
   

Overview 

This paper investigates the response of the carbon dioxide emissions to unanticipated changes in the size of population, 

real economic activity and technological innovations at the world level and it relates to the strand of the literature 

explaining the emissions dynamics by the IPAT framework (Liddle, 2015, 2013). Carbon emissions, which have been 

identified as the main driver of global warming, need to be reduced in order to limit the average temperature increase, 

as outlined at COP26, in the Glasgow Climate Pact in 2021. However, despite the general trend of lower carbon 

intensities across advanced economies, less advanced countries exhibit a significant increase in carbon emissions 

based on their strong economic growth. Thus, understanding the fundamental drivers of worldwide emissions is 

important both for policy makers as well as for the well-being of society in order to deal with future global climate 

change and to implement efficient policies that react to climatic events (Hsiang, 2016). This paper contributes to the 

existing literature by shedding some light on several directions. First, our study proposes a Structural Vector 

Autoregressive (SVAR) model that allows to identify the effects of shocks arising from the global economy on the 

level of carbon dioxide emissions. Our main idea is that carbon emissions can be modelled as a part of the endogenous 

transmission of population, world real economic activity and technology shocks. Most studies investigate the 

relationship between human activities and global environment with reduced-form specifications that cannot identify 

the causes of environmental impacts shocks. With this respect, the studies applying the STIRPAT (Stochastic Impacts 

by Regression on Population, auence and Technology) framework to carbon emissions typically do not account for 

the interdependence relationship of the variables (Dietz and Rosa, 1997, 1994). In contrast our study allows us to 

account for the endogeneity of carbon dioxide emissions with respect to macroeconomic variables. Second the 

empirical approach applied to our study is based on a revised version of the Bayesian SVAR model developed by 

Baumeister and Hamilton (2015). The Bayesian approach allows us to summarize and express the degree of beliefs 

about the ecological elasticities estimates that can be obtained from other studies. 

Methods 

This analysis is based on annual aggregate global data, covering the period 1963-2016 sourced from the World Bank. 

The set of endogenous variables includes (i) the population size (P); (ii) the energy efficiency, which is a proxy for 

the technology index (𝑇); (iii) the Gross Domestic Product (GDP) per capita, which is a measure of auence (𝐴) and 

(iv) the C𝑂2 emissions (I). Specifically, the population size is represented by the number of persons in billion. The 

technology index is derived by the inverse of energy intensity. The GDP per capita is a measure of consumption (or 

production). Finally, the C𝑂2 emissions represent a measure of environmental degradation. All these variables are 

converted to the natural logarithm, so that the structural coefficients can be directly interpreted as elasticities. Thus, 

the vector of endogenous variables is 𝒚𝒕 = [𝑝𝑡 , 𝑡, 𝑎𝑡 , 𝑖𝑡]′.  
The representation of the SVAR model can be written as a system of four equations:  

 

{
 
 

 
 𝑝𝑡 =  𝒃𝟏′𝒙𝒕−𝟏  +  𝑣1,𝑡

𝑡𝑡 = 𝛼𝑡𝑎𝑠𝑡 + 𝒃𝟐′𝒙𝒕−𝟏  +  𝑣2,𝑡
𝑎𝑡 = 𝛼𝑎𝑝𝑝𝑡 + 𝛼𝑎𝑡𝑡𝑡 + 𝛼𝑎𝑖𝑖𝑡  𝒃𝟑′𝒙𝒕−𝟏  +  𝑣3,𝑡
𝑖𝑡 = 𝛽𝑖𝑝𝑝𝑡 + 𝛽𝑖𝑡𝑡𝑡 + 𝛽𝑖𝑎𝑎𝑡 + 𝒃𝟒′𝒙𝒕−𝟏  +  𝑣4,𝑡

 

 

where 𝒙𝒕−𝟏 is a (𝑘 × 1) vector, (with 𝑘 = 4𝑚 + 1) containing a constant and  𝑚 lags of the endogenous variables and 

