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Abstract

This paper examines how information on the time pattern of expected future prices for crude oil,

based on the term structure of futures contracts, can be used in determining whether to draw down, or

contribute to the Strategic Petroleum Reserve (SPR). Such price information provides insight on expected

changes in the supply-demand balance in the market and can also facilitate cost-effective transitions

for SPR holdings. Backwardation in futures curves suggests that market participants expect shocks to

be transitory, creating a stronger case for SPR releases. We use vector autoregression to analyze the

relationship between the term structure of futures contracts, the management of private oil inventories,

and other variables of interest. This relationship is used to estimate the magnitude of the impacts of

SPR releases into the much larger global inventories system. Impulse response functions estimate that a

strategic release of 10 million barrels will reduce spot prices by up to 4% and mitigate backwardation by

approximately 1.5 percentage points. Historical simulations suggest that past releases reduced spot prices

by 20% to 30% and prevented about 10 percentage points of backwardation in futures curves, relative to

a no-release counterfactual. This research can help policymakers determine when to release SPR reserves

based on economic principles informed by market prices. It also provides an econometric model that can

help inform the amount of SPR releases needed to achieve given policy goals, such as reductions in prices

or spreads.
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1 Introduction and Motivation

Understanding the relationship between crude oil prices, inventories, and market expectations is crucial for

understanding not only private market dynamics, but also the value and effectiveness of public inventories,

particularly strategic reserves. If a significant portion of oil supply is disrupted, how would releasing oil from

the U.S. Strategic Petroleum Reserve (SPR) and other international oil stock holdings affect oil prices? This

depends on a number of factors, including whether the disruption is expected to intensify or attenuate, the

elasticity of oil demand and supply, and whether members of the Organization of the Petroleum Exporting

Countries (OPEC) are likely to react to such a release. While these questions are important to guiding

SPR drawdown policy, economic research on this topic is highly limited. This leaves policymakers with

little economically-driven guidance. As a result, SPR release policy is typically informed by a combination

of back-of-the-envelope estimates, qualitative market assessment, and simply “counting barrels”, whereby

policymakers release an amount of crude oil equal to the estimated size of the disruption.

This paper argues that the term structure of futures prices for crude oil can provide an indicator to

policymakers on the severity of oil disruptions, and its relationship to inventories can help guide the magnitude

of any response using strategic reserves. In particular, the spread between long- and short- dated crude

futures prices reflect market expectations about the persistence of supply and demand shocks.1 In particular,

SPR releases are more effective and appropriate in response to temporary supply shocks, and less so in

the face of persistent shocks. The degree of contango (a positive spread between future and current prices)

or backwardation (a negative spread) in crude oil markets provides market-based information about how

persistent supply shocks are likely to be, with a higher degree of backwardation suggesting transitory shocks.

This differs from the common focus on the levels of spot prices, but economic theory clearly implies that price

spreads are the more important factor for stockpiling decisions (e.g., Fama and French 1987, 1988; Pindyck

2001).2 This suggests that policymakers should look to oil price spreads when considering SPR releases. It

also suggests that better understanding of the dynamic relationships between spreads and private inventories

can offer insights for when to release strategic reserves.

Aside from the question of whether to release oil reserves, policymakers also face the question of how much

to release to achieve given policy goals. To consider this question, this paper also uses a vector auto-regression

1Throughout this paper, the spread is defined as the difference between the 12-month and 1-month real crude oil futures
prices: p12 − p1, where prices are expressed in log terms to represent percentage differences. We also note the important caveat
discussed in Baumeister and Kilian (2016b) that futures prices also reflect a risk premium. We discuss this caveat more below,
and present a sensitivity analysis in the appendix.

2We use the term “spot” price informally as a shorthand to refer to the prompt-month oil future price, distinguishing it from
longer-term futures prices.

2



(VAR) model to empirically analyze the dynamic relationships between oil spot prices, price spreads, and

privately-held commercial inventories. Once estimated, we use this model to estimate the impacts of a shock to

private inventories (say, from an emergency infusion from public inventories) on oil prices, spreads, and other

variables of interest. These estimated responses show strong relationships between inventories and spreads,

with a 1% crude oil inventory shock—equivalent to approximately 10 million barrels of crude oil—temporarily

increasing spreads by 1 to 2 percentage points (i.e., a reduction in backwardation, or increase in contango).

This inventory shock reduces both spot and futures prices of crude oil. Spot prices temporarily fall by about

3% to 4%, while 12-month futures prices fall by a smaller amount, explaining the increasing spread. Prices

fall despite some potential offset by an increase in OPEC supply, which is imprecisely estimated in our model.

We also use the model to simulate counterfactual release scenarios during relevant historical periods.

