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Time-Varying Term Structure of Oil Risk Premia

Gonzalo Cortazar,a Philip Liedtke,b Hector Ortega,c and Eduardo S. Schwartzd

abstract

We develop a framework to estimate time-varying commodity risk premia from 
multi-factor models using futures prices and analysts’ forecasts of future prices. 
The model is calibrated for oil using a 3-factor stochastic commodity-pricing 
model with an affine risk premia specification. The WTI oil futures price data is 
from the New York Mercantile Exchange (NYMEX) and analysts’ forecasts are 
from Bloomberg and the U.S Energy Information Administration. Weekly estima-
tions for short, medium, and long-term risk premia between 2010 and 2017 are ob-
tained. Results from the model calibration show that the term structure of oil risk 
premia moves stochastically through time, that short-term risk premia tend to be 
higher than long-term ones and that risk premia volatility is much higher for short 
maturities. An empirical analysis is performed to explore the macroeconomic and 
oil market variables that may explain the stochastic behavior of oil risk premia, 
showing that inventories, hedging pressure, term premium, default premium and 
the level of interest rates all play a significant role in explaining the risk premia.
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1. INTRODUCTION 

Risk premia represent the annualized price difference between the futures contracts’ prices 
and the markets’ expected prices. Therefore, the use of futures prices as the most likely price for a 
commodity in the future is only valid if the risk premium is equal to zero. Even though the existence 
of risk premia in futures contracts is not a new finding, there is no consensus on their magnitude, 
behavior and appropriate estimation procedure (Baumeister and Kilian, 2016; Bianchi and Piana, 
2018; De Roon, Nijman, and Veld, 2000; Melolinna, 2011; Palazzo and Nobili, 2010). Moreover, 
the recent financialization of commodity markets has increased their relevance for investors and 
strengthened arguments on their time-varying behavior (Hamilton and Wu, 2014; Baker and Rout-
ledge, 2017; Ready, 2018; Fattouh, Kilian, & Mahadeva, 2013).

Understanding the stochastic behavior of commodity risk premia is important for several 
reasons. First, it provides valuable information on investment returns for agents who treat com-
modities as an asset class. Second, it helps to relate risk-adjusted expected prices, which are readily 
available in futures markets, with those of true expected prices, which are preferred by many prac-
titioners for net present value calculations and risk management purposes. Third, it may shed light 
on some public policy implications by uncovering the macroeconomic determinants of risk premia.
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There have been various attempts in the literature to estimate commodity risk premia. 
Many practitioners and researchers use futures prices as proxies for market expectations (as dis-
cussed in Baumeister and Kilian, 2016; Bianchi and Piana, 2018), implicitly assuming that risk 
premia are zero. Keynes (1930) and Hicks (1939) had proposed that if producers and other market 
participants wanted to hedge their risk by selling future contracts, buyers should get a compensation 
in the form of a risk premia for taking on that risk. Furthermore, there is already evidence on its 
time-varying nature (De Roon, Nijman, and Veld, 2000; Sadorsky, 2002; Pagano and Pisani, 2009; 
Achraya, Lochstoer, and Ramadorai, 2013; Etula, 2013; Hamilton and Wu, 2014; Singleton, 2014). 

In the last few years, different methods have been developed to extract risk premia, or 
equivalently to calculate expected spot prices, from the available data. Even though most of the liter-
ature addresses how to get the market’s expected interest rates (e.g., Diebold and Li, 2006; Altavilla, 
Giacomini, and Costantini, 2014; Chun, 2011), some effort has also been oriented to commodities. 

In what follows we present one way of characterizing existing methods for estimating risk 
premia in commodity markets by classifying them into three approaches: econometric, economic, 
and market-based.