𝒃𝟏
′ , 𝒃𝟐

′ , 𝒃𝟑
′ , 𝒃𝟒′ are row vectors containing the lagged structural coefficients to the first-four equations. Equation (1) 

says that the global population is weakly exogenous. In equation (2) the green technology is instantaneously affected 

by the GDP per capita, via  𝛼𝑡𝑎. Equation (3) models the determinants of the real economic activity, with the 

contemporaneous effect of population, technology and C𝑂2 emissions, given by 𝛼𝑎𝑝, 𝛼𝑎𝑡 and 𝛼𝑎𝑖, respectively. 

Equation (4) describes the behaviour of the IPAT identity and it says that the C𝑂2 emissions have contemporaneous 

relationships with population, technology and C𝑂2 emissions, given by 𝛼𝑎𝑝, 𝛼𝑎𝑡 and 𝛼𝑎𝑖, respectively. In order to 

achieve the identification of the structural coefficients we follow the algorithm proposed by Baumeister and Hamilton 
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(2015), which is based on two main steps. The first step consists of a specification of informative prior beliefs about 

the structural parameters of the model. The second step is designed to generate draws from the posterior distribution 

of the structural coefficient through the Random Walk Metropolis Hastings algorithm. 

Results 

By analyzing the forecast error variance decomposition1, we see that 88% of the variability in C𝑂2 is 

contemporaneously explained by carbon emissions shocks. The economic activity accounts for 9% of variability in 

C𝑂2 emissions, on impact. In the long-run, on average, technology and economic activity shocks play a key role in 

explaining the C𝑂2 emission with around 14% and 40%, respectivley. The explanatory power of technology shock for 

the energy efficiency is on average large (around 60%). It is worth nothing that the economic activity shocks are 

relevant in explaining 30% of variability of energy efficiency in the long-run. In contrast shocks to population and 

carbon emissions explain a small variation in the energy efficiency, with 4% and 8%, repectively. Finally, 88% of the 

variation of the economic growth is driven by the economic activity shock, followed by carbon emission shock with 

8%, technology shock 3% and population shock 1%, on impact. In the long-run, technology and carbon emissions 

shocks together explain up to 35% of economic growth. The impulse response functions (IRFs) are in line with the 

results obtained by the forecast error variance decomposition. Specifically, the IRFs estimates show that an unexpected 

increase in population has negligible effects on C𝑂2 emissions. Conversely, a positive technology shock causes a rise 

in the technology energy efficiency, a reduction in the auence and in the C𝑂2 emissions, on impact. The technology 

shock induces persistent reduction in the C𝑂2 emission up to 10 years. A positive economic activity shock causes a 

simultaneous rise in affluence, and technology, accompanied by an hump-shape response of C𝑂2 emissions. It is worth 

nothing that our findings are expected to be more grounded on the economic theory with respect to estimates which 

are derived from reduced-form panel data and time-series models. Moreover, our results are obtained from a structural 

identify model that takes into account the economic motivation behind each shock. 

Conclusions 

We study the effects of population, technology, and economic activity shocks on C𝑂2 emissions at the global level. 

Two main conclusions emerge from this analysis. First, there is evidence that population, affuence and technology are 

endogenous with respect to C𝑂2 emissions, suggesting the importance of capturing the multitude of shocks that jointly 

shape the carbon emissions dynamics. Second, the main drivers of carbon emissions play a different role depending 

on the horizon of interest. Specifically, in the short-run C𝑂2 emissions are mainly explained by their own idiosincratic 

shock. Instead, in the long-run, technology and economic growth are relevant factors in driving the C𝑂2 emissions 

and, consequently, environmental degradation.   
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1 The forecast error variance decomposition tells us how much of the forecast error variance or prediction mean 

squared error of the variable of interest, at any given horizon, is accounted for by each structural shock (Kilian and 

Lütkepohl, 2017). 