These periods include times when oil was released from the SPR and times when such releases were considered

but not executed. Simulations for 2005 (Hurricane Katrina) and 2011 (Arab Spring) suggest that the SPR

releases in those years did indeed prevent spreads from entering steep backwardation in the short run as

well as prevented temporary steep rises in oil prices. A simulation for 2003, when oil futures entered steep

backwardation but no SPR release occurred,3 suggests that a release during this period could have muted

the strong backwardation and undone some of the price increases. These simulations also provide guidance

on the size of SPR releases needed to achieve given policy goals, such as dollar-reductions in oil prices or

changes in price spreads.

2 Background and Literature

Governments have long held strategic petroleum reserves. In the wake of the 1973 OPEC oil embargo, the

International Energy Agency (IEA) was established with a key purpose being the coordination of strategic

reserves to respond to oil supply disruptions. The U.S. Strategic Petroleum Reserve was established shortly

thereafter in 1975 for the same reason. Reserves have been released on three major occasions since then:

during the 1991 Gulf War, during Hurricane Katrina in 2005, and during the 2011 Arab Spring.4 There were

also other times when SPR releases were considered but ultimately not used, such as in early 2003 when the

Venezuelan oil strike and the Iraq War disrupted oil production.5

3This was amid the Venezuelan oil strike and run-up to the Iraq War, which together disrupted millions of barrels per day.
Some experts argued that this case clearly called for SPR releases, but no releases were ultimately made.

4Reserves have been released on other occasions, which mostly represent test sales and temporary loans.
5See Dobbs, Michael. “Oil Reserve Is ‘First Line of Defense’ for U.S.”, New York Times, 18 Feb. 2003.
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Despite the importance of SPR release decisions, the economics literature provides little guidance for

optimal policy. Instead, policymakers typically rely on expert judgment and back-of-the-envelope estimates

of the impacts of releases on oil prices. A 2006 GAO report asked a group of experts about SPR policy, who

generally suggested that strategic releases should be used to offset supply disruptions that the market cannot

make up on its own (e.g., through private inventory drawdowns or supply responses in other regions).6 In

other words, a policy of “counting barrels” that are disrupted on net, and releasing that amount of reserves.

Indeed, in its recent strategic assessment and benefit analysis for the SPR, the Department of Energy assumed

exactly this decision rule.7

This policy of counting barrels is inadequate because it does not incorporate market expectations about

the expected persistence of supply disruptions. Further, it embodies the outdated notion that the SPR is for

addressing physical shortages. In a globally integrated market, the SPR primarily addresses the economic

impacts of price shocks—both its macroeconomic and distributional effects. If the goal of the SPR then is to

dampen or eliminate price shocks associated with supply disruptions, how do policy-makers decide whether

a particular situation warrants release and how large it should be, given that simply counting barrels is

insufficient? There is no literature on this issue that we are aware of.

The initial literature on SPR management dates back to the late 1970s and early 1980s–the years following

the oil shocks of the Arab oil embargo, the Iranian Revolution, and the establishment of the reserve. These

studies include Teisberg (1981) and Chao and Manne (1983), which use dynamic programming to model

optimal SPR filling and release policies. Those studies illustrate that releasing reserves is more desirable

when the disruption is likely to be temporary.

But they did not explore how to determine the probabilities of persistence in practice (rather, the authors

assumed constant transition probabilities). One reason for this is that literature did not have access to the

information provided by oil futures markets, simply because the studies pre-dated the existence of those

markets. Hubbard and Weiner (1983, 1985, 1986) use econometric methods to model the impacts of SPR

releases, but they also pre-dated the establishment of long-dated futures contracts. Short-run oil futures

markets were established in 1983, and liquid markets for long-dated contracts did not arise until the late

1980s. In light of this, Devarajan and Hubbard (1982) was ahead of its time in arguing that the SPR should

sell futures contracts to accelerate the impact of strategic releases. The establishment of long-dated contracts

6See GAO, “Strategic Petroleum Reserve”, 2005.
7See Department of Energy, “Long-Term Strategic Review (LTSR) of the U.S. Strategic Petroleum Reserve (SPR) Report

to Congress”, 2016. In particular, the benefit analysis assumed that net supply disruptions would be offset one-for-one by
coordinated IEA releases.
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creates more information about expected future spot prices, to which the existing dated literature did not

have access.

Literature conceptualizing the relationship between inventories and price spreads dates back to Fama

and French (1987, 1988) and was summarized by Pindyck (2001). Intuitively, these studies use a now

standard no-arbitrage result from finance that in equilibrium the futures price spread (the benefit from

holding inventories) must equal the net cost of storage and lost interest accounting for the risk premium

(together representing the cost of holding inventories). While inventory activity upholds this equilibrium,

inventories do not appear explicitly in this result or as a function of spreads. We directly estimate this

relationship.

