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abstract

Using an econometric model, we generate scenario projections of CO2 emissions 
under different sets of assumptions on the underlying drivers. These drivers in-
clude GDP, the energy price, economic structure, and the underlying emissions 
trend. Our baseline scenario projects that Saudi CO2 emissions will rise from 540 
Mt in 2019 to 621 Mt in 2030 and 878 Mt in 2060. In a high GDP growth scenario, 
the corresponding numbers for CO2 emissions are 635 Mt in 2030 and 985 Mt in 
2060. In contrast, in a low GDP growth scenario, CO2 emissions would grow to 
607 Mt in 2030 and 781 Mt in 2060. In an economic diversification scenario, CO2 
emissions would grow to 602 Mt in 2030 and 769 Mt in 2060. These projections 
are 646 Mt and 1096 Mt for the heavy industrialization scenario. Even in our low-
est scenario, further efforts are needed to meet the net zero ambition.
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1. INTRODUCTION

As a party to the Paris Agreement, which aims to limit the global average temperature rise 
to below 2 degrees Celsius and as close as possible to 1.5 degrees Celsius (Paris Agreement, 2015), 
Saudi Arabia has submitted a nationally determined contribution (NDC). NDCs are essentially cli-
mate action plans encompassing a party’s climate target and the initiatives or policies it plans to im-
plement to achieve that target. NDCs lie “at the heart of the Paris Agreement” and are submitted in 
5-year intervals, with each successive NDC (either referred to as a new or updated NDC) reflecting 
higher ambition (UNFCCC, 2022).

Saudi Arabia has so far participated in two successive rounds of NDC submissions. In its 
first NDC, Saudi Arabia pledged to reduce its greenhouse gas (GHG) emissions by 130 million tons 
(Mt) of carbon dioxide equivalent (CO2eq) annually by 2030 (Kingdom of Saudi Arabia, 2015, p. 1). 
In its updated NDC, Saudi Arabia more than doubled its previous goal, announcing its new pledge to 
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reduce GHG emissions by 278 MtCO2eq annually by 2030 (Kingdom of Saudi Arabia, 2021, p. 2)1. 
Saudi Arabia also recently announced its ambition to achieve net zero by 2060 (Arab News, 2021). 

Saudi Arabia’s NDC emission target is expressed as a reduction below a baseline or busi-
ness-as-usual emissions growth scenario. Vaidyula and Hood (2018) refer to such targets as baseline 
targets, which many developing countries appear to prefer. In contrast, other countries, especially 
developed countries, prefer absolute targets, which are expressed as a reduction below historical 
emissions in a specified base year. Baseline targets rest on developing a baseline or business-as-
usual scenario, which shows how emissions would evolve if no further mitigation policies or mea-
sures were adopted (IPCC, 2022).2 

Some countries with baseline targets have not yet publicly released quantitative informa-
tion about their baselines in their NDCs (UNFCCC, 2021). However, most have provided qualitative 
information about the key assumptions, variables, or parameters that their baseline scenarios depend 
on. There are no specific requirements that need to be followed by countries when developing a 
baseline for their target. However, most countries appear to be using gross domestic product (GDP) 
and population growth as key parameters driving their baseline scenarios (UNFCCC, 2021).  

The lack of quantitative baselines may stem from the difficulties of constructing baseline 
scenarios. As noted by Vaidyula and Hood (2018), many variables can influence a country’s baseline 
emissions scenario. Furthermore, the choice of method used to project emissions can significantly 
influence its trajectory. Given these uncertainties, some parties to the Paris Agreement have released 
the specific modeling tools they used to estimate their baseline or business-as-usual emissions sce-
nario (UNFCCC, 2021).

Although Saudi Arabia is one of the countries that did not yet publicly disclose a quanti-
tative baseline in its NDC, it provided qualitative information on its baseline, which it has chosen 
to be a dynamic baseline (Kingdom of Saudi Arabia, 2021, p. 3). Saudi Arabia’s dynamic baselines 
depend on the level of economic development and the extent of economic diversification that occurs 
in the country over the coming years. Specifically, Saudi Arabia has envisioned two distinct but pos-
sible baseline scenarios: In the first, which is taken to be the default scenario, Saudi Arabia achieves 
economic diversification, as oil export revenues are “channeled into investments in high value-added 
sectors such as financial services” and tourism. In the second scenario, oil resources are utilized do-
mestically to expand Saudi Arabia’s energy-intensive industrial base, with increasing contributions 
of “petrochemical, cement, mining, and metal production industries to the national economy.” In its 
updated NDC, the Kingdom of Saudi Arabia (2021, p.4) states that the “main difference between 
the two baseline scenarios is the allocation of hydrocarbons produced for either domestic consump-
tion or export.” In other words, these two scenarios differ mainly in their assumptions on the future 
structure of the Saudi economy. 

The structure of the Saudi economy is expected to play a key role in the evolution of Saudi 
Arabia’s GHG emissions. The Saudi economy is poised to change dramatically following the launch 
of structural reforms in 2016 that aim to set the Kingdom on a path toward economic diversification 
(Saudi Vision, 2030). For example, the country has been reforming its energy prices under its Fiscal 
Balance Program, reducing the demand for energy and emissions and encouraging the growth of 
less emission-intensive industries (Fiscal Balance Program, 2019). The government has also com-
missioned the Public Investment Fund, its sovereign wealth fund, to invest in services sectors, such 

1.  The Kingdom’s NDC target specifies reductions, avoidances, and removals of GHG emissions to achieve the target.
2.  In their definition of baseline scenarios, the IPCC (2022) add that baseline scenarios are “not intended to be predictions 

of the future, but rather counterfactual constructions that can serve to highlight the level of emissions that would occur without 
further policy effort.”
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as tourism and non-oil industrial sectors (Public Investment Fund, 2018). Tourism is a relatively 
small sector in Saudi Arabia today. However, major development projects, dubbed Giga Projects, 
are expected to transform the sector in the near future (PIF Giga Projects, 2018). Further reforms 
and progress across multiple national programs are expected to significantly affect Saudi Arabia’s 
economic structure and, therefore, its emissions.

This paper contributes to understanding how emissions may evolve in Saudi Arabia through 
2030 and up to 2060 by producing various dynamic emissions scenarios, including a baseline sce-
nario, demonstrating how different variables, such as GDP, the real energy price, and economic 
structure, influence the evolution of CO2 emissions in Saudi Arabia. We focus on CO2 emissions 
only, which account for around 80–90% of total GHG emissions in Saudi Arabia. We construct 
our CO2 emissions scenarios using a preferred equation following the use of the two econometric 
methods, Autometrics and the Structural Time Series Model (STSM), that can explain the emissions 
data through a combination of trends, interventions, and right-hand side variables like GDP and 
energy prices—but in different ways. Based on the preferred equation, our projections show that 
CO2 emissions in Saudi Arabia would grow to 621 MtCO2eq by 2030 and 878 MtCO2eq by 2060 in 
our central business-as-usual baseline scenario (with several alternative scenarios also constructed 
as discussed in detail below).

This paper is organized as follows. Section 2 presents a brief review of the relevant lit-
erature, followed by Section 3, which details the estimation methodologies, the data used in the 
analysis, and the scenario construction. Section 4 presents the estimation results and the scenario 
emission projections and Section 5 concludes and offers some policy implications3.

2. LITERATURE REVIEW 

Climate change caused by GHG emissions lies at the heart of this paper, especially carbon 
dioxide (CO2), given its substantial share in total GHG emissions. Not surprisingly, the study of CO2 
emissions is a significant part of research on environmental issues. Since countries are looking for 
alternative solutions to mitigate the negative impacts of CO2 emissions, research dedicated to mod-
eling and forecasting the potential future trajectories of CO2 emissions encompasses a substantial 
portion of CO2 emissions-related studies. To the best of our knowledge, no previous journal paper 
has focused on the multivariate modeling of total CO2 emissions for Saudi Arabia using time series 
data. There are, however, several papers that use panel data, including Saudi Arabia. Considering the 
vast number of papers modeling CO2 emissions, we review only papers that include Saudi Arabia. 
In addition, since the main target of this study is to construct scenario simulations/forecasts, we also 
focus on papers dealing with forecasting. For more general information on papers devoted to CO2 
emissions modeling and forecasting, Mitić et al. (2019) is a valuable reference. 