In what we call the econometric approach we include Gorton, Hayashi, and Rouwenhorst 
(2013), Hong and Yogo (2012), Pagano and Pisani (2009) and Baumeister and Kilian (2016) among 
others. This approach regresses realized spot commodity prices, or a function of them, on different 
lagged market variables to infer the expected market’s spot price. Then the resulting risk premia 
are obtained by comparing this expected spot price with the futures price for the same maturity. 
Given that realized future spot prices and current futures prices with same maturity are compared, 
the required data-sample gets larger as longer-term risk premia are estimated making it difficult to 
estimate current risk premia for maturities greater than one or two years.

In what we call the economic approach we include Hamilton and Wu (2014), Bianchi and 
Piana (2018), and Cortazar, Kovacevic, and Schwartz (2015) among others. These models use no-ar-
bitrage or rational expectation models to infer expected spot prices from past and current market 
variables, typically futures and spot prices. Even though most of these types of models are success-
ful in fitting futures prices, they do not provide appropriate risk premia estimates. To solve for this 
issue, asset-pricing models have been extensively applied, obtaining mixed results (Dhume, 2010; 
Erb and Harvey, 2006; Hong and Yogo, 2012). 

In what we call the market-based approach we include a recent paper by Cortazar, Millard, 
Ortega, and Schwartz (2019) in which they propose extracting information on expected spot prices 
directly from market surveys and using them, in addition to spot and futures prices, to calibrate 
a term structure model. Thus, risk premia are obtained directly from the model as the difference 
between the expected spot price and the futures price consensus curves. Including survey forecasts 
in economic models, even though it had not been previously applied to commodities, had been 
used in various contexts (see Chun (2011), and Altavilla, Giacomini, and Ragusa (2017)). This new 
approach allows to get risk premia directly from market observations (i.e., analysts’ forecasts) as 
opposed to the traditional methods that usually infer them based on futures prices.

This paper develops a framework to estimate time-varying risk premia using the mar-
ket-based approach by extending Cortazar et al. (2019) to allow for a stochastic specification of 
risk premia following Duffee (2002). Once the term structures for oil risk premia are estimated, 
we explore their market determinants performing several regressions on different macroeconomic 
variables and oil market variables that have been previously proposed in the literature (e.g., Bhar 
and Lee (2011)).
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We find that the risk premia are time varying and are partially explained by market vari-
ables, namely inventories, hedging pressure, term premium, default premium and the level of inter-
est rates. In this sense our methodology can estimate significant time-varying ex-ante risk premia 
directly from futures prices and analysts’ forecasts, and search for their relationship with other 
market variables after having agreed on their levels and structure. It differs from the research that 
use the economic approach (e.g., Cortazar, Kovacevic, and Schwartz (2015)) on the fact that their 
risk premia are constant over time. On the other hand, it is fundamentally different to those studies 
that, following an econometric approach, regress ex-post risk premia (e.g., Baumeister and Kilian 
(2016)) with market variables due to the different nature of ex-ante and ex-post risk premia, where 
the first are directly related to market expectations, while the second may differ from the latter by 
the existence of biases.

The remainder of this paper is organized as follows. Section 2 presents the theoretical 
model used to estimate time-varying term structures of risk premia. Section 3 describes the data. 
Section 4 provides risk premia estimates. Section 5 discusses the market determinants of risk premia 
and Section 6 concludes.

2. THE MODEL TO ESTIMATE RISK PREMIA

2.1 Model Definition

We present an N-factor term structure model which is a non-stationary version of the ca-
nonical A0(N) Dai and Singleton (2000) model with stochastic risk premia as in Duffee (2002). 
We propose calibrating this model using both futures prices and analysts’ forecasts to obtain a 
time-varying term structure of risk premia1. 

Let St be the spot price of the commodity at time t, then assume that:

t t tlnS Y h x′= =   (1)

1

0

0

t t t

b

dx Ax dt dw

  
  
  = − + +  
     



 (2)

where h is an n×1 vector of constants, tx  is an n×1 vector of state variables, 1b  is a scalar, A is an n×n 
upper triangular matrix with its first diagonal element being zero and the other diagonal elements all 
different and strictly positive. Let tdw  be an n×1 vector of uncorrelated Brownian motions following

t tdw dw Idt′ =  (3)

where I is an n×n identity matrix. Dai and Singleton (2000) show that their model has the maximum 
number of econometrically identifiable parameters and at the same time nests most of the models 
used in literature.