There is a recent empirical literature on oil inventories, including Kilian and Lee (2014), Kilian and

Murphy (2014), and Baumeister and Kilian (2016a), and we follow those studies in using vector autoregression

to model oil market dynamics methods. However, those studies estimate the relationship between inventories

and oil price levels, not spreads. Those studies are also not focused on informing SPR policy.

This study also contributes to a larger literature that uses time series methods to study oil market

dynamics. These include Hamilton (2009); Kilian (2016, 2017a,b) and Herrera (forthcoming), which generally

consider dynamics between oil prices and supply and demand factors. Those studies do not, however, focus

on the relationship of inventories and price spreads.

One other study that is relevant for this research is Baumeister and Kilian (2016b), which distinguishes

between oil price futures and expected future oil prices. While often conflated, these two differ according to

the risk premium. Conceptually, this matters when using futures prices as a proxy for expected prices in the

future and hence the expected persistence of supply shocks. Econometrically, this matters when computing

the price “spread” against the prompt-month oil price. To explore the impact of this distinction on our results,

we estimate our models using both methods. We first estimate the model with the spread computed as the

difference between long-dated and prompt-month futures prices. We then run sensitivities by estimating

the model with spreads computed as the difference between the expected future spot prices (estimated by

Baumeister and Kilian 2016b) and prompt-month futures prices.

In summary, there is little to no recent economic literature guiding SPR policy, and also no literature

that we are aware of that considers the relationship between oil inventories and price spreads. This paper

contributes significantly in these areas, and provides important guidance to future SPR release policy.
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3 Methods and Data

In this section, we overview the methods and data we use in our estimation and simulations. First, we provide

an overview of the vector autoregression model, the computation of cumulative impulse response functions,

and how we run counterfactual simulations of SPR release scenarios. This section also includes a summary of

the data used and its sources.

3.1 Methods

3.1.1 VAR Model

We estimate a vector autoregression (VAR) with K = 5 variables: real global industrial production, OECD

commercial crude inventories, OPEC crude oil production, West Texas Intermediate (WTI) oil prices, and

price spreads. All variables are expressed in log-changes, implying percentage changes after taking first

differences (or percentage points in the case of spreads).8 It is natural to include crude inventories, prices,

and spreads based on the discussion above. Industrial production is included as an indicator of economic

activity and broader commodity demand factors. OPEC crude production is included because OPEC supply

responses are a potential moderating factor in inventory dynamics and SPR releases.9

yt = A0 +

24∑
`=1

A`yt−` + εt, (1)

where

yt =



∆Global Industrial Productiont

∆OECD Commercial Crude Oil Inventoriest

∆OPEC Crude Oil Productiont

∆WTI Prompt-Month Pricet

∆WTI 12-Month Spreadt


, (2)

and variables are measured in logs. Spreads represent the log difference between the 12-month and prompt-

month real crude futures price, so it can be interpreted as a percentage point. In interpreting our results, we

8We take first differences because the series are generally non-stationary in levels, but are stationary in differences.
9Our results are qualitatively similar if we were to exclude industrial production and OPEC production. We include them

nonetheless because they are important factors affecting oil markets. Further, including them allows us to simulate the dynamics
of these variables as well, including OPEC supply responses to inventory shocks.
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implicitly treat the 12-month futures price as a market-based expectation of future spot prices. However,

as documented by Baumeister and Kilian (2016b), futures prices differ from expected spot prices due to a

time-varying risk premium. Because we take first differences, this affects our results to the extent that the risk

premium varies over time. As a sensitivity, we also estimated the VAR using a time series of 12-month-ahead

expected spot prices generously provided by Baumeister and Kilian (2016b) to construct our spread variable.

The estimates are very similar and can be found in the appendix.10 We nonetheless present the results using

actual futures prices because that is the data that would be available to a policymaker during an emergency

oil supply disruption.

We also include four seasonal dummy variables in the estimation, but do not include them in the equations

below for notational convenience. The sample period is February 1991 through June 2016, monthly.11 We

use 24 lags (2 years), following work by Hamilton and Herrera (2004); Kilian (2009); Kilian and Lee (2014)

and Kilian and Murphy (2014), which stress the need for including many lags to account for slow-moving

dynamics in oil markets.

3.1.2 Cumulative Impulse Response Functions

In what follows, we overview impulse response functions for those less familiar with them. Readers comfortable

with IRFs and OIRFs may wish to skip to the next subsection, 3.1.3. We present the results through cumulative

orthogonalized impulse response functions (IRFs). These represent how each of the variables change over

10The impulse response functions were qualitatively unchanged when using the Baumeister and Kilian (2016b) data to
construct the spreads. The only significant impact was that the responses of spreads to all impulses are somewhat larger when
using the Baumeister and Kilian (2016b) data. However, caution should be taken in comparing these, since they represent
conceptually different variables in that one measure includes the risk premium and the other does not.

