
   

Overview 
In the United States, the transportation sector consumes approximately five billion barrels of oil annually and 
accounts for nearly a third of greenhouse gas emissions.  The potential climate impacts of the transportation sector 
has led to a transition towards cleaner, alternative fuel vehicles such as electric vehicles (EVs)—touted as “zero-
emission” vehicles.   The transition has been accelerated by policy such as the Zero Emissions Vehicle (ZEV) 
mandate in California and incentives such as the federal Plug-In Electric Vehicle Credit (IRC 30D).  However, if the 
ultimate goal of the transition is to create a cleaner transportation system, a proper accounting of emissions is 
necessary to understand the true impact of EVs.  A nationwide electricity dispatch model was constructed based on 
outputs from the Environmental Protection Agency’s (EPA) Integrated Planning Model (IPM) used in the 
assessment of the Clean Power Plan (CPP).  Using future projections of EV sales as well as a number of scenarios 
for charging behavior, a profile of electric vehicle emissions can be captured on sub-state level and importantly 
across a lengthy time span from 2016 through 2050.  The time periods being captured are significant due to the lack 
of existing literature on EV emissions as the electric grid changes and cleaner sources of electric capacity are 
developed. 

Methods 
A simple economic dispatch model is constructed using the EPA’s Power Sector Modeling Platform.  The inputs for 
the model are from their National Electric Energy Data System (NEEDS) v.5.15 as well as their Integrated Planning 
Model (IPM) used for the impact assessment for the Clean Power Plan.  The operation of all electric generators can 
be modelled by minimizing the total system cost to the operator as follows: 
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where g represents the set of generators, t represents the set of time periods (8760 hours in a year), {r, o, p} are 
aliases of a set representing regions.  The decision variables of the program are xgen which represents how much 
electricity a particular generator produces in a single time period and xtrans which represents the amount of electricity 
transmitted from one region to another in a single time period.  Parameters include ccost (cost to generate a MWh of 
electricity), ctranscost (cost to transmit a MWh of electricity across a specific transmission line), cload (electric demand 
load), and ctransCap (maximum amount of electricity that can travel across a specific transmission line). 

 

 
 
 

Figure 1a (left): Dispatch order of generators for the Western interconnect balancing area in 2016. 
Figure 1b (right): National Academies forecast of electric vehicle adoption through 2050 
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Several projections of electric vehicles are employed as scenarios for future adoption through 2050 (see 
example in Fig 1b).  The vehicles are then distributed into the different regions of measurement and their daily 
driving and charging patterns are simulated via data from the California Household Travel Survey administered by 
CalTrans.  The electricity demand isolated to electric vehicle charging is then added to the baseload demand and the 
dispatch model is run with and without this additional demand in order to determine the difference in electricity and 
emissions generation. 
 
Results 

 

 
Figure 2a (left): Example dispatch output for one week in July of 2016 in Northern California 

Figure 2b (right): Average consequential emissions of electric vehicle by region in 2016 
 

Fig 2a demonstrates the output of the dispatch model over a small time window in Northern California but the model 
itself is currently fully functional for the entire country for select years from 2016 through 2050.  Fig 2b shows the 
average emissions associated with electric vehicles across the US in the EPA Integrated Planning Model regions.  
The figure shows consequential emissions, that is the emissions associated with the addition of all electric vehicles 
in the United States. 

Conclusions 
The development of this model is the first academic attempt at understanding how emissions of electric vehicles will 
differ both spatially and temporally across the US far into the future.  The ability to use IPM results from the Clean 
Power Plan ensures the use of a plausible scenario of future electric grid since those results are modeled to ensure 
future compliance of all states.  The results provide insights into how electric vehicles contribute, both marginally 
and in total, to emissions throughout the United States.  Across scenarios of electric vehicle adoption and charging 
patterns, the model will output the expected consequential emissions of electric vehicles in the Clean Power Plan 
framework.  The results indicate to what extent the cleaning of the power system will lead to decreased emissions 
from electric vehicles—and importantly the relative locational benefits of this transition.  The work has important 
implications for government stakeholders as it may influence policy makers (especially in dirtier regions of the 
country’s electric grid) that are considering ZEV-like policies or other policies affecting the adoption of electric 
vehicles. 
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