Alkhathlan and Javid (2013) modeled Saudi Arabian CO2 emissions caused by energy con-
sumption, including petroleum, natural gas, and electricity, using data from 1980 to 2011. Their 
income elasticity of CO2 emissions from fuel consumption is 0.45. However, Alkhathlan and Javid 
(2013) did not make projections, and given that their data used for estimation ended in 2011, they 
did not capture the behavior of CO2 emissions in recent years. In addition, they modeled only 
fuel-based CO2 emissions, not total CO2 emissions. Al-Mulali and Tang (2013) modeled CO2 emis-
sions for GCC countries, including Saudi Arabia, using data from 1980 to 2009, finding a Sau-
di-specific income elasticity of 0.07. Arouri et al. (2012) studied a similar relationship for a panel 

3.  Section A.1 in the Appendix explores model selection further. Moreover, Sections A2 and A3 focus on the super exog-
eneity and parameter stability, respectively.
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of MENA countries. They concluded that there was an inverted U-shaped relationship for Saudi 
Arabia (with a data span of 1981–2005), which is arguably surprising given Saudi Arabia’s stage 
of economic development. Mahmood et al. (2022), using data from 1980 to 2019, modeled CO2 
emissions for GCC countries, considering asymmetric impacts, and, for Saudi Arabia, they did not 
find an asymmetric impact, the coefficient being insignificant for negative income growth. However, 
Mahmood et al. (2022) did not undertake any forecasting. Utilizing GCC group data for 1990–2011, 
Omri (2013) found a monotonically increasing relationship between income and CO2 emissions 
with a CO2 income elasticity of 0.67. Omri et al. (2015), utilizing panel data from 1990–2011, mod-
eled CO2 emissions for GCC countries, and, unlike Omri (2013), they concluded that there was an 
inverted U-shaped relationship between income and CO2 emissions for Saudi Arabia. Using panel 
data for OPEC member countries between 1990–2014, Onifade et al. (2020) concluded that income 
has an insignificant impact on CO2 emissions for Saudi Arabia. Ozcan (2013) used data from 1990 
to 2008 for the MENA countries and found an insignificant impact of income on CO2 emissions for 
Saudi Arabia.

In summarizing the papers reviewed above, the average income elasticity is approximately 
0.4, although the basis for these findings is arguably questionable. Furthermore, a common feature 
is that they did not produce projections for the future path of CO2 emissions. In addition, they used 
energy consumption as a driver of CO2 emissions, but Jaforullah and King (2017) have shown that 
using energy consumption to calculate CO2 emissions and then using the same variable for mod-
eling purposes results in biased estimation results. Moreover, according to Kennedy (2008), using 
some panel data techniques might result in under- or over-estimating country-specific features of 
relationships. 

Shannak et al. (2024), using data from 1990 to 2019, modeled transport-specific CO2 emis-
sions for Saudi Arabia and produced forecasts until 2030 that reached 184 Mt of CO2 emissions. 
However, as stated, Shannak et al. (2024) only considered transport-related CO2 emissions.

Given the primary aim of this paper, it is useful to consider previous attempts to construct 
scenario projections for CO2 emissions for Saudi Arabia; however, as far as we know, there are only 
three previous studies. Köne and Büke (2010) used linear trend analysis to model CO2 emissions 
for the top 25 emitters, including Saudi Arabia. They made projections for low, reference, and high 
economic growth scenarios for CO2 emissions by 2030, which ranged from 496 to 571 Mt. Using 
a Circular Carbon Economy framework, Alshammari (2020) evaluated various technological pos-
sibilities and potentials for attaining climate objectives and projected CO2 emissions until 2050. 
According to  their business as usual scenario, Saudi CO2 emissions would be between 643 Mt and 
2156 Mt in 2050. Based on univariate econometric estimated equations, Gasim et al. (2023) pro-
duced a baseline scenario for Saudi-specific total CO2 emissions until 2060, suggesting that in 2030 
and 2060, Saudi CO2 emissions could be 678 Mt and 970 Mt, respectively. However, the projections 
in Gasim et al. (2023) were constructed specifically to provide a baseline projection, not to make 
simulations for policy scenarios. 

This brief review of the relevant literature shows that, as far as we know, no published 
paper utilizes time series data estimation approaches to estimate models for projecting the potential 
future trajectory of Saudi Arabian CO2 emissions under different assumptions. This paper, therefore, 
aims to model Saudi Arabian CO2 emissions using a multivariate framework and then use the esti-
mated model(s) to make policy simulations until 2060 under different scenario assumptions.
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3. METHODOLOGIES AND DATA

Section 3.1 introduces the utilized estimation techniques, with a general overview in 
sub-section 3.1.1, an estimation procedure with Autometrics in 3.1.2, and STSM in 3.1.3. Sub-sec-
tion 3.1.4 introduces the data used for estimations and discusses the variables employed. Section 3.2 
provides scenario designs for the projections of CO2 emissions until 2060.

3.1 Econometric Estimation

3.1.1 Overview 

We model the natural logarithm of Saudi CO2 emissions as a function of a selection of 
vectors of drivers. In the general equations, one-year lags of all variables are included to capture 
autoregressive behavior, and a ‘preferred’ or ‘final’ equation is obtained by adding statistically sig-
nificant interventions (also known as dummy variables) and dropping the insignificant right-hand 
side variables while monitoring an array of diagnostic tests. To estimate the various models, we 
consider two different econometric techniques: Autometrics4 and the Structural Time Series Model 
since these both utilize a combination of trends and interventions but in very different ways. 

3.1.2 Autometrics 

The Autometrics multipath-search machine-learning algorithm (Doornik & Hendry, 2018) 
is applied to the General-to-Specific (Gets) Modelling approach (Hendry & Doornik, 2014). This 
approach identifies potential interventions caused by policy changes and shocks, whose omission 
might cause biased estimation results. It automatically assigns one-time pulse, blip, change in level, 
and break-in trend dummies to each observation and chooses the significant ones using the block-
search algorithm. The Autometrics general specification utilized is therefore given by: 
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where CO
t2  is the natural logarithm of Saudi CO2 emissions in the year t, Xt is a vector of drivers in 

the year t, IISt is an Impulse-Indicator, SISt is a Step-Indicator, DIISt is a Differenced Impulse-Indi-
cator, and TISt is a Trend-Indicator. � � � � �i i i i i, , , ,     are regression coefficients to be estimated; and 
ε t is a random error term ~ ( , ).NID 0 2��

The modeling procedure using Autometrics entails two parts (see, for example, Castle et 
al., 2017; Hendry, 2020). Firstly, the constant term and all the lagged values of the dependent and 
independent variables are fixed, allowing the algorithm to search for and choose the intervention 
dummies using what is referred to as a ‘minute’ significance level (0.01%). If, however, no inter-
ventions are found, the search is redone but with a ‘tiny’ significance level (0.1%), and if again no 
interventions are found, the search is redone with a ‘small’ significance level (1%) (see Hendry and 
Doornik (2014) on how to choose the optimal significance level). The specification that emerges 
from this process is regarded as the General Unrestricted Model (GUM). Secondly, the chosen 
dummies from the first stage are fixed, while the lagged values of the dependent and independent 

4.  It should be noted that Hendry (2020) took a similar approach to our Autometrics approach. He modeled UK CO2 
emissions data from 1860 to 2017 using a general-to-specific modeling approach and a multipath machine learning search 
technique. Hendry (2020) considered capital stock, GDP, oil consumption, and coal consumption as potential drivers of CO2 
emissions but concluded that capital stock and not GDP was an appropriate driver of UK CO2 emissions. Furthermore, Hendry 
(2020) also used his preferred equation to assess the UK’s 2050 CO2 target’s achievability.
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variables are unfixed. A new search is undertaken to determine the final preferred specification based 
on the congruency criterion and multiple diagnostic tests. In this step, what is referred to as a ‘huge’ 
significance level (10%) is utilized for the search, as suggested by Castle et al. (2021). This is all 
undertaken using the multipath selection procedure embedded in the PcGive-15.10 econometric 
modeling program (Doornik & Hendry, 2018). This procedure was applied to four sets of explana-
tory variables outlined below, and the results are also discussed below after outlining the alternative 
estimation methodology, the STSM.