11We are constrained by the industrial production series, which begins in January 1991. As a result, our first observed monthly
change is February 1991.
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time (t + s) in response to a one-unit orthogonalized shock in to one of the variables (j) at time t. The

formula for IRFs can be derived analytically through the moving average representation of the VAR:

yt = Φ0εt + Φ1εt−1 + Φ2εt−2 + . . . ,

where Φ0 = IK , Φ1 = A1 and the subsequent Φs matrices are defined recursively as

Φs =

s∑
`=1

Φs−`A`.

The (i, j) element of Φs gives the expected response of variable i, s periods after a unit shock to only variable

j. Of course, the shocks to the five variables are likely to be correlated, meaning a shock to variable j is

likely to be accompanied by shocks to other variables. For example, expectedly large inventory shocks are

likely to put downward pressure on oil prices immediately, and indeed we find a negative correlation between

these residuals. The orthogonalization process accounts for the correlation in these shocks, de-correlating

the εt vector by multiplying it by the Cholesky decomposition of the residual covariance matrix, L (so

LL′ = Σεε′ = cov(εt, ε
′
t)). This results in uncorrelated shocks, denoted ut = Lεt. The orthogonalized IRF

(OIRF) is

Ψs = ΦsL,

representing the expected responses of the variables to these orthogonalized shocks.12 Intuitively, this accounts

for the immediate relationships between the variables through the correlation of the residuals.

As is well known, the ordering of the variables matters in the orthogonalization because the Cholesky

decomposition is lower triangular. Variables placed earlier in the ordering are effectively assumed to be “slower

moving” than variables placed later.13 For example, industrial production, being placed first in equation 2, is

not allowed to respond within-period to any shocks in other variables, only responding with a lag through

the lag structure in equation 1. OPEC production, being placed in the middle, can immediately respond

to shocks to industrial production and crude inventories, but it only responds to shocks to WTI price and

spreads through the lag structure in equation 1. WTI prices and spreads are placed at the end, allowing

12While the multiplication by L itself scales the shocks to one standard deviation shocks (instead of one-unit), we rescale
these responses by the inverse of the standard deviations to once again represent unit changes.

13The alternative would be to use non-orthogonalized shocks. This would implicitly make the stronger assumption that shocks
are contemporaneously unrelated, contrary to the observed correlations.
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them to response to shocks in all preceding variables.14 We argue that this ordering is reasonable. Prices

and spreads can and do change instantly in response to news, justifying their placement at the end. OPEC

production (placed third) is clearly slower moving than prices, and OPEC’s historic status as swing producer

suggests that it can adjust more quickly than commercial inventories (placed second), which requires changes

to flow supply or demand and the movement of physical barrels. Lastly, industrial production is a very slow

moving series, justifying its placement first in the VAR.

Because all of our variables are in monthly changes, Ψs represents the impacts of a shock on monthly

changes in variables after s periods. Since we are interested primarily in the levels of variables of interest

(e.g., oil prices) and not their monthly changes, we present cumulative impulse response functions (
∑s
`=1 Ψ`).

This accumulates the effects on monthly changes in the variables to show the impact on their (log) levels over

time. We construct 95% confidence intervals through residual-resampling bootstrap.

3.1.3 Simulations

We conduct counterfactual historical simulations aimed at estimating how the SPR releases would affect other

variables over time, including crude oil prices and spreads. We model a strategic release as an unexpected

increase in commercial crude inventories.

For each simulation, we first choose a month (τ) and size (rτ ) for incremental SPR release we are

simulating.15 We compute new “counterfactual” shock that month, εcfτ , by adjusting the observed residual

that month ετ , according to an orthogonalized inventory shock of rτ :

εcfτ ≡ ετ +
1

L(2,2)
L



0

rτ

0

0

0


(3)

The division by L(2,2) (which is approximately the standard deviation of the inventory residual) is required

because the pre-multiplication by L scales the magnitude of shock into one of rτ standard deviations. This

conversion ensures that the inventory residual, ε2,τ , changes by precisely the assumed SPR release size, rτ .

14The relative ordering of spreads and prices prevents prompt-month prices from immediately responding to spread shocks,
implicitly treating spread shocks as shocks to futures prices alone. Interchanging the order of these two variables has no effect on
the key OIRF of interest, which is the response to inventory shocks.

15In simulations where we are simulating a counterfactual of no SPR release, rτ is set to equal to the negative of the actual
observed historical release. This effectively “subtracts” the observed historical release.
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The orthogonalization captures the immediate impacts that inventory releases may have on oil prices and

spreads, based on the correlation of the VAR residuals.16

All other residuals are left unchanged: εcft ≡ εt for t 6= τ .