To specify time-varying risk premia in our constant-volatility model we resort to Duffee 
(2002) who shows how to use affine risk premia in all types of Dai and Singleton (2000) canonical 

1. This paper builds on Cortazar, Millard, Ortega, Schwartz (2019) which also used futures and analysts’ forecasts, but 
assumed constant risk premia. That paper used the Cortazar and Naranjo (2006) N-factor model. In Online Appendix 1 we 
show that our proposed model is a rotated version of the Cortazar and Naranjo (2006) model.
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models, including the ones with non-stochastic volatility. Let RPt be the commodity risk premia and 
assume that:

t tRP xλ= + Λ    (4)

and the risk adjusted version of the model shown in Equations 1 and 2, is 

t tY h x′=    (5)
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   (6)

where λ is a n×1 vector and Λ is a n×n matrix which does not need to be diagonal nor triangular. No 
further restrictions are set for the elements2 in λ and Λ.

Note that in our model the risk-adjusted process differs from the true one not only by a 
constant risk premium, λ , but also by the Λ matrix. Thus, futures prices and expected prices depend 
on different processes for the state variables, the former with the A+ Λ matrix, while the latter only 
with matrix A. However, if the Λ matrix were set to zero, risk premia would be a constant and not 
time-varying. 

Futures prices are the expected value of the spot price, tS , under the risk-adjusted proba-
bility measure, Q (Cox, Ingersoll, and Ross, 1981). Given that the risk-adjusted spot price follows a 
log-normal distribution, futures prices are given by: 

( ) ( ) ( ) ( )1

2
Q Q
t T TE Y Var YQ

t t TF T E S e
+

= =  (7)

where the risk-adjusted expected price and variance of TY  can be obtained by replacing Equation 1 
into 7:

( ) ( ) ( ) ( )1

2
Q Q
t T Th E x h Cov x hQ
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with3
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( ) ( ) ( )( )
0
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t TCov x e e dτ τ τ
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Analogous to Equations 7, 8, 9 and 10, the expected price should satisfy the following 
equations:

( ) ( ) ( )1

2t T TE Y Var Y

t TE S e
+

=    (11)

2. An equivalent model definition is also used by Casassus and Collin-Dufresne (2005), Dai and Singleton (2002), Duarte 
(2004), Kim and Orphanides (2012), Palazzo and Nobili (2010) among others, however none of them use observations on 
analysts’ forecasts as expected prices as we propose, having difficulties estimating significant risk premia.

3. See Online Appendix 2.
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It can be shown4 that Equations 9 and 10 have a closed form solution if matrix A+ Λ is 
diagonal. The same occurs for Equations 13 and 14, now considering matrix A. In a more general 
case, as in our model, futures prices and expected prices have to be obtained numerically5.

Annualized risk premia are defined as the log return of the expected spot price over the 
future price. Let, ( )t T tπ −  be the instantaneous risk premia at time t for T-t years ahead: 
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Then, replacing the expected spot price and the future price from Equations 8 and 12 we 
obtain

( )
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Finally, implied model volatilities for expected spots, Eσ , and for futures prices, Fσ , may be 
computed using the following expressions6: 

( ) ( )( )A T t A T t
E h e e hσ − − − − ′′=  (17)

( )( ) ( )( )( )A T t A T t
F h e e hσ − +Λ − − +Λ − ′′=  (18)

2.2 Model Estimation

The parameters of the model and the state variables are estimated using the Kalman Filter 
(Kalman, 1960), which computes the optimal value of each state variable for any given time taking 
all past information into account. The procedure can handle a large number of observations (in our 
case analysts’ forecasts and futures prices) and allows for measurement errors. 