3.1.3 STSM 

The STSM models CO
t2  emissions using a stochastic trend, which captures long-term 

movements in time series variables and can be extrapolated into the future (Harvey, 1989). For con-
sistency, the STSM general specification is:

CO CO
t tt t t t2 1 2 2 3 11
� � � � �

� �� � � � �X X  (2a)

where CO
t t2 , , X  and αi are as defined above, γ t is a stochastic trend (or time-varying intercept) and 

ε t is a random error term ~ ( , ).NID 0 2��  The stochastic trend is made up of a level µt and a slope βt 
which are defined as follows: 

� � � �t t t t� � �� �1 1  (2b)

� � �t t t� ��1  (2c)

where � ��t NID~ ) (0, 2  and � ��t NID~ ) (0, 2  are mutually uncorrelated random disturbance terms. If 
the variances of either ηt or ξt are found to be zero, that component of the trend becomes determin-
istic. If both hyperparameters are found to be zero, the stochastic trend collapses into a deterministic 
trend. Like Autometrics, dummy interventions can be identified and added to the model (Harvey & 
Koopman, 1992)—irregular interventions (Irrt), level interventions (Lvlt), and slope interventions 
(Slpt)—which capture important breaks and structural changes during the estimation period at cer-
tain dates. However, unlike Autometrics, this is a manual process with the decision about which 
dummy interventions to consider determined by an examination of the equation residuals, the irreg-
ular residuals, the level residuals, and the slope residuals as well as diagnostic statistics such as the 
non-normality tests for all sets of residuals during the testing down general to specific process. The 
interventions included in the estimated equation can then be incorporated into the stochastic trend, 
which can be defined as follows: 

� �t t� � irregular interventions + level interventions + slopee interventions  (2d)

The STSM is also often referred to as the unobserved components model since the trend 
attempts to capture any systematic influences on the left-hand side dependent variable not captured 
by the right-hand explanatory variables. Hence, in this case, it represents the changes in CO2 emis-
sions driven by a range of unobserved exogenous or autonomous factors, such as exogenous energy 
and CO2 emission factors, changes in environmental regulatory policies, increased environmental 
education and awareness, cultural changes, changes in preferences, etc. This interpretation of the 
estimated trend was coined the Underlying Energy Demand Trend (UEDT) when applied to behav-
ioral energy demand functions (Hunt et al., 2003 and Hunt and Ninomiya, 2003) but has recently 
also been applied to CO2 relationships by Javid and Khan (2020) and Guven and Kayakutlu (2020) 
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to estimate underlying carbon emission trends and dubbed by Guven and Kayakutlu (2020) as the 
Underlying Emissions Trend (UET) which we use here.

To estimate the STSM, equations (2a), (2b), and (2c) are initially estimated by maximum 
likelihood along with the Kalman filter using the software package STAMP 8.40 (Koopman et al., 
2007). Where identified, irregular, level, and/or slope interventions are included in the model and 
statistically insignificant variables excluded while ensuring that a range of diagnostic tests (detailed 
in the results below) are passed as well as ensuring that the auxiliary residuals associated with the 
irregular, level, and slope components do not suffer from non-normality. Consistent with the Auto-
metrics estimation, this approach was applied to four sets of explanatory variables, and the results 
are discussed below.

3.1.4 Data

The data used for estimation ranges from 1990 to 2019. Data for the dependent variable, 
total CO2 emissions (excluding emissions from land-use, land-use change, and forestry), are illus-
trated in Figure 1 and were obtained from Enerdata (2022). The independent variables considered 
for the Xt vector of drivers includes real GDP, sectoral value added for manufacturing, services, and 
agriculture, and the share of services in non-oil GDP. Real GDP data, illustrated in Figure 2, were 
obtained from the General Authority of Statistics (GaStat, 2021) latest release, running from 1984 
to 2021.

Figure 1. Total CO2 emissions in million tons.
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Source: Enerdata (2022)

The aggregate real energy price index, shown in Figure 2, was constructed in two steps. First, 
sectoral energy prices in Saudi Arabian Riyals (SAR) per ton of oil equivalent were obtained from 
Hasanov et al. (2020). Second, the index was constructed by calculating a weighted average of these 
sectoral energy prices, in which the weight for each sector is its contribution to gross domestic prod-
uct (GDP), obtained from GaStat (2021). The index covers all sectors in the economy, including the 
energy end-use sectors (e.g., manufacturing and financial services) and the transformation sectors 
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(e.g., power and refining). The aggregate energy price was adjusted for inflation using the consumer 
price index (CPI) obtained from GaStat (2021). There are three elements influencing our aggregate 
real energy price index: Changes in energy prices, inflation, and changes in the shares of the sectors. 
Using a single aggregate real energy price variable such as this index helps reduce dimensionality 
issues that arise from including too many separate energy prices as independent variables in an 
econometric equation. 

Figure 2. Aggregate energy price, Saudi Arabian Riyals per tonne of oil equivalent.
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Source: Hasanov et al. (2020), GaStat (2021), and authors’ calculation

The sectoral value-added manufacturing, services, and agriculture variables were con-
structed from the data comprising nine aggregated sectors of the Saudi economy obtained from 
GaStat (2021), which were combined into the three aggregated non-oil sectors to reduce dimen-
sionality. Table 1 displays the sectoral aggregation, and the three aggregated variables are illustrated 
in Figure 3. Finally, the share of services in non-oil GDP illustrated in Figure 4 was calculated by 
dividing the value added of total services (as defined in Table 1) by non-oil GDP, both taken from 
GaStat (2021).

Table 1: Economic Sector Cluster

Economic Sector Breakdown Sector Aggregation 
Agriculture, Forestry & Fishing Agriculture 
Mining & Quarrying Oil & Gas 
Manufacturing Manufacturing 
Electricity, Gas and Water Manufacturing 
Construction Manufacturing 
Wholesale & Retail Trade, Restaurants & hotels Services 
Transport, Storage & Communication Services 
Finance, Insurance, Real Estate & Business Services Services 
Community, Social & Personal Services Services 

Source: GaStat (2021)

The overarching aim of the estimation is to find a sound, statistically acceptable model 
that includes appropriate right-hand variables (or drivers) that are important in driving Saudi CO2 
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emissions now and in the future. Therefore, we considered several ‘sets’ of drivers, Xt, in our initial 
general models that could produce a preferred specification that allows us to develop relevant sce-
narios. These sets included the following.

• � SET I: The natural logarithms of gross domestic product (gdpt) and the real energy price 
(pt).

• � SET II: The natural logarithms of sectoral value added for manufacturing, services, and 
agriculture (manvat, agrvat, and srvvat) and the real energy price (pt).

• � SET III: The natural logarithm of GDP (gdpt) and the natural logarithm of the real en-
ergy price (pt), and the level share of services in non-oil GDP (SRV_SHt).

Figure 3. �Sectoral value-added numbers (Excluding the Oil Sector), million 2010 Saudi 
Arabia Riyals, 2010=100.
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Figure 4. Share of services in non-oil GDP, %.
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• � SET IV: The natural logarithms of GDP (gdpt) the real energy price(pt), and the share of 
services in non-oil GDP (srv_sht).

The general-to-specific approach described previously was applied to the general model of 
each of the above sets. SET I was initially considered since GDP and the real energy price were seen 
as two of the most substantive drivers, and although they prove to be important statistically, the level 
of economic activity and the structure of the economy are also important in driving CO2 emissions. 
Therefore, in SET II, the GDP variable was replaced in the initial general model by the value added 
of the manufacturing, agriculture, and service sectors. Whereas SET III nests SET I and controls for 
the share of the value added of services in non-oil GDP. Similarly, SET IV nests SET I but controls 
for the logarithm of the share of the value added of services in non-oil GDP. Therefore, via the test-
ing down model selection process, the preferred models for SET III and IV could be consistent with 
SET I (as is the case with the Autometrics estimation). However, none of the final models in SET II, 
SET III, and SET IV nest each other. The search process for the final models detailed below utilized 
the general models in SET II, SET III, and SET IV and chose the final model based on congruency 
in Autometrics and information criteria in the STSM approach and ensuring that, in the selection 
process, an array of diagnostic tests are satisfied. Table 2 reports the summary statistics of the vari-
ables used for the estimation, where upper case letters represent level variables and lower case letters 
represent variables in logarithms.