With this one residual changed, we recursively simulate subsequent counterfactual values of ycft as

ycft ≡ A0 +

24∑
`=1

A`y
cf
t−` + εcft , (4)

where ycft = yt for t < τ and the seasonal dummies are suppressed for notational convenience. While ycft are

in log-differences, we aggregate up to levels when presenting the simulation results (e.g., barrels for inventories

or dollars per barrel for oil prices) to make them easier for the reader to interpret.

3.2 Data

Our data come from four sources. Oil prices are obtained from Bloomberg L.P.17 Daily prices are averaged to

the monthly level and converted to real 2014 dollars using the CPI All Urban Consumer (All Items) index.

Spreads are computed as the log of real 12-month futures prices minus the log of real prompt-month prices.

This log difference thus approximately represents spreads in percentages. It also creates an exact linear

relationship between log prices and spreads, which aids in interpreting the results.

The OECD commercial crude oil inventory series is from the International Energy Agency (IEA). It

corresponds to the crude stocks reported in their monthly Oil Market Reports, typically shown in their table

titled “OECD Industry Stocks and Quarterly Stock Changes”.18

The real global industrial production series is from the World Bank (2017) Global Economic Monitor and

represents constant 2010 US$, seasonally adjusted.

The OPEC crude oil production series comes from the U.S. Energy Information Administration (EIA).19

These time series are shown in Figure 1. That figure shows the series in levels, but as previously mentioned

we use their log-changes in the estimation.

16For example, a 1 percent shock in inventories is estimated to be associated with an immediate reduction in spot prices of
approximately 1 percent and an increase in spreads of approximately 0.6 percent. That is, with rτ = 0.01, the last term in
equation (3) is approximately (0, 0.01,−0.0007,−0.0102, 0.0057)′ (with the final two elements representing percentage changes in
oil prices and spreads, respectively).

17We use WTI prices, which use the CL1 Comdty and CL12 Comdty tickers for the prompt-month and 12-month contracts,
respectively.

18See https://www.iea.org/oilmarketreport/reports/ for an archive of these reports. Our data does not precisely match
the data in the archived reports because the series is continually updated by IEA. We obtained the series from IEA in August
2016, and it is complete through June 2016.

19This series is publicly available at https://www.eia.gov/totalenergy/data/monthly/#international.
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Figure 1: Time Series of Industrial Production, OECD Commercial Crude Inventories, OPEC Crude Oil
Production, WTI Oil Prices, and WTI Spreads

4 Results

4.1 Cumulative Impulse Response Functions

While there are many impulse-response relationships implied by our VAR estimation, the primary relationship

of interest is the effect of a shock to inventories. This is because we wish to model the effect of SPR releases,

which amounts to making additional strategic inventories available to the market. To this end, we consider

the responses of each variable to a 1% impulse to commercial crude inventories, shown in Figure 2.20 When

the responses are statistically significant, their direction and size generally comport with economic theory and

intuition. As seen in the top middle chart (the effect of the inventory shock on inventories), the inventories

remain elevated after the shock, although some of the surplus is gradually drawn down.21 The impacts on

WTI prices and spreads are shown in the bottom two charts. We see a small immediate reduction in spot

prices which grows in magnitude to -3% to -4% over several months, before beginning to revert towards zero

after a year. At the same time, spreads temporarily increase by approximately 1.5 percentage points as this

20A 1% inventory shock is on the order of 10 million barrels of crude oil, since private inventories are on the order of 1 billion
barrels (see Figure 1). Because of the linearity of the VAR model, all effects scale linearly with the inventory shock. For example,
an inventory shock of 2% would be estimated to produce responses that are exactly twice as large as those from a 1% shock.

21This is consistent with Hubbard and Weiner (1986), which finds that private inventories do not fully absorb strategic releases.
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Figure 2: Cumulative Impulse Responses from a 1 Percentage Point Shock to Inventories

Notes: Shaded areas represent 95% confidence intervals computed through 100 bootstrap iterations.

spot price reduction is accompanied by a smaller reduction in futures prices.22 Price spreads revert back

toward baseline conditions within about 18 months. Under the assumption that releases of strategic reserves

can be modeled as surprise inventory builds, this suggests that SPR releases can reduce prices and mitigate

backwardation, relative to a counterfactual of no release.