At any given time-iteration (date), a variable number of observations is available, so we use 
the incomplete data panel specification of the Kalman filter previously used for Futures (Cortazar 
and Naranjo, 2006), Bonds (Cortazar, Schwartz, Naranjo, 2007) and Analysts’ forecasts (Cortazar 
et al., 2019): 

4. See Online Appendix 2.
5. To solve the equations efficiently we follow Pashke and Prokopczuk (2009) who develop a way of avoiding numerical 

integration, using a decomposition of matrix A + Λ in eigenvalues and eigenvectors. See Online Appendix 3.
6. See Online Appendix 4.
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t t tz Hx d v= + +   ( )0,tv N R∼
 

 (19)

1t t tx Ax c w+ = + +   ( )0,tw N Q∼
 

 (20)

where tz  is an tm ×1 vector which contains the log-prices of each futures and analysts’ forecast (in 
that order) observation at week t; H is an tm ×n matrix; d is an tm ×1 vector and tv  is an tm ×1 vector 
of measurement errors with zero mean and covariance given by R; tx  is the n×1 vector of the state 
variables from Equation 1; A and c  are an n×n matrix and an n×1 vector, respectively, representing 
a discretization of the process described in Equation 2 and tw  is an n×n vector of random variables 
with mean zero and covariance given by the n×n matrix Q. In this specification  tm varies depending 
on the number of available observations changing the size of tz , H, d, tv  and R on every iteration. 

In contrast to Cortazar et al. (2019) we specify two error terms in Equation (19), with 
different variances to differentiate between futures prices and forecasts, since the latter include esti-
mations from different analysts’ and should be much noisier.

Thus, we define the tm × tm  matrix R as follows: 
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To estimate the parameters of this model a maximum-likelihood approach is used.

3. DATA

To be able to estimate the risk premia, futures prices and analysts’ forecasts for different 
dates and maturities are required. The data was obtained from different data sources for the period 
between January 2010 and June 2017. Before 2010 there is no long-term spot price estimates avail-
able. The remainder of this section further describes the data used.

3.1 Futures Contracts

WTI crude oil futures prices are obtained from the NYMEX. We used weekly futures 
prices with expiration every 6 months, including the closest one to maturity. The longest traded 
contracts expire in approximately 9.2 years. Table 1 presents the futures price data, which has been 
aggregated into one-year maturity buckets; that is, the first bucket has the contracts maturing in less 
than a year, the second bucket has the contracts maturing between one and two years, and so on.

3.2 Survey Based Expected Prices

We collected Bloomberg’s analysts’ WTI price predictions to use them as a noisy proxy 
of WTI expected future spot prices. Bloomberg’s price predictions consist of a list of surveys done 
to professional analysts on the expected future commodity prices. The expectations are given quar-
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terly for the next 8 quarters and yearly for the next 4 years. Data is available only when one of the 
many analysts does a prediction, and may become available any day of the week. Each prediction is 
grouped on the upcoming Wednesday resulting in weekly groups of observations. If predictions for 
the same maturity on the same date are available, their mean value is used. On average, there are 220 
oil price predictions available every month for different maturities. 

In addition to Bloomberg analysts’ expectations, EIA’s oil price forecasts are also used. 
Data is available once a year since 2010. EIA’s data includes yearly long-term predictions for up to 
33 years ahead. Even though both Bloomberg’s and EIA’s predictions are for the average price of 
each quarter or year they were assumed to represent the price in the middle of their time period. Data 
of the current quarter and year were excluded since part of the prediction period might have already 
been realized. Table 2 describes the forecast data used. The maturity bucket size grows with maturity 
due to the fewer observations available for longer maturities. 

Table 2:  Analysts’ price forecasts between January 2010 and June 2017 aggregated into 
maturity buckets

Maturity Bucket 
(years)

Mean Price 
($/bbl.) Price SD

Max Price 
($/bbl.)

Min Price 
($/bbl.)