Table 2: Summary statistics of variables included in model estimation

VARIABLES N mean sd min max

co2 36 5.671 0.468 4.897 6.357
gdp 36 14.250 0.358 13.565 14.787
p 36 6.509 0.339 5.802 7.117
agrva 36 10.638 0.298 9.784 11.022
manva 36 12.272 0.499 11.674 13.046
srvva 36 13.147 0.448 12.644 13.883
SRV_SH 36 0.666 0.0143 0.643 0.706
srv_sh 36 –0.406 0.021 –0.442 –0.349

Source: Authors’ Calculations based on data from GaStat (2021) and Enerdata (2022)

3.2 Scenario Design

We build multiple scenarios to consider the alternate pathways CO2 emissions in Saudi 
Arabia might follow over the coming decades. This section introduces the construction and ratio-
nale regarding the assumptions pertaining to the underlying drivers, which include GDP growth, the 
composition of GDP (i.e., the structure of the economy), energy prices, and other exogenous factors, 
which drive the CO2 emissions projections up to 2060. For each underlying driver, we construct low, 
central, and high projection scenarios. 

The Saudi GDP projections are initially obtained from the Oxford Economics Model 
(OEM, 2022), which predicts that the Saudi economy’s real growth will average 1.2% per year 
up to 2060. This would see the Saudi economy grow by 63% by 2060. The OEM’s real GDP an-
nual growth rate projection is designated as our low GDP scenario, given that its predicted average 
growth rate is significantly lower than the historical average growth rate in Saudi Arabia over the 
last decade. For our central GDP scenario, we increase the OEM GDP annual growth rate projection 
by a modest 1% to allow for a growth rate that more closely reflects the historical growth rate of the 
Saudi economy. Since this central GDP scenario reflects the historical data more closely, we set it 
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as our baseline GDP projection. Under this scenario, the economy would double in size by 2060. 
Finally, for our high GDP scenario, we increase the GDP annual growth rate projection by another 
1% over the baseline to construct an optimistic economic growth scenario, which would triple the 
Saudi economy’s size by 2060. 

Our low energy price scenario assumes that energy prices remain fixed nominally and thus 
decline in real terms up to 2060. We set this as our baseline scenario as it extends the historical trend 
of fixed nominal energy prices since 2018. In our central energy price scenario, we assume that 
energy prices remain fixed in real terms up to 2060. This central scenario would see nominal energy 
prices grow 2% per annum during the 2023–2060 period. Finally, our high energy price scenario re-
flects a wave of energy price reform in 2023, in which nominal energy prices increase significantly, 
followed by gradual increases in nominal energy prices up to 2030 (at 5% per year). This scenario 
is picking up a recent announcement of future price changes in Saudi Arabia (Arab News, 2022). 
This announcement stated that by the fourth quarter of 2023, the government would implement price 
adjustments to natural gas, Arab heavy crude oil, ethane, heavy fuel oil, and Arab light crude oil. In 
addition, the government would review those prices annually up to 2030. From 2030 onwards, in 
our high energy price scenario, we assume that energy prices remain fixed in real terms up to 2060, 
keeping in line with inflation.

The structure or composition of the Saudi economy is another key driver of CO2 emissions 
and was mentioned explicitly in Saudi Arabia’s NDC. As noted previously, Saudi Arabia’s NDC 
described two dynamic baselines, one that reflects heavy industrialization and another that reflects 
economic diversification and a transition towards services. We design our low, central, and high 
scenarios from the perspective of the share of services. Our central services scenario assumes that 
the service sector will gradually grow to 62% of the Saudi economy by 2060, with manufacturing 
accounting for 22% by 2060. This is designated as the baseline scenario as it extends the observed 
historical trends in the composition of the Saudi economy (GaStat, 2021). Our low service share 
scenario, or heavy industrialization scenario, sees the share of services grow slowly to 49% by 2060, 
while the share of manufacturing grows rapidly to 40% by 2060. In our high service share scenario, 
the service share grows to 75% of the Saudi economy by 2060, in line with several developed econ-
omies, while manufacturing declines to 14% by 2060 (Herrendorf et al., 2013). 

Lastly, we design different scenarios of how exogenous factors might affect CO2 emis-
sions moving forward. As discussed previously, the UET captures the combined effect of exogenous 
factors on CO2 emissions. These exogenous factors include changes in environmental regulations, 
increased environmental awareness, cultural changes, changes in tastes and behavior, and improve-
ments in energy efficiency, to name a few. Our central baseline projections extend the UET into the 
future based on its last observed slope value (this is the default approach used in STSM forecasting.) 
In our central UET scenario, the trend causes a negligible increase in CO2 emissions up to 2060. 
Since UET represents the impact of various exogenous factors, it is hard to make concrete assump-
tions about all these factors. Hence, to compare with the benchmark baseline, where we assumed 
the UET to follow the same slope as in the last sample value, we assume a slight change (0.00015 
increase or decrease) in the slope of the UET for the alternative scenarios. Under the ceteris paribus 
condition, a 0.00015 increase (decrease) in the slope of the UET corresponds to the 0.015% increase 
(decrease) in CO2 emissions driven by factors other than those explicitly entering the model. Our 
high UET scenario, an unlikely scenario, assumes a change in these exogenous factors that makes 
the UET more upward-sloping. We construct this high UET scenario by increasing the slope com-
ponent of the UET by 0.00015 annually. In contrast, our low UET scenario assumes changes in the 
exogenous factors, such as rapid improvements in energy efficiency, that would make the UET more 
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downward-sloping and, therefore, emission-decreasing. We construct this low UET scenario by de-
creasing the slope component of the UET by 0.00015 per year. The UET impact on CO2 emissions is 
a compelling reminder for policymakers that there are other factors, beyond conventional economic 
drivers, that can have a significant impact on CO2 emissions.

4. RESULTS

Estimation results from the Autometrics are presented in sub-section 4.1.1, and from STSM 
in 4.1.2. Sub-section 4.1.3 discusses the preferred model for the projections. The results of the pro-
jections are presented in section 4.2; 4.2.1 discusses the baseline projections, while 4.2.2 details the 
projections from other scenarios. 

4.1.1 Autometrics Specifications

Table 3 gives the estimated preferred specifications from applying the Autometrics es-
timation strategy outlined above to SET I and SET II only given that no acceptable specification 
was found for SET III and SET IV; the service share variables were always insignificant and/or the 
wrong sign. Hence, consistent with the general to specific modeling approach, the estimations that 
started with SET III and SET IV resulted in the final model for SET I presented in Table 3, which 
passes all diagnostic tests and includes a few interventions with no lagged dependent variable and 
only contemporaneous terms for the real energy price and GDP. Furthermore, it suggests that a 1% 
increase in the real energy price and GDP would reduce CO2 emissions by 0.14% and increase CO2 
emissions by 0.13%, respectively.

For SET II the final equation includes more interventions than for SET I and passes all di-
agnostic tests other than the normality test of the residuals that fails at the 10% level of significance. 
The final equation for SET II, unlike for SET I, does include a lagged dependent variable as well 
as a contemporaneous term for the real energy price and a contemporaneous and lagged term for 
manufacturing sector value added. However, the value added for the other sectors were not retained 
since they were not statistically significant. Therefore, the Autometrics estimated equation for SET 
II suggests that in the long-run a 1% increase in the real energy price and manufacturing value added 
would reduce CO2 emissions by 0.08% and increase CO2 emissions by 0.81%, respectively.

4.1.2 STSM Specifications 

The estimated preferred specifications from applying the STSM procedure to all four sets 
of explanatory variables are presented in Table 4. For SET I, the final equation includes several 
interventions and passes all diagnostic tests. There is no lagged dependent variable and, like the Au-
tometrics preferred model for SET I, retains only contemporaneous terms for the real energy price 
and GDP. The estimated price and income coefficients suggest that a 1% increase in both variables 
would reduce CO2 emissions by 0.10% and increase CO2 emissions by 0.23%, respectively—a sim-
ilar price response to the Autometrics model for SET I but a somewhat higher GDP response. The 
preferred model also includes a UET illustrated in the top left-hand side of Figure 5. This UET is 
generally upward sloping (CO2 emission increasing), although the rate of increase falls towards the 
end of the estimation period given the inclusion of a slope intervention in 2015. At the end of the 
estimation period, holding the real energy price and GDP constant, the trend suggests an autono-
mous increase in CO2 emissions of 0.72% per annum—which comes from an estimated underlying 
slope increase of 4.45% per annum but the slope intervention in 2015 brings this down by 3.73% 
per annum.



