
   

Overview 

This project models the demand of energy consumption at several different levels of aggregation by analyzing 

US state-based panel data and by using methods that address both nonstationarity and cross-sectional dependence. In 

addition to considering possible nonlinear relationships between energy consumption and income, possible 

asymmetric relationships with respect to both income and price are allowed and calculated. Previous work has 

argued that price changes may be asymmetric (eg.., Gately and Huntington 2002). More recent work has considered 

that the impact of income on carbon emissions may be asymmetric as well (e.g., Doda 2013).  

Data & Methods 

The US Energy Information Agency (EIA), as part of the State Energy Data System (SEDS), collects state-level data 

of disaggregated energy consumption and the corresponding prices at those levels of disaggregation. The Bureau of 

Economic Analysis (BEA) collects data on real GDP per capita and economic structure, also at the state-level. These 

two data sets are combined to create a panel of the 50 US states over 1987-2013. The following five dependent 

variables are analyzed: total energy consumption per capita, industrial sector’s energy consumption per capita, 

transport sector’s energy consumption per capita, and the electricity consumed per capita in the residential and 

commercial sectors.  

 

Since not all manufacturing is energy intensive, the industry energy consumption regression includes the share of 

industry GDP that is derived from the most energy intensive sectors (e.g., mining, non-metallic minerals, primary 

metals, paper products, and chemicals, petro-chemicals, and rubber). Also, because electricity consumption in 

buildings is impacted by weather, the residential and commercial electricity regressions include the average heating 

degree days and the average cooling degree days (data from the National Oceanic and Atmospheric Administration). 

Lastly, since density has be demonstrated to be negatively correlated with transport (e.g.., Liddle 2013), the 

transportation energy regression includes population density.  

 

Given the stock-based nature of the data and the fact that the US states are not independent, we know/suspect the 

data exhibit both cross-sectional correlation and nonstationarity, in addition to heterogeneity. Thus, we employ a 

heterogeneous panel estimator that addresses both nonstationarity and cross-sectional dependence, i.e., the Pesaran 

(2006) common correlated effects mean group estimator (CMG). The CMG estimator accounts for the presence of 

unobserved common factors by including in the regression cross-section averages of the dependent and independent 

variables. The CGM estimator is robust to nonstationarity, cointegration, breaks, and serial correlation. 

Results & Discussion 

The results of the initial five regressions are shown in the table below. For all five dependent variables, GDP per 

capita is statistically significant and well below unity—a saturation effect is expected for energy consumption in 

highly developed states. Prices are also significant and negative—suggesting taxes could be used to reduce energy 

consumption. Both heating and cooling degree days are positive and significant for the building electricity 

consumption regressions. While, air condition may be more energy intensive than heating, the elasticity for heating is 

higher than that for cooling. This relationship suggests that for the geography/climate of the US, heating buildings is 

more important than cooling in determining electricity consumption. Whereas population density was significant and 

negative for the total energy consumption regression, it was insignificant for the transportation energy regression—a 

topic explored further below. Lastly, the industry GDP share of the most energy intensive sectors was highly 

insignificant—perhaps, not surprising since this share was only substantially above 10% for states with large mining 

sectors (e.g., Alaska, West Virginia, and Wyoming).  
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Dependent 

Variable 

Total 

Energy 

Transport 

Energy 

Industrial 

Energy 

Residential 

Electricity 

Commercial 

Electricity 

GDP p.c. 0.19**** 0.31**** 0.40*** 0.12*** 0.18** 

Price -0.39**** -0.43**** -0.30**** -0.14**** -0.08* 

Heating degree 

days 

0.11****   0.23**** 0.08**** 

Cooling degree 

days 

0.03****   0.10**** 0.07**** 

Population 

density 

-0.66*** -0.13    

Share of energy 

intensive 

industries 

0.00  0.04   

Notes: All variables logged. All dependent variables in per capita. Statistical significance level of 10%, 5%, 1% and 

0.1% denoted by *, **, ***, and ****, respectively. 

 

 

It is possible that the GDP per capita/income elasticity could be different at different levels of income. Thus, we 

consider whether the individual state income elasticity estimates vary according to the level of income for total 

energy and industrial energy consumption by plotting those elasticity estimates against the individual state average 

income for the whole sample period. There is some evidence that the GDP per capita elasticity for both total energy 

and industrial energy consumption rises and then falls with average GDP per capita (thus forming an inverted-U); 

however, the R-squares for both simple trendlines were very small.  

 

To further consider the possibility of income saturation, the sample was split in two, where the 15 wealthiest states in 

1987 (those that had GDP per capita’s that were greater than the US as a whole) formed one panel, and the transport 

energy and residential electricity models were rerun. For the high income panel the income elasticity for both 

transport energy and residential electricity were insignificant (the income elasticities remained significant for the 

other panel). Hence, for the wealthiest US states, increases in income have little impact on transport and residential 

energy consumption.  

 

Since population density’s impact on transport may be more important cross-sectionally than over time and 

heterogeneous estimators first calculate cross-sectional regressions, we split the panel into three based on the states’ 

average population density for the sample period and rerun the transportation energy regressions (and exclude 

population density). The resulting GDP per capita elasticity became significantly smaller as the panel’s average 

population density was greater (i.e., the panel with the lowest population densities had the largest GDP per capita 

elasticity and the panel with the highest densities had the smallest elasticity). Thus, population density does indeed 

appear to impact transport energy consumption in the US states.  

 

To test for possible price response asymmetries, each price series was decomposed into three series: the historical 

high price, cumulative price drops, and cumulative price increases (as in Gately and Huntington 2002). The three 

decomposed price elasticities were never statistically significantly different. Lastly, it was tested whether energy 

consumption growth reacted symmetrically to positive vs. negative GDP growth. As with the price asymmetry 

analysis, while the estimated coefficients for positive and negative GDP growth were different, that difference was 

never statistically significant.  
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