Mean Maturity 
(years)

Number of 
Observations

0–1 81.02 22.26 122 35 0.53 1118
1–2 85.62 21.25 135 40 1.43 808
2–3 89.04 23.43 189 44 2.48 289
3–4 88.34 23.03 154 40 3.44 239
4–5 86.21 22.68 150 38.5 4.42 179
5–10 101.22 22.03 152.96 60 6.29 79
10–34 171.56 34.23 265.2 104.68 18.48 134

4. RESULTS

In this section we use the data described in the previous section to estimate all the parame-
ters of the N-factor model using a 3-factor specification.

Table 3 shows the model parameter estimates. It can be noted that half of the parameter 
estimates are statistically significant at a 1% and 3/4 of them at a 10% significance level. The most 
relevant parameters of the model correspond to the diagonal elements of matrix A, which are sta-
tistically significant. These parameters represent the mean reversion level of the state variables tx  
(equation 2) and are the structural pillars of the whole term structure model. The bigger value of 
the 22A  variable indicates that oil prices are correctly explained by a term structure model with three 

Table 1:  Futures price observations between January 2010 and June 2017 aggregated into 
yearly maturity buckets

Maturity Bucket 
(years)

Mean Price 
($/bbl.) Price SD

Max Price 
($/bbl.)

Min Price 
($/bbl.)

Mean Maturity 
(years)

Number of 
Observations

0–1 77.88 22.28 113.7 26.55 0.45 968
1–2 78.23 19.43 112.83 35.36 1.48 795
2–3 77.55 17.59 109.33 38.66 2.49 821
3–4 77.29 16.41 107.14 41.34 3.51 783
4–5 77.39 15.76 105.8 43.24 4.49 786
5–6 77.48 15.4 105.56 44.42 5.47 809
6–7 78 15.22 105.88 45.77 6.5 767
7–8 78.2 15.2 106.3 46.5 7.49 774
8–9 78.27 15.72 106.95 46.99 8.43 635
9–10 77.15 13.79 95.16 55.08 9.06 44
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state variables, the first of them non-stationary, the second with a fast mean reversion ( 2x ) and the 
third one with a slower mean reversion ( 3x ).

Additionally, it is worth noting that the diagonal elements of matrix Λ and the first element 
of vector λ are also statistically significant. The diagonal elements of Λ are again related to the risk 
adjusted mean reversion of the state variables, and therefore represent the existence of time-varying 
component of risk premia, and the first element of λ represents the risk adjusted non-stationarity of 
the first state variable, and the existence of a constant component of risk premia. 

Figure 1 shows the term structure (from 1 month to 10 years) of annualized risk premia 
over the whole sample period (01/2010 to 06/2017). Three things are worth noting. First, the term 
structure of risk premia varies stochastically through time which is the starting point of our analysis. 
This opens the possibility of risk premia being influenced by other market variables. Second, short-
term risk premia tend to be higher than long-term ones. This result suggests that on average investors 
have higher hedging demands for short term contracts allowing speculators to require higher risk 
premia. Third, risk premia volatility is much higher for short maturities. This result suggests that 
there is more disagreement between market participants for short term contract prices.

Figure 2 shows the term structure, the mean and the volatility of risk premia. Figure 2a) 
compares our model’s mean risk premia to those of Cortazar et al. (2019) constant risk premia 
model (with our same data) and to the data average. It can be noted that our model’s mean risk 
premia levels are similar to those of Cortazar et al. (2019) and both fit the data risk premia well. 
Additionally, both premia decrease with maturity. The similarity in both models of the average risk 
premia, however, is misleading since as Figure 3 shows that while the mean might be similar over 
our sample period, the time variation is dramatically different.