Energy Transition in Oil-Dependent Economies / 85

Open Access Article

For SET II, the final equation includes only one level intervention for 1991 and passes all 
diagnostic tests. Unlike the preferred Autometrics model for SET II, there is no lagged dependent 
variable, nor a lagged manufacturing value-added term. However, a contemporaneous term for agri-
culture value added is retained as is the contemporaneous term for the real energy price (like the Au-
tometrics model). The model, therefore, suggests that a 1% increase in the real energy price would 

Table 3: Summary of Autometrics Estimation Results (Dependent Variable: CO
t2 )

SET I SET II SET III SET IV 
Variable / Coefficients 

 5.333*** -2.2140***
 - 0.4052***

 -0.1366*** -0.0483***
 - - 
 0.1306** 

 - 
 0.7342*** 

 -0.2504***
 - 

 - 
 - 

 - 
_ 

_ 
_ℎ 

_ℎ 
Interventions / 
Indicator 

S1:1986** 
T1:1992*** 
T1:1993*** 
T1:2015*** 

T1:1987*** 
S1:1990*** 
S1:1993*** 
T1:1996*** 
T11997*** 
I:2002*** 

Given the signs of 
the extra drivers 
included in the 
model were not 
statistically 
acceptable and/or 
of the wrong 
expected sign there 
is no Autometrics 
model for SET III 

Given the signs of 
the extra drivers 
included in the 
model were not 
statistically 
acceptable and/or 
of the wrong 
expected sign there 
is no Autometrics 
model for SET IV. 

Long-run 
= 5.33 − 0.14
+ 0.13 


= −3.72 − 0.08
+ 0.81

Goodness of Fit 
 0.999 0.999 
 0.999 0.999 
AIC -5.2345 -5.6781
SC -4.9235 -5.1893
F F(6, 28) = 4512 F(10, 24) = 4547 

Residual Diagnostics 
AR(1-2) F(2, 26) = 0.02 F(6, 22) = 0.02 

ARCH (1-1) F(1, 33) = 0.76 F(1, 33) = 0.10 
Normality 0.87 5.75* 

Hetero F(10, 24) = 0.90 F(15, 18) = 0.52 
Hetero-X F(17, 17) = 0.69 n/a 
RESET23 F(2, 26) = 0.01 F(2, 22) = 0.40 

Notes:
-The blacked-out cells indicate that these variables were not included in the general model before testing down.
- *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively;
- R2 is the Coefficient of Determination, 

–
R2 is the Adjusted Coefficient of Determination, F is the overall goodness-of-fit 

statistic distributed as F(v1, v2), and the AIC and SC are the Akaike and Schwarz Information Criteria when the log-likelihood 
constant is included;
- AR(1-2) is the 2nd order autocorrelation statistic distributed as F(v1, v2);
- ARCH (1-1) is the 1st order autoregressive conditional heteroskedasticity statistic distributed as F(v1, v2);
- Normality is the Doornik and Hansen statistic and is approximately distributed as χ2

(2);
- Hetero and Hetero-x are heteroscedastic statistics both distributed as F(v1, v2); and
- RESET is the Ramsey RESET statistic distributed as F(v1, v2).
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Table 4: Summary of the STSM Estimation Results (Dependent Variable: CO
t2 )

 - - - - 
 -0.1037*** -0.1054*** -0.1174*** -0.1174***

 - - - - 
 0.2285*** 0.1694*** 0.1712*** 

 - 0.1461*** 0.1458*** 
 0.3986*** 

 - 
 0.4874*** 

 - 
 - 

 - 
_ -1.2455*** 

_ - 
_ℎ -0.8313***

_ℎ - 
Interventions: Lvl1987*** 

Lvl1994*** 
Irr2010* 
Slp2015*** 

Lvl1991*** Irr1988*** 
Lvl1994*** 
Irr2002** 
Irr2007*** 
Irr2010*** 
Irr2012** 
Slp2016*** 

Irr1988*** 
Lvl1994*** 
Irr2002** 
Irr2007*** 
Irr2010*** 
Irr2012** 
Slp2016*** 

UET component Fixed Level 
Stochastic Slope 

Stochastic Level 
Fixed Slope 

Fixed. Level 
Fixed Slope 

Fixed. Level 
Fixed Slope 

Long-run 
=  − 0.10
+ 0.23 


=  − 0.11
+ 0.40
+ 0.49 


=  − 0.12
+ 0.32
− 1.25_


=  − 0.12
+ 0.32
− 0.83ℎ_

Goodness of Fit 
p.e.v. 0.00031018 0.00035536 0.00007197 0.00007255 
AIC -7.5641 -7.5424 -8.7393 -8.7313
BIC -7.1641 -7.2313 -8.1172 -8.1092
 0.9988 0.9986 0.9998 0.9998 


 0.8206 0.7793 0.9661 0.9658 
Residual Diagnostics 

Normality 0.84 0.08 0.04 0.03 
H(n) H(9) = 1.65 H(9) = 0.73 H(7) = 0.82 H(7) = 0.80 
r(1) -0.08 -0.03 0.01 0.01 
r(2) -0.16 -0.07 -0.00 -0.00 
r(3) -0.10 0.08 -0.00 -0.00 
r(q) r(6) = 0.02 r(6) = 0.20 r(5) = -0.12 r(5) = -0.12 

Q(q,q-p) ()
  = 2.87 ()

  = 5.76 ()
  = 0.76 ()

  = 0.80 
Auxiliary Residuals 
Normality–Irregular 0.36 0.74 0.69 0.70 
Normality – Level 1.23 0.16 1.43 1.28 
Normality – Slope 4.13 2.42 0.56 0.64 
Prediction Failure ()

 = 11.30 ()
 = 6.58 ()

 = 3.76 ()
 = 3.71

SET I SET II SET III SET IV 
Variable / Coefficients 

Notes:
-The blacked-out cells indicate that these variables were not included in the general model before testing down.
- *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively;
- R2 is the Coefficient of Determination, Rd

2 is the Coefficient of Determination based on differences, and the 
p.e.v. is the Prediction Error Variance (p.e.v.);
- AIC and BIC are Akaike and Bayesian Information Criteria based on p.e.v. 
- Normality are the Bowman—Shenton statistics and are approximately distributed as χ2

(2);
- H(n) is a Heteroscedasticity statistic distributed as F(n,n);
- r(1), r(2), r(3), and r(q) are the serial correlation coefficients at the equivalent residual lags, approximately 
normally distributed;
- Q(q,q-p) is the Box—Ljung statistic distributed as χ2

(q–p); and
- Prediction Failure is a predictive failure statistic distributed as χ2

(f ).
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reduce CO2 emissions by 0.11% and a 1% increase in manufacturing value added and agriculture 
value added would increase CO2 emissions by 0.40% and 0.49%, respectively—somewhat different 
to that obtained by the Autometrics estimates for SET II. The estimated UET for the STSM equation 
for SET II is illustrated in the top right-hand side of Figure 5 and again is generally upward sloping 
and at the end of the estimation period, holding the real energy price, manufacturing value added, 
and agriculture value added constant, the trend suggests an autonomous increase in CO2 emissions 
of 1.19% per annum—somewhat larger than that for the SET I STSM specification.

Figure 5: �Estimated Underlying Emissions Trends (UETs) for the STSM preferred 
specifications.
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The preferred specifications for SET III and SET IV are very similar with the same in-
terventions, the same terms retained for the real energy price and GDP; the only difference being 
that in SET III the contemporaneous term for the share of services value added in non-oil GDP is 
included whereas for SET IV it is the natural logarithm of the share of services value added in non-
oil GDP instead. Furthermore, both pass all diagnostic tests, and both suggest that a 1% increase in 
the real energy price and GDP would reduce CO2 emissions by 0.12% and increase CO2 emissions 
by 0.32%, respectively. Not surprisingly, the estimated UETs for the two specifications are also very 
similar, as illustrated in the bottom half of Figure 5. Moreover, both trends suggest that, at the end 
of the estimation period, holding the set of drivers constant, there would be an autonomous increase 
in CO2 emissions of 0.45% per annum made up of an estimated underlying slope increase of 3.91% 
per annum that is reduced somewhat by the break in the slope in 2016 (i.e., the estimated slope in-
tervention in 2016) to 3.46% per annum; thus, the only difference between the SET III and SET IV 
estimated models is the way services value added is entered in the equations. For SET III it is the 
actual proportionate share of services in non-oil GDP and the estimated coefficient suggests that a 
one percentage point increase in the share would reduce CO2 emissions by 1.25% whereas for SET 
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IV it is the natural logarithm of the share and the estimated coefficient suggests that a one percentage 
increase in the share would reduce CO2 emissions by 0.83%.

