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Overview 
As a party to the Paris Agreement, Saudi Arabia submitted a baseline target to reduce its emissions as part of its 

nationally determined contribution (NDC). Baseline targets rest on the development of a baseline emissions scenario. 

Saudi Arabia’s baseline scenario has not yet been made publicly available. In this paper we use two different 

econometric methods within a univariate framework to develop baseline greenhouse gas (GHG) emission forecasts, 

extending current drivers, trends, and policies into the future without the need to make assumptions about factors such 

as economic growth in the coming decades. The different methods are used since they provide a robustness check, as 

each method has its strengths and weaknesses. We therefore combine both methods by averaging to generate our 

baseline GHG emissions projections for Saudi Arabia.  

Methods 
As far as we are aware, neither the STSM nor Autometrics have been used for GHG baseline forecasting. We use 

these two methods given their ability to explain the data with a combination of trends and interventions. These 

interventions can capture the effects of shocks and policy changes on GHG emissions, and their omission could lead 

to biased estimation results. Although both the STSM and Autometrics capture interventions, they differ in the way 

in which they do so. 

To ensure comparability between the methods, we start the estimation procedure with a consistent general 

univariate model. In both approaches, we model the natural logarithm of the different GHG emissions (carbon dioxide 

– CO2, methane – CH4, and nitrous oxide – N2O) denoted generally by lower-case 𝑔ℎ𝑔𝑡, where 𝑡 denotes the year. 

Four lags of the dependent variable are included to capture autoregressive behaviour in the general equations, and a 

‘preferred’ or ‘final’ equation is obtained by adding statistically significant interventions (also known as dummy 

variables) and dropping the insignificant right-hand side variables while monitoring an array of diagnostic tests. The 

preferred estimated equations are then used to produce the baseline projections of the different GHG emissions for 

Saudi Arabia to 2060 with the final projections for each GHG being the average of the STSM and Autometrics 

projections, consistent with Enders (2015). 

The Autometrics multipath-search machine-learning algorithm (Doornik and Hendry, 2018) is applied to the 

General-to-Specific (Gets) Modelling approach (Hendry and Doornik, 2014). This identifies potential interventions 

caused by policy changes and shocks, whose omission might cause biased estimation results. It automatically assigns 

one-time pulse, blip, change in level, and break in trend dummies to each observation and chooses the significant ones 

by utilizing the block-search algorithm. The Autometrics general specification utilised is therefore given by:  

𝑔ℎ𝑔𝑡 = 𝛼0 + 𝛼1𝑔ℎ𝑔𝑡−1 + 𝛼2𝑔ℎ𝑔𝑡−2 + 𝛼3𝑔ℎ𝑔𝑡−3 + 𝛼4𝑔ℎ𝑔𝑡−4 + ∑ 𝜗𝑖
𝑇
1 𝐼𝐼𝑆𝑡 + ∑ 𝜏𝑖

𝑇
1 𝑆𝐼𝑆𝑡 + ∑ 𝜑𝑖

𝑇
1 𝐷𝐼𝐼𝑆𝑡 + ∑ 𝜔𝑖

𝑇
1 𝑇𝐼𝑆𝑡 + 𝜀𝑡 (1) 

where 𝐼𝐼𝑆𝑡 is an Impulse-Indicator, 𝑆𝐼𝑆𝑡is a Step-Indicator, 𝐷𝐼𝐼𝑆𝑡  is a Differenced Impulse-Indicator Saturation, and 

𝑇𝐼𝑆𝑡 is a Trend-Indicator.  𝛼𝑖 , 𝜗𝑖 , 𝜏𝑖 , 𝜑𝑖 , 𝜔𝑖 are regression coefficients to be estimated; and 𝜀𝑡 is a random error term 

~ 𝑁𝐼𝐷 (0, 𝜎𝜀
2). 

The STSM models GHG emissions using a stochastic trend, which captures long-term movements in time series 

variables and can be extrapolated into the future (Harvey, 1989). For consistency the STSM general specification is: 

𝑔ℎ𝑔𝑡 = 𝛾𝑡 + 𝛼1𝑔ℎ𝑔𝑡−1 + 𝛼2𝑔ℎ𝑔𝑡−2 + 𝛼3𝑔ℎ𝑔𝑡−3 + 𝛼4𝑔ℎ𝑔𝑡−4 + 𝜀𝑡 (2a) 

where 𝛼𝑖 are regression coefficients to be estimated, 𝛾𝑡 is a stochastic trend (or time varying intercept) and 𝜀𝑡is a 

random error term ~ 𝑁𝐼𝐷 (0, 𝜎𝜀
2). The stochastic trend is made up of a level 𝜇𝑡 and a slope 𝛽𝑡, which are defined as 

follows:  

𝜇𝑡 = 𝜇𝑡−1 + 𝛽𝑡−1 + 𝜂𝑡 (2b) 

𝛽𝑡 = 𝛽𝑡−1 + 𝜉𝑡 (2c) 

where 𝜂𝑡~ 𝑁𝐼𝐷 (0, 𝜎𝜂
2) and 𝜉𝑡~ 𝑁𝐼𝐷 (0, 𝜎𝜉

2) are mutually uncorrelated random disturbance terms. If the variances of 

either 𝜂𝑡 or 𝜉𝑡 are found to be zero, that component of the trend becomes deterministic. If both hyperparameters are 

found to be zero, the stochastic trend collapses into a deterministic trend.  Like Autometrics, different types of dummy 

interventions can be identified and added to the model (Harvey and Koopman, 1992). These interventions capture 

important breaks and structural changes at certain dates during the estimation period. These interventions can be 

incorporated into the stochastic trend, which can be defined as follows:  

