THE IMPORTANCE OF ENERGY QUALITY IN ENERGY INTENSIVE MANUFACTURING: EVIDECE FROM PANEL COINTEGRATION & PANEL FMOLS
Brantley Liddle, Victoria University, +61 3 9919 1094, btliddle@alum.mit.edu
Overview

There is a substantial and growing literature employing cointegration modeling to examine the energy-GDP relationship at a national scale; among the most popular models is one based on an aggregate neoclassical production function. Among the consensuses emerging from this vast literature are: (i) models should be multivariate to avoid the missing variable bias; (ii) analyses should employ panel data to improve the power of unit root and cointegration tests that can be impaired by the short data spans typically available for single countries; and (iii) investigators should determine the magnitude, sign, and significance of elasticities, rather than just performing Granger-type causality tests. 

This paper borrows those three popular ideas along with two seldom used ones: to use data disaggregated along sectoral lines and to adjust energy consumption for the quality of the energy source (e.g., electricity is of higher quality than oil, which is of higher quality than coal). Those five ideas are used to examine the role of energy quality in the five most energy intensive manufacturing sectors with OECD panel data. Such results are useful for both energy-GDP cointegration/causality modelers and CGE modelers, who may need to estimate elasticities. 

Very few energy-GDP cointegration studies have used disaggregated data and the production function model (perhaps, only one), and no such studies have (i) employed panel data, (ii) used data disaggregated at a greater level than manufacturing (i.e., ISIC two-digit or higher resolution), nor (iii) estimated elasticities. Soytas and Sari (2007) consider manufacturing in Turkey, and determine that electricity consumption, capital, labor, and value added are integrated order one and cointegrated. (They perform Granger-causality tests but do not estimate elasticities.) 

Stern (1993) considered both a conventional measure of energy consumption and a quality weighted index of energy (that paper, based on US, used an aggregate production function model). Such consideration is important because some forms of energy can produce more work than others: a unit of electricity is of higher quality than a unit oil, which itself is of higher quality than a unit of coal. Also, arguably reflecting these differences in productivity, electricity tends to be the most expensive energy source, followed by oil, and coal tends to be among the least expensive energy sources.  Despite the results of Stern (1993), very few energy-GDP cointegration/causality studies have considered quality adjusted energy consumption since then (I am aware of only three others).

Methods
The database used in the paper was constructed by combing energy consumption (and energy price data to construct the energy quality index) from the IEA’s Energy Balances with economic data from the Structural Analysis Database (STAN) published by the OECD. I focus on the five most energy intensive sectors: iron and steel, non-ferrous metals, non-metallic minerals, chemicals, and pulp and paper. 

I take a constant return to scale Cobb-Douglas production function used elsewhere in the energy-GDP literature, depending on whether energy consumption or the energy quality index is used there are two equations for each sector: 
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Where VAi,t is value added for country i in time period t, Ki,t is capital stock, Ei,t is energy consumption, and Li,t is the labor. Like Stern (1993), EQi,t, quality weighted final energy use, is based on a Divisia index, proposed by Berndt (1978), where the consumption of the individual fuel types is weighted by their expenditure shares, i.e., the differences in prices reflect the differences in energy quality or productivity. Taking natural logs forms the following two models which are estimated for each of five energy intensive manufacturing sectors:
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where the constants a and b are the country and time fixed effects, respectively, and 
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 is the error term. 

First it must be determined if the variables contain a panel unit root. Two panel unit root test are used: a first-generation one that allows for heterogenous autoregressive unit root process across cross-sections; and a second-generation one that allows for cross-sectional dependence to be caused by a single (unobserved) common factor. If all the variables are integrated of the same order, the next step is to test for cointegration, i.e., whether there is a long-run relationship among the variables. The well-known Pedroni heterogeneous panel cointegration test—an extension to panel data of the Engle-Granger framework—is employed. If the variables are shown to be cointegrated, then Pedroni’s FMOLS estimator produces asymptotically unbiased estimates of the long-run elasticities and efficient, normally distributed standard errors.
Results

The panel unit root tests provide is no evidence that any variable is I(2); at the same time I(1) integration can not be ruled out for any variable. Also, the panel cointegration tests provide no plausible reason to reject cointegration for either model (Equations 3 & 4) in any of the five sectors. Lastly, Table 1 below displays the long-run elasticity estimates for each sector and for each model—Equations 3 & 4.
Table 1. Long run elasticity estimates from panel FMOLS.

	Panel
	Variables
	Coefficient
	T-statistic
	Variables
	Coefficient
	T-statistic

	Chemicals
	E
	0.0367
	2.32
	EQ
	0.190
	2.63

	
	K
	0.163
	3.83
	K
	0.171
	3.46

	
	L
	0.696
	5.38
	L
	0.549
	3.44

	
	
	
	
	
	
	

	Iron & steel
	E
	-0.062
	-0.83
	EQ
	0.343
	1.89

	
	K
	0.042
	0.70
	K
	0.101
	1.66

	
	L
	0.143
	3.73
	L
	0.241
	4.06

	
	
	
	
	
	
	

	Nonferrous metals
	E
	0.316
	0.53
	EQ
	0.568
	4.85

	
	K
	0.043
	0.99
	K
	0.074
	2.03

	
	L
	1.307
	5.06
	L
	0.516
	3.77

	
	
	
	
	
	
	

	Nonmetallic minerals
	E
	0.063
	5.23
	EQ
	0.197
	8.72

	
	K
	0.207
	8.23
	K
	0.240
	8.82

	
	L
	0.484
	11.62
	L
	0.215
	11.14

	
	
	
	
	
	
	

	Pulp & paper
	E
	0.0098
	2.83
	EQ
	0.301
	5.94

	
	K
	0.235
	5.88
	K
	0.239
	5.87

	
	L
	0.174
	3.43
	L
	0.251
	4.67


Note: T-critical of 3.29, 2.58, 1.96, and 1.64 correspond to the following levels of statistical significance: p <0.001,  p <0.01, p<0.05, and p<0.10, respectively.
Conclusions

The results shown in Table 1 indicate the importance of energy quality—primarily the shift toward the use of high quality electricity—in these energy-intensive manufacturing sectors. In each case the elasticity for energy quality is greater than that for conventionally measured energy consumption—sometimes orders of magnitude greater. Indeed, the elasticity of conventionally measured energy is insignificant for iron and steel and nonferrous metals and very small for pulp and paper. When using the energy quality measure, the importance of energy consumption relative to the other production factors (capital and labor) stands out—particularly so for iron and steel, nonferrous metals, and pulp and paper.
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