4.1.3 Preferred Specification for Baseline Prediction and Scenarios 

The previous section presented several results using the two different methodologies and 
the different sets of explanatory variables. This illustrates our attempt to find a sound statistically 
acceptable model that includes the appropriate and important drivers that affect CO2 emissions now 
and in the future. Multiple assumptions on the evolution of these underlying drivers are used to 
underpin the CO2 emissions scenarios. Therefore, a choice had to be made from those models pre-
sented above based on their statistical validity and the usefulness of the models for the scenario 
policy analysis. 

When considering the two Autometrics specifications in Table 3, the specification for SET 
II has the lower information criteria but fails one of the diagnostic tests—given this, and that no 
preferred specification was found for SET III nor SET IV, on balance the SET I specification that 
includes the real energy price and GDP is preferred. When considering the four STSM specifications 
in Table 4, they all pass all the diagnostic tests, but the specifications for SET III and SET IV clearly 
have lower information criteria than the specifications for SET I and SET II—so this would suggest 
the choice is between the SET III and SET IV specifications. Out of these two, it is a close decision, 
but given that the SET III specification has slightly lower information criteria and that the interpre-
tation of the level share rather than the natural log of the share is easier, it is preferred to the SET IV 
specification. Thus, it comes down to choosing between the Autometrics specification for SET I and 
the STSM specification for SET III. To aid the choice, we conducted a range of encompassing tests 
detailed in the Appendix, which clearly suggest that the SET III STSM specification dominates the 
SET I Autometrics specification. Furthermore, the SET III STSM specification has the advantage 
of including extra drivers compared to the SET I Autometrics specification in terms of the service 
value added share and the trend. Therefore, the SET III STSM specification was used to generate the 
scenarios detailed in the following sections. In summary, this specification is given by:

CO gdp gdp pt t t t t


2 10 1694 01461 0 1174 1 2455� � � � ��
ˆ . . .*** *** *** *� *** _SRV SHt  (3a)

with the estimated Underlying Emissions Trend (UET) (the SETT III , shown in Figure 6) given by:

ˆ ˆ . . .*** *** **� �t t Irr Lvl Irr� � � � �0 0594 0 0798 0 03071988 1994 2002 00 0327

0 0435 0 0309 0 0346

2007

2010 2012

.

. . .

***

*** ** *

Irr

Irr Irr� � � *** Slp2016  (3b)

Where, Irrt represents an irregular (or outlier) intervention, Lvlt represents a level intervention, and 
Slpt represents a slope intervention, all at time t; *, **, and *** represent coefficients significant at the 
10%, 5%, and 1% levels, respectively; and µ̂t represents the estimated level component of the trend.

The preferred STSM specification suggests that in the long-run, a one percent increase in 
GDP would increase CO2 emissions by 0.32%. A one percent increase in the real energy price would 
reduce CO2 emissions by 0.12%, and a one percentage point increase in the share of services value 
added in non-oil GDP would reduce CO2 emissions by 1.25%. Furthermore, the estimated UET,  at 
the end of the estimation period (and therefore for the baseline projection) suggests that holding 
GDP, the real energy price, and the share of services value added in non-oil GDP constant, there 
would be an autonomous increase in CO2 emissions of 0.45% per annum—which comes from an 
estimated underlying slope increase of 3.91% per annum but tempered by the break in the slope in 
2016 (i.e., the estimated slope intervention in 2016) of 3.46% per annum. It is worth noting that the 
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UET captures the combined effect of exogenous factors on CO2 emissions. These exogenous factors 
include changes in environmental regulations, increased environmental awareness, cultural changes, 
changes in tastes and behavior, and improvements in energy efficiency, to name a few. The literature 
finds evidence that developing countries historically have an upward-sloping trend. For example, 
Javid and Khan (2020) find an increasing slope of the emission trend in China and India and suggest 
that their energy-saving behavior (80–90%) of emissions has not been utilized. The trend is also his-
torically upward for Saudi Arabia concerning the underlying energy demand trend; see (Aldubyan 
& Gasim, 2021) for further details.

4.2 Scenario Projections

4.2.1 Baseline Projection 

Before considering the other scenarios, we present our baseline scenario projection, which 
acts as a reference, showing how CO2 emissions might evolve without any additional policy efforts, 
assuming the underlying drivers continue to evolve in the future as they did in the past. Our baseline 
scenario rests on assumptions about how GDP, energy prices, the share of services, and other ex-
ogenous factors captured by the UET would evolve until 2060. Our baseline scenario assumptions, 
described previously, extend past historical trends into the future. By plugging these assumptions 
into our preferred econometric equation, we generate our baseline scenario, which is presented in 
Figure 6. Our baseline scenario projection suggests that Saudi CO2 emissions would rise from 540 
Mt in 2019 to 621 Mt in 2030 and 878 Mt in 2060. Also included in Figure 6, as a benchmark, is a 
previous baseline projection based on a univariate modeling approach from Gasim et al. (2022). Our 
baseline projection in this paper is not dissimilar to the Gasim et al. (2023) projection and is within 
the statistical confidence interval of their baseline projection shown in Figure 6.

Figure 6. CO2 Baseline Projection 
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4.2.2 Scenario Projections

In addition to the baseline, we demonstrate the impacts of economic growth trajectories, 
economic diversification, energy price fluctuations, and energy efficiency, among other determi-
nants, on prospective CO2 emissions in Saudi Arabia. Table 5 outlines our diverse assumptions 
regarding these underlying drivers, highlighting the CO2 emissions projections derived from each 
scenario by plugging these assumptions into the preferred econometric equation. As previously 
mentioned, our baseline scenario projects CO2 emissions of 621 Mt in 2030 and 878 Mt in 2060.

Increasing the GDP growth rates while maintaining all other underlying drivers at their 
baseline values results in a CO2 emissions projection reaching 635 Mt by 2030 in the high GDP 
scenario. Conversely, a reduction in GDP growth rates yields a projection of only 607 Mt by 2030. 
Although the disparity between the low and high GDP scenarios is relatively modest in 2030 (28 
Mt), it expands to 204 Mt by 2060, the year of Saudi Arabia’s net-zero ambition.

Raising energy prices above their low scenario, designated as the baseline, yields scenarios 
with reduced CO2 emissions. Assuming constant energy prices in real terms (central energy prices 
scenario), CO2 emissions are projected to reach 611 Mt by 2030, approximately 10 Mt below the 
baseline scenario value. Under the high energy prices scenario, implementing energy price reforms 
leads to CO2 emissions in 2030 growing to 548 Mt, nearly 70 Mt lower than the baseline, emphasiz-
ing the substantial potential impact of energy price reform, even in the near term. In the long term, 
the gap between the high and low energy prices scenarios (i.e., the baseline) widens to 204 Mt.

As reflected in the share of services, the GDP composition significantly influences CO2 
emissions. Under the low services scenario, manufacturing expands rapidly to 40% by 2060, while 
the services sector experiences slow growth, reaching only 49%, resulting in CO2 emissions of 646 
Mt in 2030 and 1,096 Mt in 2060. This low services scenario aligns with the heavy industrialization 
scenario in Saudi Arabia’s NDC. Conversely, if the services sector grows to 75% of GDP by 2060, 
emissions would be 602 Mt (46 Mt less than the heavy industrialization scenario) in 2030 and 769 
Mt in 2060 (327 Mt less than the heavy industrialization scenario). This high services scenario 
aligns with the economic diversification scenario in Saudi Arabia’s NDC. In summary, our findings 
underscore the impact of GDP composition on CO2 emission projections, revealing the rationale 
behind the Saudi government’s emphasis on this factor in its updated NDC.

