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Overview
Almost all demand subsidy programs to promote new technologies face the same problem before the programs start: how to adjust the subsidy level over time, when there is rapid technological change. The case of subsidy programs for solar photovoltaic (PV) systems is quite instructive. Several programs across the world have had major difficulties in addressing this problem. For example, recent studies of PV programs in Britain (Vaughan et al., 2011), Australia (Macintosh and Wilkinson, 2011) and the U.S. (Bird et al., 2012) reported program management issues, mainly due to oversubscriptions to the subsidy programs resulting from over-subsidizing. Not knowing the future technology costs (and potentially demand levels) makes the adjustment difficult (Bird et al., 2012). Dynamic programming (DP), by specifying a demand function and a learning-by-doing function, offers a useful method in tackling this class of problems. van Benthem et al. (2008) applied this approach and found that the optimal solar subsidy policy was very similar to the referenced California Solar Initiative (CSI) policy. In this paper, we build upon the basic framework in van Benthem et al. (2008), but improve the framework and the analysis across multiple directions. Specifically, our contributions include: (i) more robust assumptions and description of the policy scenario in California at the time when CSI was being designed, (ii) improved development and justification of the functional forms in the model, and perhaps most importantly (iii) inclusion of uncertainties from the technological change side in order to better align the model with the reality. 
Methods
We made the use of the data from both the Emerging Renewables Program (ERP) and CSI program in California, as estimating the learning-by-doing (LBD) coefficient needs to account for the learning phenomenon from the very beginning of the relevant market. Furthermore, in order to build a flexible but representative DP model, this paper explored various functional forms for the PV demand. After careful estimation and several robustness checks, this paper ended up with a linear demand equation with a lagged dependent variable term, which was very similar to a binary discrete choice model (Creti and Joaug, 2012). We also developed a Bass diffusion type demand function, but found similar results. As to the objective function, we started with a goal to maximizing the technology adoption over the effective policy period and then added another goal to maintain policy certainty. The resulting DP model was first solved analytically following Kalish and Lilien (1983) that used the Hamiltonian, and then solved computationally in GAMS for the deterministic case. Lastly, we introduced uncertainties into the LBD equation either by making the learning coefficient time-varying (via a dynamic regression model) or through an additive uncertainty term, and then solved the new DP model computationally again. 
Results
We arrived at similar results through the different approaches we explored in the paper. First, the analytic results indicated that the rate of the subsidy reduction should be positively related to the so-called penetration effects (similar to peer effects, but at a higher geographic level) and the learning-by-doing effects; the bigger these two effects are, the faster the subsidy should decrease. Second, the computational results from the deterministic case revealed the same pattern. After empirically parameterizing the penetration effect as 0.268 and the learning coefficient as 7.5%, we found that the optimal CSI schedule (baseline case) should start not at $2.5/W as it did in CSI, but instead at a much higher level of $4.2/W (Note that the PV installation price was around $9/W at that time); and that the effective policy period was three years instead of six years (Fig. 1). With the ultimate goal being to achieve the maximum PV diffusion within the defined policy horizon, the resulting PV adoption in our optimal solution was 32.2 MW more (8.1% higher) than the corresponding CSI number. We performed sensitivity analysis for the two most important parameters in the model: the penetration effect and the learning coefficient. The resulting optimal subsidy schedules were not very different from the baseline case. Another interesting policy scenario was to restrain the variation of subsidy level changes from time to time as to maintain policy certainty. For this case, we found that the ultimate level of PV adoption dropped by around 10% compared to the baseline case, which could be roughly considered as the price of policy certainty. Lastly, after introducing uncertainties into the DP model via either the dynamic learning coefficient or an additive noise term, we found that the final result was very similar to the baseline case. That is because our model kept updating the uncertainty information over time using newly incoming data (as becomes available over the policy time horizon) and also due to the fact that empirically the learning phenomenon of PV installed costs was relatively stable from 2007 to 2009.
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Fig. 1. Optimization Baseline Results: Comparison with True Annual CSI Schedule

Conclusions
In conclusion, in order to maximize the total PV technology diffusion under budgetary constraints, the PV subsidy schedule we obtained is more aggressive than the current CSI schedule: the optimal PV subsidy schedule for California would have started at a higher level and ended faster. This is due to the strong penetration effect and the modest learning-by-doing phenomenon we have found from the empirical data. On the other hand, if policy certainty is a key criterion—that is if it is desired to keep the incentive level changes minimal and predictable—the optimal subsidy schedule would look like the actual CSI schedule. Therefore, the CSI was under-subsidizing people as to maximize cumulative PV adoption, but was not if considering other objectives such as policy certainty.  
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