Table 3:  Parameter estimates for the 3-factor model. Data between 
January 2010 and June 2017

Estimate Deviation tStat pValue

A11 0 — — —
A12 0.728* 0.3676 1.9802 0.0564
A13 1.4204 0.9677 1.4678 0.1358
A22 1.4929*** 0.185 8.0674 0
A23 2.7146* 1.3379 2.0291 0.0512
A33 0.163*** 0.0238 6.8577 0
Λ11 0.2267*** 0.0076 29.7516 0
Λ12 –0.7768* 0.3877 –2.0037 0.0539
Λ13 –1.5684* 0.9397 –1.669 0.0992
Λ21 –0.044 0.0423 –1.0404 0.2319
Λ22 –1.3074*** 0.2862 –4.5686 0
Λ23 –2.2669 1.4022 –1.6166 0.108
Λ31 –0.0306 0.0248 –1.2314 0.1867
Λ32 0.2826*** 0.0673 –4.2015 0.0001
Λ33 0.4187*** 0.111 3.7708 0.0004
h1 0.1521*** 0.0184 8.2626 0
h2 0.2146* 0.117 1.8333 0.0745
h3 0.7469*** 0.0431 17.3302 0
λ1 –6.081*** 0.5953 –102143 0
λ2 1.2692 1.2894 0.9843 0.2454
λ3 1.0407* 0.6039 1.7233 0.0905
b1 0.1767*** 0.0543 3.2549 0.0021
σf 0.0058*** 0 302.9228 0
σe 0.1*** 0.0005 195.163 0

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Therefore, where the two models really differ is in Figure 2b) that shows no risk premia 
volatility for Cortazar et al. (2019), but a time-varying risk premia for ours. This shows that even 
though Cortazar et al. (2019) was able to estimate risk premia that on average adjust the data, it was 
not able to capture their variations through time.

Figure 1:  Annualized risk premia term structure from 1 month to 10 years. Data between 
January 2010 and June 2017

Figure 2a:  Mean risk premia for our model and for the constant risk premia model in 
Cortazar et al. (2019). Data mean risk premia are also included calculated as the 
mean of the difference between each analysts’ forecast and the closest futures 
contract. Data between January 2010 and June 2017.
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Figure 2b:  Risk premia volatility for our model and for the constant risk premia model in 
Cortazar et al. (2019). Data between January 2010 and June 2017.

Figure 3:  Time series of one-year risk premia given by our model and Cortazar et al. (2019) 
for comparison. Data between January 2010 and June 2017.
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Finally, we analyze the goodness-of-fit of our model to futures and analysts’ forecasts data. 
Table 4 compares the MAPE of our model with Cortazar et al. (2019) and shows that its fit for both 
data sets is better. The fit for futures prices is only slightly improved, but the fit for expected prices 
shows a notable improvement. The reason for the minor improvement in futures prices is that Corta-
zar et al. (2019) must fit both, futures and expected prices, with constant link between them, namely 
risk premia. As there is a larger number of futures prices observations the model already fits futures 
prices better than expected prices. When we allow risk premia to be time-varying, futures prices’ fit 
does not improve much as the model did already fit them nicely, however expected prices’ fit does 
improve as the model now allows for more flexibility. 

The superiority of the time-varying model becomes apparent when we analyze the market 
determinants of the risk premia, as we do in the next section.

5. THE DETERMINANTS OF OIL RISK PREMIA

5.1 The Methodology

In this section, we explore for the potential market determinants that may explain the 
time-series of the estimated oil risk premia. We consider a set of market variables that have been pre-
viously reported in the literature as affecting risk premia. We then perform a series of linear regres-
sions to determine which variables are significant in explaining the term structure of oil risk premia.

There are not too many studies which analyze risk premia directly (e.g., Bhar and Lee, 
2011; Bianchi and Piana, 2018; Chen and Zhang, 2011; Melolinna, 2011) as most only calculate 
them as a side result from a price prediction model. However, below we review some of the literature 
that discusses the impact of different market variables on risk premia. 

The potential explanatory variables for oil risk premia that we consider are: the S&P500 
Index returns, the NASDAQ Emerging Markets Index returns (EMI), oil inventories percentage 
variation, oil futures open interest percentage variation, hedging pressure, the interest rate term 
premium, the default premium and the 5-year treasury bill rate. As we explain below these variables 
have been shown to include the risk factors present in the oil market.