𝛾𝑡 = 𝜇𝑡 + irregular interventions (𝐼𝑟𝑟𝑡) + level interventions (𝐿𝑣𝑙𝑡)+ slope interventions (𝑆𝑙𝑝𝑡) (2d) 
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Results 
The estimated preferred models for CO2, CH4, and N2O emissions for Saudi Arabia for both econometric 

techniques are given below: 

CO2 (1984-2019) Autometics: 𝑐𝑜2̂𝑡
= 0.1421∗ + 1.2878∗∗∗𝑐𝑜2𝑡−1

− 0.3079∗∗𝑐𝑜2𝑡−2
− 0.1857∗∗∗𝐼𝐼𝑆1984 (3) 

CO2 (1984-2019) STSM: 𝑐𝑜2̂𝑡
= 𝛾𝑡 + 0.5803∗∗∗𝑐𝑜2𝑡−1

− 0.6591∗∗∗𝑐𝑜2𝑡−3
 (4a) 

with the estimated trend (𝛾𝑡) given by 𝛾𝑡 = �̂�𝑡 − 0.0787∗∗∗𝐿𝑣𝑙1987 − 0.0638∗∗∗𝐼𝑟𝑟1989 + 0.0882∗∗∗𝐿𝑣𝑙1991 +
0.0711∗∗∗𝐼𝑟𝑟1996 + 0.0163∗𝑆𝑙𝑝2001 + 0.0300∗∗𝐼𝑟𝑟2010 − 0.0525∗∗∗𝑆𝑙𝑝2015 (4b) 

CH4 (1988-2019) Autometics: 𝑐ℎ4̂𝑡
= 1.3636∗∗∗ + 0.6965∗∗∗𝑐ℎ4𝑡−1

+ 0.2069∗𝑐ℎ4𝑡−2
− 0.1871∗∗𝑐ℎ4𝑡−3

−

0.0566∗∗∗𝐷𝐼𝐼𝑆1999−0.0493∗∗∗𝐷𝐼𝐼𝑆2002 + 0.1135∗∗∗𝐼𝐼𝑆1991+0.0072∗∗∗𝑇𝐼𝑆2017  (5) 

CO2 (1988-2019) STSM: 𝑐ℎ4̂𝑡
= 𝛾𝑡 + 0.5333∗∗∗𝑐ℎ4𝑡−1

− 0.2007∗𝑐ℎ4𝑡−2
+ 0.3386 ∗∗∗Δ𝑐ℎ4𝑡−3

   (6a) 

with the estimated trend (𝛾𝑡) given by 𝛾𝑡 = 2.6706∗∗∗ + 0.0160∗∗∗𝑡 − 0.1983∗∗∗𝐼𝑟𝑟1989 − 0.0767∗∗∗𝐼𝑟𝑟1999 −
0.0578∗∗∗𝐼𝑟𝑟2009  (6b) 

CH4 (1984-2019) Autometics: 𝑛2�̂�𝑡 = 0.4117∗∗∗ + 0.8635∗∗∗𝑛2𝑜𝑡−1 − 0.0880∗∗∗𝐷𝐼𝐼𝑆1995−0.0719∗∗∗𝐷𝐼𝐼𝑆1996 +
0.0664∗∗∗𝑆𝐼𝑆2007−0.1072∗∗∗𝑆𝐼𝑆2009 (5) 

N2O (1984-2019) STSM: 𝑛2�̂�𝑡 = 𝛾𝑡 + 0.4089∗∗∗𝑛2𝑜𝑡−1 (6a) 

with the estimated trend (𝛾𝑡) given by 𝛾𝑡 = �̂�𝑡 − 0.0736∗∗∗𝐼𝑟𝑟1995 − 0.1186∗∗∗𝐿𝑣𝑙2008  (6b) 

Where, the ∗, ∗∗, and ∗∗∗ represent coefficients’ significance at the 10%, 5%, and 1% levels, respectively and �̂�𝑡 

represents the estimated level components of the trends. Each of these estimated equations are used to project 

emissions for Saudi Arabia up to 2060 and a simple average taken for each GHG to represent the baseline scenario 

given in Figure 1 with their 95% confidence intervals. 

Figure 1 

   

Conclusions 
Our baseline projections suggests that if current trends, drivers, and policies in 2019 were extended into the future 

and no further policies to curb emissions were undertaken, for Saudi Arabia, CO2 emissions would grow from 540.4 

Mt in 2019 to 651.2 Mt by 2030 and 944.4 Mt by 2060, CH4 emissions would grow from 117.5 MtCO2eq in 2019 to 

137.5 MtCO2eq by 2030 and to 197.2 MtCO2eq in 2060, and N2O emissions would grow from 18.6 MtCO2eq in 2019 

to 22.4 MtCO2eq by 2030 and to 33.7 MtCO2eq in 2060.  

Of course, there are large uncertainties around these estimates; nevertheless, the finalized projected baseline 

scenarios will be valuable tools for policymakers, providing an indication of the efforts needed to achieve Saudi 

Arabia’s climate goals, in the near and long terms, and illustrating how much those efforts could push Saudi’s baseline 

GHG emissions onto a more sustainable pathway. 
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