The response of OPEC production is slightly negative, implying OPEC reducing output somewhat in

response to inventory builds, although the estimate is statistically insignificant. The effect on industrial

production is also small and generally statistically insignificant.23

We explored the other impulse response functions, which estimate the effects of impulses in each of the

other variables (e.g., industrial production, OPEC production, and spreads) on each other. These OIRFs

can be found in the appendix. When the responses are statistically significant, their direction and size

generally comport with economic theory and intuition. Of interest, we find that the effect of spread shocks

on inventories is small and statistically insignificant, as shown in Figure 3. This suggests that the causal

22While the 12-month futures price does not explicitly appear in the VAR, it appears implicitly through its additive
relationship between spot prices and spreads. Namely, since spreads are computed as the log-difference between future and
spot prices (Spread = ln(Future) − ln(Spot)), the effect on futures prices is the sum of the effect on spot prices and spreads

(ln(Future) = ln(Spot) + Spread, which implies
∂ ln(Future)

∂uj,t
=

∂ ln(Spot)
∂uj,t

+ ∂Spread
∂uj,t

). So, for example, after 12 months, a -4%

change in spot prices accompanied by a 1.3% change in spreads implies a -2.7% change in futures prices (= −4% + 1.3%).
23If we exclude industrial production and/or OPEC production from the model completely, the responses of the remaining

variables (oil prices, spreads, and inventories) are qualitatively similar but slightly smaller.
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Figure 3: Cumulative Inventory Response from a 1 Percentage Point Shock to Spreads

Notes: Shaded areas represent 95% confidence intervals computed through 100 bootstrap iterations.

relationship runs from inventories to spreads, not vice versa.24 This is intuitive, since market prices can and

do change instantly in response to news about inventories, whereas inventory builds require adjustments to

flow supply and/or demand and the movement of physical barrels.

4.2 Simulations

We use our estimated VAR to conduct three counterfactual simulations to illustrate the impacts of strategic

releases during three historical periods: the Iraq War in 2003, Hurricane Katrina in 2005, and the Arab Spring

in 2011. In the first scenario, we simulate the impact of an SPR release at a time when it was considered but

not executed. The latter two scenarios involve times when strategic reserves were released, so we simulate a

no-release counterfactual.

4.2.1 Simulation 1: 2003 Iraq War

The first simulation is in spring 2003, when there were two significant supply disruptions in a short period of

time: the Venezuelan oil strike and the Iraq War. The Venezuelan oil strike began in late 2002, disrupting

over 2 million barrels per day in supply (Nov-2002 to Jan-2003). This disruption was in the process of being

resolved in early 2003, when the invasion of Iraq disrupted 1.3 million barrels per day (Mar-03 to Apr-03).

Some of this disruption was offset by a 0.5 million barrel per day increase in production from other OPEC

24This finding is robust to the ordering of the variables in the VAR, implying it is not simply the result of the orthogonalization.
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Figure 4: Simulation with Strategic Release in February 2003

Notes: The assumed inventory shock is +48 million barrels of crude oil (≈ 5.5% of inventories then), equal to the net disruption
in production of 0.8 million barrels per day for a period of 2 months.

nations, so the net disruption from OPEC members was 0.8 million barrels per day. Spot crude prices rose

sharply, sending the futures market into deep backwardation in excess of 20% (during Jan-03 to Mar-03). We

model a strategic release of 48 million barrels, equal to two months of disrupted supply (0.8 million barrels

per day for 60 days). Other recent strategic releases were of similar order of magnitude (typically 60 million

barrels), so this figure is a reasonable approximation of what an actual release might have been. We simulate

the release occurring in February 2003, which was the month of steepest backwardation.

Figure 4 shows the results of simulation, with actual values shown in black and simulated values shown in

green. The simulated release of crude oil temporarily reduced spot prices by about $6, a decrease of 15-20%.

Simulated spreads show significantly reduced backwardation, falling to about -5 to -10% instead of -15%, for

an impact of about +8 percentage points attributable to the release.

After one-to-two years, the effect of the release diminishes somewhat, suggesting a temporary effect.25

Actual spreads eventually recover to the simulated levels, and the counterfactual price rises somewhat towards

approaches actual prices.

In summary, this simulation suggests that strategic releases could have mitigated the short-term price

increases and backwardation brought on by the Iraq War.

25This temporary nature of the effect is not an inevitable consequence of the VAR model or the assumed number of lags (24).
First, as is clear from the moving average form of the VAR, the model allows effects to persist for much longer. Second, these
responses represent accumulated effects on monthly changes. While the effect on monthly changes asymptotes to zero in the
long run, the accumulation of these changes need not do so.
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4.2.2 Simulation 2: 2005 Hurricane Katrina

The second simulation considers the strategic release that occurred in the aftermath of Hurricane Katrina in

2005. The hurricane shut in offshore production in the Gulf of Mexico, cutting off about one quarter of U.S.

oil production. It also caused severe damage to oil production infrastructure and refineries. Oil prices rose,

but gasoline prices spiked even more due to the temporary inability to refine and transport refined products.