The UET, encompassing the combined impact of multiple exogenous factors, was manipu-
lated to reveal how these factors could influence CO2 emission projections. In the low UET scenario 
(a more downward-sloping EUT), which may encapsulate accelerated improvements in energy effi-
ciency and changes in behavior reducing emissions, CO2 emissions grow to 616 Mt in 2030 and 776 
Mt in 2060. In the high UET scenario (a more upward-sloping EUT), CO2 emissions grow to 626 Mt 
in 2030 and 992 Mt in 2060. Our findings suggest that, beyond the economic factors considered pre-
viously, other factors could significantly influence the evolution of CO2 emissions in Saudi Arabia.

Finally, we introduce the “highest” and “lowest” emission scenarios, reflecting the com-
bination of assumptions on each underlying driver yielding the highest and lowest CO2 emissions 
projections. Under the highest scenario, GDP grows fastest, and the economy becomes more heavily 
industrialized, energy prices decline in real terms, and the UET upward-sloping. With this com-
bination of assumptions, CO2 emissions would grow to 666 Mt in 2030 and 1,391 Mt by 2060. 
Conversely, under our lowest scenario, GDP grows at its slowest, energy prices are reformed, the 
economy diversifies towards services, and the UET becomes more downward-sloping. With this 
combination of assumptions, CO2 emissions would decline to 516 Mt in 2030 and 465 Mt by 2060. 

Figure 7  overlays all these scenarios into one chart, illustrating the various CO2 emissions 
pathways for Saudi Arabia. These scenarios highlight how different factors affect CO2 emissions 
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in Saudi Arabia up to 2060. The gap between the highest and lowest projections underscores how 
emissions could evolve differently depending on the underlying drivers and the implications of 
Saudi efforts to reduce emissions. One key policy implication is that the Saudi government will 
need to implement more comprehensive policies or carbon removal technologies for Saudi Arabia 
to achieve its net-zero ambition.

Figure 8 also demonstrates the 99% confidence interval for the baseline scenario to give 
an idea of the uncertainty around the simulated scenarios. All scenarios remain within the interval 
bands except the lowest scenario at the end of the forecast horizon.

In addition to the fan chart presented in Figure 7, we provide in Figure 8 a decomposition 
of the economic drivers for all the scenarios, quantifying the contribution of each driver to the net 
change in CO2 emission from 2019 to 2060. For example, in our high scenario case, CO2 increases 
by 851 Mt from its 2019 levels, and GDP is the highest factor (333.5 Mt) in terms of its contribution, 
followed by the share of services, which shrinks over time in this scenario. Energy prices remain 
stagnant, declining in real terms, contributing to a CO2 increase (86.4 Mt). Furthermore, no improve-
ments in other exogenous factors contribute to increasing CO2 as well through the UET (274.48 Mt).

In contrast, in the low scenario, CO2 emissions decline by 76 Mt from its 2019 level to 
reach 464.7 Mt by 2060. This net negative change includes a positive contribution through GDP 
growth (74.7 Mt), in addition to a positive contribution through the UET (33 Mt). The net negative 
change is mainly driven by the negative contribution of higher energy prices (–88 Mt) and the struc-
ture of the economy becoming more concentrated in services (–95 Mt). Collectively, these drivers 
reduce CO2 emissions by roughly 14% from their 2019 levels. 

Figure 8: Decomposition of economic factors impacting CO2 emissions for all scenarios.
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Note: The numerical labels are the net change in CO2 emissions (from 2019 to 2060) resulting from the summation of the 
effects of changes in all four driver over the decomposition period.

5. CONCLUSION AND POLICY IMPLICATIONS

As a party to the Paris Agreement, Saudi Arabia has recently submitted its updated NDC, 
announcing its pledge to reduce its GHG emissions by 278 MtCO2eq annually by 2030 below its 
baseline (Kingdom of Saudi Arabia, 2021, p. 2). Saudi Arabia’s NDC emission target is a baseline 
target that requires a quantitative baseline scenario showing how emissions would evolve if there 
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were no further policies or actions. Although Saudi Arabia is one of the countries that did not yet 
publicly announce a quantitative baseline in its NDC, it did provide qualitative details on its “dy-
namic baselines” (Kingdom of Saudi Arabia, 2021, p. 3). Saudi Arabia’s dynamic baselines depend 
on both the level of economic development and the extent of economic diversification that occurs in 
the country over the coming years.

To better understand Saudi Arabia’s baseline emissions scenario and how factors such as 
GDP and the structure of the economy influence emissions, we first model Saudi Arabian CO2 
emissions using econometrics and then generate CO2 emissions projections under different sets of 
assumptions for the underlying drivers. The underlying drivers we consider include GDP, energy 
prices, the structure of the economy, and other exogenous factors (represented by the UET). 

We model CO2 emissions by utilizing the general-to-specific approach via Autometrics and 
the STSM, two econometric methods that allow for greater flexibility in modeling a variable such 
as CO2 emissions. We estimate multiple equations that include different right-hand side variables 
across both methods. Our econometric results reveal that the coefficients on variables such as GDP 
and energy prices are consistent across the estimated equations, which points to the coefficients’ 
robustness. To generate the CO2 emissions projections across the different scenarios, we settle on a 
preferred equation that passes all diagnostic tests and is most useful in terms of the number of policy 
scenarios it allows us to run. 

Before using our preferred econometric model to generate projections, we build scenarios 
that reflect different assumptions on the underlying drivers of CO2 emissions. These drivers include 
GDP, energy prices, and economic structure, along with the UET, which captures the combined ef-
fect of exogenous factors such as consumer behavior and energy efficiency. We build 11 scenarios, 
including a baseline scenario that acts as a reference, showing how CO2 emissions might evolve in 
Saudi Arabia without any additional policy efforts and if the underlying drivers continue to evolve 
in the future as they did in the past. We generate our baseline CO2 emissions projection inputting the 
baseline assumptions for the drivers into our preferred econometric model. Our baseline suggests 
that Saudi CO2 emissions would rise from 540 Mt in 2019 to 621 Mt in 2030 and 878 Mt in 2060. 

Our scenarios highlight how different factors affect CO2 emissions in Saudi Arabia up to 
2060. The gap between the highest and lowest projections underscores how much emissions could 
evolve differently depending on the underlying drivers. In the highest scenario, in which GDP grows 
fastest, the economy becomes more heavily industrialized, energy prices decline in real terms, and 
the UET grows more upward-sloping, CO2 emissions would grow to 666 Mt in 2030 and 1,391 Mt 
by 2060. On the other hand, in the lowest scenario, in which GDP grows slowest, energy prices are 
reformed, the economy diversifies, and the UET becomes more downward-sloping, CO2 emissions 
would decline to 516 Mt in 2030 and 465 Mt by 2060.

Besides the highest and lowest scenarios, we highlight how the underlying drivers can 
separately influence CO2 emissions. Given the emphasis the Saudi NDC placed on the structure of 
the economy and economic development, we highlight how both variables separately affect CO2 
emission trajectories. In the case of economic structure, we show that under a low services share 
scenario, in which manufacturing grows rapidly to contribute 40% to GDP by 2060, while the ser-
vices sector grows slowly to 49% only, CO2 emissions would rise to 646 Mt in 2030 and 1,096 Mt in 
2060. This low services share scenario is aligned with the heavy industrialization scenario presented 
in Saudi Arabia’s NDC as one of its dynamic baselines. In contrast, under the high services share 
scenario, in which services grow to contribute 75% of GDP by 2060, CO2 emissions would grow to 
602 Mt in 2030 and 769 Mt in 2060. This high services scenario is aligned with the economic diver-
sification scenario presented in Saudi Arabia’s NDC. Both scenarios differ by 46 Mt by 2030 and 
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327 Mt by 2060, underscoring the impact of the composition of GDP on CO2 emission projections. 
Similarly, we show that in a high GDP growth scenario, CO2 emissions would grow to 635 Mt in 
2030 and 985 Mt in 2060, while in a low GDP growth scenario, CO2 emissions would grow to 607 
Mt in 2030 and 781 Mt in 2060. These results reveal why the Saudi government emphasized both 
variables in its updated NDC.