The S&P500 index returns is used in some studies (De Roon, Nijman, and Veld, 2000; 
Bianchi and Piana, 2018) as a proxy for the state of the US economy which is a big player in the oil 
market. Daily returns are available in Bloomberg since 1950.

The NASDAQ Emerging Markets Index (EMI) represents the state of the emerging mar-
kets’ economy. Many big emerging economies, such as Russia and China, are important oil market 
players, hence their economic performance could directly affect oil prices and premia. EMI daily 
returns are available from the NASDAQ database since 2001.

Table 4:  Mean Absolute Percentage Error (MAPE) for 
our time-varying risk premia model and for 
Cortazar et al. (2019) constant risk premia 
model. Data between January 2010 and June 
2017.

Our model Cortazar et. al. (2019)

Futures prices 0.37% 0.39%
Expected prices 7.39% 8.00%
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Oil inventories percentage variation is a commonly used regressor in oil studies (Gorton, 
Hayashi, and Rouwenhorst, 2013; Melolinna 2011) since it directly affects the supply of oil and 
therefore its price. The theoretical relationship between available stocks and risk premia was first 
introduced by Kaldor (1939) in his Theory of Storage, in which he proposes the existence of a con-
venience yield to explain differences between current spot and futures prices. Gorton et al. (2013) 
develop a model, based on Kaldor (1939) Theory of Storage, which implies that a rise in inventories 
should lead to a decrease in the overall risk premia, and they obtain empirical results supporting 
their model. Weekly US WTI inventories starting at 1983 are available from the EIA. Their percent-
age differences were used in order to obtain a stationary time series. 

Open Interest (OI) and Hedging Pressure (HP) are the usual measures of size and behav-
ior of the market for a futures contract (in our case WTI futures). OI is measured as the total number 
of outstanding contracts, and therefore represents the market size. Larger amounts of outstanding 
contracts could affect the liquidity of the market and therefore the premia. Kang, Rouwenhorst, and 
Tang (2019) argue that there exists a liquidity premium on commodity futures markets. OI is often 
used as an explanatory variable for commodity related studies (Bianchi and Piana, 2018; Hong and 
Yogo, 2012). 

HP is measured as the net positions of hedgers in a specific market, and represents the dif-
ference between hedgers’ and speculators’ positions, which according to Keynes (1930) and Hicks 
(1939) should have a strong relation with risk premia. If hedgers want to hedge their risk by selling 
futures contracts, the buyers of those contracts should get a compensation for taking on that risk. As 
HP rises, risk premia will rise, because speculators will be willing to accept a greater amount of risk 
only if premia are big enough. The relation between HP and prices or premia has been empirically 
tested by different studies (Bianchi and Piana, 2018; De Roon, Nijman, and Veld, 2000; Gorton, 
Hayashi, and Rouwenhorst, 2013; Kang, Rouwenhorst, and Tang, 2019; among others) generally 
supporting Keynes (1930). OI and HP weekly data was obtained from reports from the Commodity 
Futures Trading Commission (CFTC), which is available since 2007. OI is directly available in the 
reports and their weekly percentage variations were used in the analysis. HP was computed as the 
short minus long commercial positions, divided by the total amount of outstanding contracts:

t t
t

t

CS CL
HP

OI

−
=  (22)

where tCS  and tCL  stand for short and long commercial positions, respectively. 
The term premium (TRM) and the default premium (DEF) have shown to predict mar-

ket excess returns in stocks and bonds (Fama and French, 1989; Keim and Stambaugh, 1986), and 
could, therefore, also affect oil risk premia. TRM is defined as the difference between the 10-year 
treasury bill rate and the 3-month treasury bond yield, and DEF as the difference between the BAA-
rated and the AAA-rated corporate bond yields. Daily treasury bill rates are available at the Federal 
Reserve while corporate bond yields were obtained from the Federal Reserve Bank of St. Louis. 
Finally, the 5-year treasury bill rate (5Y T-Bill) is also included as a proxy for the state of the 
economy. 