While crude oil futures markets did not enter backwardation, gasoline futures did (not shown here) due to

refinery closures. In response, in September 2005 the United States and the IEA conducted a coordinated

emergency release, making available 60 million barrels of both crude oil and refined products.26

We simulate a counterfactual case with no strategic release during this period. We implement this by

subtracting out a shock of 60 million barrels in September 2005, which is equal to the total amount made

available by all IEA member countries. This ignores the distinction between crude oil and refined products,

as well as the fact that not all reserves offered were ultimately delivered. This only changes the magnitude of

the results, not their direction, but we believe it would tend to overstate the magnitude of the impact of the

actual releases.

The results are shown in Figure 5. In contrast to the previous simulation, this simulation involves a

“no release” counterfactual in green, whereas the actual values (in black) include the effects of the strategic

release. The Figure shows that absent the release, oil prices are projected to have continued an upward

climb apace, exceeding $100 per barrel. The releases are thus estimated to have reduced prices by more than

20% relative to the counterfactual. Futures would have entered into moderate backwardation during the

disruption, rather than remaining in slight contango as they actually did, suggesting an impact on spreads of

about 10 percentage points.

This simulation again suggests some success of the observed SPR release in preventing oil price spikes and

backwardation in futures curves. However, this particular simulation comes with the caveat that the market

for refined products was relatively more important during this period, a feature that our model does not

explicitly incorporate.

4.2.3 Simulation 3: 2011 Arab Spring

Our final simulation considers the strategic release of reserves during the 2011 Arab Spring, which disrupted

oil supply in Libya and other countries. In June 2011, IEA member countries announced a release of 60 million

26Not all of the SPR crude oil that was made available was ultimately delivered because of a lower number of successful bids.
However, during this period, refined product supply (e.g., gasoline) was a larger constraint than that of crude oil. In addition, the
administration conducted short-term in-kind loans of crude oil to allow refineries with disrupted supply lines to keep operating.
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Figure 5: Simulation without Strategic Release in September 2005

Notes: The assumed inventory shock is -60 million barrels (≈ −5.9% of inventories then), equal in magnitude to the total IEA
release that year.

barrels of oil, which were delivered by August 2011. As in the previous section, we simulate a scenario without

this release by introducing a negative inventory shock of 60 million barrels in June 2011. The results are in

Figure 6. The figure suggests that the release prevented a temporary increase in prices and backwardation.

With the releases, prices remained relatively stable around $100 with a slightly positive spread, compared to

the counterfactual case where prices rise as high as $130 per barrel and spreads moved into backwardation of

approximately -10%. This suggests that the 2011 strategic releases may have prevented price spikes of 20%

to 30% and approximately 10 percentage points of backwardation.

As with the previous simulations, this one suggests that strategic releases can prevent oil price increases

and swings into backwardation. It should be noted that because the three simulations are based on the

same model estimates, they unsurprisingly produce similar lessons. However, they do not simply represent a

repetition of exactly the same results because each one incorporates a different series of shocks (residuals)

and lagged values. In other words, while it is unsurprising the simulations tell a consistent story, the resulting

similarity in the simulations is not simply the inevitable implication of using the same underlying VAR model.

5 Caveats

The above simulations all suggest that strategic releases can effectively moderate price increases and stabilize

futures spreads in times of market dislocation. There are, however, important caveats. First, we simulate

strategic releases as a surprise shock to private inventories. This implicitly assumes that market actors
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Figure 6: Simulation without Strategic Release in June 2011

Notes: The assumed inventory shock is -60 million barrels (≈ −6.4% of inventories then), equal in magnitude to the total IEA
release that year.

respond to surprise public releases in the same way that they would respond to surprise increases in private

inventories. If market actors interpret these changes differently (say, because they believe public releases

signal future government policy), then they may react differently, although it is unclear which direction this

would bias the estimates.

Second, the simulations assume that the strategic releases are unexpected, both in an econometric sense

(as deviations from the statistical expectation of the model) and from the perspective of market participants.27

If strategic releases are expected, then their effects will be incorporated into existing oil prices and spreads.

While this suggests imperfections in the timing of the effects found in the simulation, it does not undermine

their existence. Indeed, as Devarajan and Hubbard (1982) point out, expectations of future releases help calm

markets before they actually occur—so long as policymakers eventually follow through on that expectation.

This relates to another issue in the vein of the Lucas critique. If the government commits to a policy of

releasing inventories when supply disruptions induce steep backwardation, markets will anticipate this policy,

stabilizing oil markets before any particular release is announced. While this expectations channel has

desirable anticipatory and stabilizing effects, it also threatens to undermine the value of the price spread

itself as an indicator of the severity of supply disruptions.

A third caveat is that the estimated VAR underlying the simulations represents the “average” relationships

between the variables over the sample period. The relationships during times of extreme disruption may

27As pointed out by Kilian and Murphy (2014), with forward-looking investors, these expectations can differ, although VAR
models often implicitly equate them.
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differ from these average relationships. However, the large variation in the series during these extreme events

provides a non-trivial portion of the variation identifying our VAR estimates.