Although baseline targets in NDCs are useful for developing countries expecting to grow, 
such targets introduce additional processes and challenges for those countries (Vaidyula & Hood, 
2018). Baseline targets require the estimation of a baseline scenario, which is not needed when 
setting an absolute emissions target relative to a historical base year. Countries setting baseline 
targets in their NDCs will need to carefully explain the data and method used for estimation and the 
assumptions to ensure transparency. As we have shown using econometric methods, assumptions 
around drivers such as GDP and economic structure can substantially affect emission projections, 
especially in the long term. The impacts of these assumptions are relatively smaller but still signif-
icant in the short term (e.g., up to 2030). Countries with baseline targets must also decide which 
existing or planned policies are included or excluded from their baseline. For example, some of our 
baselines included future energy price reforms, while others did not, with considerable implications 
on the projections. Countries will also need to account for the uncertainties associated with baseline 
projections, which we have highlighted in our study. Moreover, as countries update their NDCs, 
they may need to update their baselines, especially if the drivers evolve differently than initially 
projected. These updates may involve revisions to critical assumptions like GDP growth but also 
revisions to key parameters, such as the coefficients we estimated in this paper using econometric 
methods, which may change over time. Just as it is considered good practice for countries to ensure 
transparency, accuracy, completeness, comparability, and consistency (TACCC) of their national 
GHG inventories (IPCC, 2019), countries with baseline targets would ideally want to incorporate 
these TACCC principles into the development and updating of their NDC baseline scenarios, which 
can be challenging. 

To conclude, our paper generates several key insights for policymakers. It highlights the 
challenges around estimating baseline emission scenarios and shows how different variables, such 
as GDP and energy prices, influence CO2 emissions projections. It also reveals the critical role the 
economy’s structure can play, especially in countries like Saudi Arabia undergoing a rapid economic 
transformation. This paper also demonstrates that even in the lowest emissions scenario, further ef-
forts are needed to achieve net zero by 2060. These efforts could encompass policies such as carbon 
pricing and investment in carbon removal technologies. These additional efforts will be necessary 
for the Kingdom of Saudi Arabia to achieve its NDC and net-zero targets.
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APPENDIX

This appendix details tests to further validate the choice of the SET III STSM specifica-
tion used for projecting Saudi Arabia’s CO2 dynamic baselines to 2060. It starts with Section A1 
further exploring the choice between the SET I Autometrics specification and the SET III STSM 
specification. This is followed by Sections A2 and A3 that focus on the SET III STSM specification 
in terms of the issue of super exogeneity and parameter stability, respectively.  This is achieved by 
re-estimating the SET III STSM specification by OLS since the Fixed Level and the Fixed Slope 
found for the specification can be replaced by a traditional constant and linear trend but maintaining 
the interventions of the preferred specification.

A.1 Encompassing tests’ results

Further to the model selection procedure discussed in the main text, we also undertook an 
encompassing model comparison analysis to compare the preferred model from the Autometrics 
procedure with the preferred model from the STSM procedure. We therefore applied the various 
encompassing tests proposed by Cox (1961), Sargan (1964), Ericsson (1983), and, similar to Hendry 
and Santos (2010), a conventional F-test for the joint significance of the coefficients5 within PcGive 
15. The results are presented in Table A1 showing the comparison of Model 1 (M1) the SET I Auto-
metrics specification with Model 2 (M2) the SET III STSM specification where the column headed 
M1 vs. M2 shows results for the tests of the null hypothesis that M1 encompasses M2 whereas the 
column headed M2 vs M1 shows results for the tests of the null hypothesis that M2 encompasses 
M1. 

Table A1. Encompassing tests’ results.

Test M1 vs. M2 M2 vs. M1

Cox (1961) N(0,1) = –10.34 [0.000]** N(0,1) = –1.740 [0.082]
Ericsson (1983) N(0,1) = 4.429 [0.000]** N(0,1) = 1.424 [0.155]
Sargan (1964) Chi^2(3) = 20.289 [0.000]** Chi^2(5) = 5.9639 [0.310]
Joint Model F(3,25) = 21.925 [0.000]** F(5,25) = 1.2406 [0.320]

Notes: p-values are in parentheses; ** stands for the rejection of the null hypothesis at a 5% significance level.

Table A1 shows that there is not enough evidence to reject the null hypothesis that M2 
encompasses M1. However, the null hypothesis that M1 encompasses M2 is rejected by all the tests. 
This suggests that M2 (the SET III STSM specification) has additional information that is not avail-
able in M1 (the SET I Autometrics specification). Adding further support to the decision discussed 
in the main text for using M2, the SET III specification, to underpin the CO2 baseline projections.

A2. Testing super exogeneity

As discussed in Hendry and Santos (2010), the reliability of forecasts, and scenario pro-
jections of the conditional models require super exogeneity.  We, therefore, further test the SET III 
STSM specification using the Hendry and Santos (2010) approach that uses the impulse saturation 
idea. Namely, the selected impulses for the marginal models should not be statistically significant 

5.  Hendry and Santos (2010), suggested this additional alternative Joint Model test. Where the independent variables 
(excluding the constant and dummy variables) are included in a competing model to the main model and the joint significance 
of all their coefficients tested.
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in the conditional (main) model. We, therefore, refer to our selected SET III STSM specification as 
the conditional model. The marginal models are models for the independent variables and we select 
marginal models for each variable using the same structure. In other words, we add all the variables 
with their first lagged values as right-hand side variables. Following Hendry and Santos (2010), the 
selection is made at the 1% significance level, and the selected marginal models for GDP, Price, and 
SRV_SH are as follows:6

gdp gdp CO Irt t t
� � � �� �

0 4826 5 3254 0 3654 0 14571 2 1
. . . .*** *** *** *** rr

Irr Irr Irr

1985

1987 1991 20020 1300 0 0874 0 0890� � �. . .*** ** **  (A1)

p p CO gdpt t tt
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0 9983 0 3824 0 5798 6 1278 0 621 2 1
. . . . .*** ** ** ** 330

0 2400 0 3449 0 3879
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2007 2016
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*** *** ***. . .
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Irr Irr I� � � rrr2018  (A2)

SRV SH SRV SH CO Ct t t
_ . _ . . .*** *** ***� � � ��0 4854 1 0380 0 0259 0 07101 2 OO

gdp p Irr

t t

t t

2

19910 0612 0 0121 0 0139 0 0134
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1995 1996 20180 0060 0 0109 0 0172 0� � � � .. ***0226 2019Irr  (A3)

Eleven different impulse indicators are selected for equations (A1), (A2), and (A3) and 
their impulses from equations in the conditional model tests, excluding the intervention dummy 
variables. 

CO p gdp gdp SRV
t tt t t SH2 10 1365 0 3200 0 0627 0 1439� � � � �

�

�. . . .*** ***
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Irr Irr F� � � �. . ( , ) .** ** (( . )p � 0 1416  (A4)

ˆ

The F-test shows that the null hypothesis of super exogeneity (that all the coefficients of the 
impulse dummies from the marginal models are jointly insignificant in the conditional model) is not 
rejected, suggesting that GDP, P, and SH_SRV are super exogeneous for the parameters of the main 
model. Although there are two impulses common in our conditional model and for the marginal 
models the test does not show any evidence against the super exogeneity of the variables (the two 
common impulses are I2002 in the GDP equation, and I2007 in the price equation). 7 In summary, 
these additional tests illustrate that super exogeneity is upheld for the SET III STSM specification, 
which is used to underpin the CO2 baseline projections.

A3. Stability tests for the model parameters

The reliability of forecasts, and scenario projections is also dependent upon the stability of 
the estimated parameters of the specification used to generate the CO2 projections. We, therefore, 
further test the stability of the SET III STSM estimated parameters using the CUSUM and CUSUM 
of squares tests, as well as the recursive estimation procedure of the coefficients (Brown et al., 1975) 

6.  Note, although the estimation was undertaken using Autometrics the terminology for the interventions from the STSM 
approach is retained for consistency given it is the STEP III STSM specification being considered.

7.  Hendry and Santos (2010) also found one impulse entering the conditional and marginal models.
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with the results reported in Figures A1-A2. That does not provide any evidence to suggest that the 
estimated parameters are unstable. Thus, again, these additional tests illustrate that the SET III 
STSM would be suitable to underpin the CO2 baseline projections in the main text.

Figure A1. CUSUM (a) and CUSUM of squares (b) tests for the parameter stability.
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Figure A2. Recursive estimation tests for the stability of coefficients.
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