 

Having a careful understanding of power markets is essential in the process of achieving an energy transition. It 

is often an understated component of energy system planning, where much attention is given to long-range planning, 

the introduction of new technologies and/or retirement of fossil fuels for cleaner alternatives such as renewable. 

These are undoubtedly pivotal considerations, yet at the same time the operational edge of energy markets also has 

important market implications. 

The objective of this paper is to jointly understand drivers of intraday energy consumption in a framework 

conducive to generating long-term energy-demand projections, with sensitivity bounds and potential for assessing 

counterfactual future climate change scenarios. Similar attributes have been explored for example in the case of 

Australia (Hyndman and Fan, 2015) using a fairly involved modelling framework to develop the ‘Monash 

Electricity Forecasting Model’ documented on the Australian Energy Market Operator (AEMO) website. The 

approach may not have yet seen an expansive uptake in the academic literature, but has a number of appealing 

attributes ranging from the data demands and scalability to different market contexts, together with the flexibility of 

themodelling framework to allow for counterfactual analysis e.g. of future climate conditions, as well as the ability 

to describe long-range demand dynamics whilst maintaining a description of key power market indicators such as 

the estimated di-urnal demand system pressures and how they might evolve.  

Methods 

The modelling procedure is based closely on Hyndman and Fan (2015), adapted to a different geographic 

context, and expanded to incorporate a broader suite of weather variables (beyond temperature) as well as 

introducing additional high-resolution climate variables which allow to test whether enduring climate change effects 

are giving rise to changes to di-urnal energy system requirements. It is assumed that the demand for energy, q in 

period t is decomposed into two parts, reflecting seasonal (quarterly) demand variation and within-season demand: 

(1) 

Where p denotes the {1,…,24} hourly periods in the day. The intraday component of demand is assumed further to 

be governed by seasonal, weekly and daily patterns, as well as public holidays captured as determinstic features in 

hp(t), coupled with weather and climate related variables which are linked with demand via a non-parametric identty 

in f(w1,t,w2,t). Allowing for idiosyncratic noise we have the following estimable relationship: 

 (2) 

Long term demand is governed by a more conventional set of variables including for example GDP, population, 

energy prices and other factors. These are evaluated using per-capita demand for variables in z, estimating the 

coefficient c using dynamic ordinary least squares: 

(3) 

The model is designed for forecasting based on the ability to derive long-range stable per-capita seasonal demand 

from (3), and utilise the regularity of climate related variables--using a double seasonal bootstrap—in (2) together 
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with block estimation to maintain informative/plausible intra-day demand patterns as a basis for simulating future 

intraday demand patterns. 

In-sample estimation of (2) is done via regression boosting, which following Hyndman and Fan (2015), includes all 

variables in a linear manner at the first level of the regression, and enters climate variables non-parametrically in 

higher levels of boosting, limiting the ‘strong model’ to the intial regression plus three boosting stages with a 50% 

shrinkage factor. Further, the specific set of variables at each stage of the boosting framework are selected on the 

basis of out of sample forecasting performance. 

Results 

The results of the analysis are too involved to describe in any depth within this abstract, however the figure below 

gives a visual comparison of the actual demand (orange line) versus the model predictions (green line). From this it 

can be seen that the model provides for a generally close fit for the true data at a high-resolution time frequency e.g. 

intraday, and with clear day of week effect discernible. The long run model performance is equally strong across the 

full sample ranging from 2003 to 2025, and is even able to capture well the vaiable demand dynamics observed in 

the grobal financial crisis period (2008/2009) and Covid pandemic (2020/2021). 

 

 
 

In terms of the role of weather and in particular climate related variables. The evidence points towards a complex 

balance of weather related effects. The importance of this may seem obvious and intuitive, but in the context of 

Singapore it is not to be understated, since more conventioal econometric approaches to regional demand modeling 

based for example on error correction models or other time-series based approaches to monthly data, generally fail 

to reveal significant weather effects. It is however well understood that weather effects are important to the 

operational dynamics of the power sector, and subsequent policy design that might need to address what is generally 

a quite volatile wholesale power market i.e. the underlying electricity price dynamics which may influence long-

range strategic energy system planning. 

Conclusions 

The work presented in this study reflects the development of an econometric framework which permits for the 

simultaneous description of intraday demand patterns as well as medium-range system demand growth. The model, 

despite requiring some effort in both data processing and estimation, has relatively low-intensity data requirements, 

with many variables being freely available for different country contexts. 
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