Finally, our model does not directly treat refined product markets. This is mainly a concern in cases

where refined markets are disproportionately important, such as during Hurricane Katrina, which severely

damaged refining operations. Future work could apply these techniques to more directly explore refined

product market disruptions, with relevance to the consideration of the value of refined product reserves.

6 Conclusion

Understanding the dynamic relationships between oil spot prices, price spreads, and inventories is key for both

market participants and policymakers considering releases from strategic oil reserves, such as the SPR. First,

we make the conceptual point that spreads convey market-based information about expectations regarding

the severity and persistence of supply disruptions, with clear implications for when SPR releases are advisable.

Namely, steep backwardation suggests disruptions are serious, unlikely to be quickly moderated by private

market forces, and expected to be transitory, indicating a stronger case for releasing reserves. The spread thus

provides an indicator guiding policymakers whether to release reserves, or to hold them in case a disruption

might deteriorate further.

We use a VAR to estimate the dynamic relationship between oil spot prices, price spreads, and commercial

inventories. This relationship illustrates the magnitude of the impacts of SPR releases, with implications for

how many barrels to release in times of supply disruption. The estimates suggest that SPR releases—modeled

as surprise inventory shocks—can have substantial effects on oil prices and spreads. Impulse response functions

suggest that stock releases can reduce spot prices by up to 4% and mitigate backwardation by approximately

1.5 percentage points for each 1% addition to commercial inventories (approximately equal to 10 million

barrels). Simulations suggest that past releases may have prevented spikes in oil prices on the order of 20%

to 30% and prevented 10 percentage points of backwardation in crude oil futures. These estimates can guide

policymakers in determining how many barrels to release from the SPR in times of supply disruption to

achieve specified market impacts.
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A Appendix

A.1 All Impulse Response Functions

In the body, we focused on a selected set of impulse response functions of interest (those relating the inventories

and spreads). All impulse response functions are shown in Figure A.1.
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Figure A.1: All Impulse Response Functions using Actual Futures Spreads

Notes: All shocks are 1 percentage point in magnitude. Columns represent impulse variables, rows represent response variables.
For example, the 2nd column shows the response of all variables to an impulse to inventories, corresponding to the graphs shown
in Figure 2. And the 4th row represents how prompt-month oil prices respond to shocks to each of the five variables. Shaded
areas represent 95% confidence intervals computed through 100 bootstrap iterations.

A.2 Estimation using Baumeister-Kilian Data

As discussed in section 3.2, we also estimate our model using the expected future (12-month) spot price series

from Baumeister and Kilian (2016b) generously provided by those authors. This series is plotted, along with

futures prices, in Figure A.2.

We re-estimated our VAR using the spread between the Baumeister-Kilian (BK) 12-month expected spot

price and the prompt-month future price (i.e., the (log) blue line minus the (log) black line). By contrast, our

main specification uses the difference between the actual 12-month future and the prompt month price (the

(log) red line minus the (log) black line).
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Figure A.2: WTI Oil Futures Prices and Baumeister-Kilian (BK) Expected Spot Prices

Figures A.3 and A.4 show the IRFs using this alternative spread series. These IRFs strongly resemble

the corresponding ones in our primary specification, shown in Figures 2 and A.1. Focusing on the IRFs of

interest—the effect of an inventory shock shown in Figures A.3—the largest difference is that the spread

response is slightly larger when it is computed using the BK series (see last panel, about 2% versus 1.5%,

although the confidence intervals mostly overlap). The lack of a substantial difference in these suggests that

inventory shocks do not substantially affect the risk premium, since that is the only difference between the

two series.

Most of the other IRFs (shown in Figure A.4) are also largely unchanged. The exception is the final

column of that figure, showing the effects of a spread shock on the other variables. It is unsurprising that

these IRFs show the largest difference because this spread shock represents a different economic concept.

Namely, it excludes shocks to the risk premium. However, the standard errors generally overlap zero using

either method.
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Figure A.3: Cumulative Impulse Responses from a 1 Percentage Point Shock to Inventories, using BK Data

Notes: Compare to IRFs in Figure 2. Shaded areas represent 95% confidence intervals computed through 100 bootstrap iterations.
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Figure A.4: All Impulse Response Functions, using BK Data

Notes: Compare to IRFs in Figure A.1. All shocks are 1 percentage point in magnitude. Columns represent impulse variables,
rows represent response variables. For example, the 2nd column shows the response of all variables to an impulse to inventories,
corresponding to the graphs shown in Figure 2. And the 4th row represents how prompt-month oil prices respond to shocks to
each of the five variables. Shaded areas represent 95% confidence intervals computed through 100 bootstrap iterations.
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