Once the potential independent variables were chosen a set of multivariate OLS regressions 
were conducted:

0 1it i i t itRP Xβ β ε= + +  (23)
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where RPit is the risk premia for maturity i and date t, Xt is the set of regressors described previously 
which are independent of the maturity, 0 iβ  and 1iβ  are the estimators for each maturity i, and itε  is the 
regression error for maturity i and date t.

We conduct our analysis in two steps. In the first step, we run a multi-variate regression for 
all the independent variables to check which ones can explain risk premia. Then, we run a second 
multivariate regression using only the variables that were significant in the first regression. We run 
risk premia regressions for 3, 6, 12, 18 months and 2, 5 and 10-year maturities. An independent 
regression is performed for every different time horizon, both in the first and second multivariate 
regressions. Robust standard errors were used in order to account for possible heteroscedasticity.

5.2 The Results

Table 5 shows the results of the first multivariate regression with all the variables included 
and for different maturities from 3 months (M3) to 10 years (Y10). Inventories, HP, TRM, 5Y T-Bill 
and DEF have significant (p-value) coefficients so they are candidates for inclusion in the second 
regression, while the other variables are not.

Table 5:  Regression analysis for all the chosen independent variables and for each different 
maturity. Data between January 2010 and June 2017. 

M3 M6 Y1 M18 Y2 Y5 Y10

Intercept 0.0108 0.0187 0.0353*** 0.0461*** 0.0495*** 0.0438*** 0.0385***
S&P500 –0.1666 –0.1147 –0.043 –0.0095 0.0057 0.0167 0.0126
EMI –0.1834 –0.1403 –0.0874 –0.0531 –0.0334 –0.0032 –0.0018
Inventories 2.4923*** 2.0111*** 1.3525*** 1.0618*** 0.8731*** 0.4878*** 0.387***
OI –0.1224 –0.0916 –0.0523 –0.0291 –0.0168 –0.0006 –0.0005
HP –0.0021 0.0099 0.0267** 0.0399*** 0.0497*** 0.0595*** 0.0488***
TRM –0.0762*** –0.0601*** –0.038*** –0.0249*** –0.017*** –0.0055*** –0.0057***
5Y T-Bill 0.0918*** 0.0698*** 0.0402*** 0.023*** 0.0134*** 0.0007 0.002*
DEF 0.1472*** 0.1093*** 0.0605*** 0.0335*** 0.0192*** 0.001 0.0008
R2 0.4444 0.4537 0.4774 0.5201 0.5624 0.5276 0.5507

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

Table 6 shows the results of the second multivariate regression for each maturity using 
only the variables that were significant in the previous analysis. It can be noted that the R-Squared 
of the regressions vary between 43.74% and 55.48%, and all variables are significant for most of 
the maturities. 

Table 6:  Regression coefficients for each maturity for the variables that showed statistical 
significance in the first regression analysis. Data between January 2010 and June 
2017. 

M3 M6 Y1 M18 Y2 Y5 Y10

Intercept 0.0052 0.0151 0.0345*** 0.0458*** 0.0494*** 0.0437*** 0.0385***
Inventories 2.297*** 1.8561*** 1.2818*** 1.0172*** 0.8458*** 0.4883*** 0.3884***
HP 0.0032 0.0132 0.0282** 0.0406*** 0.0502*** 0.0598*** 0.0489***
TRM –0.0755*** –0.0596*** –0.0379*** –0.0249*** –0.0169*** –0.0054*** –0.0057***
5Y T-Bill 0.0922*** 0.07*** 0.0401*** 0.0229*** 0.0133*** 0.0007 0.0021*
DEF 0.1496*** 0.1109*** 0.0608*** 0.0336*** 0.0192*** 0.001 0.0008
R2 0.4374 0.4465 0.4722 0.5177 0.5609 0.5318 0.5548

* Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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The key results from Table 6 are as follows. First, we find a statistically significant and 
maturity-independent positive relation between inventories and risk premia. This is similar to Din-
cerler, Khokher, and Simin (2020) and Khan, Khokher and Simin (2008), but not consistent with the 
results in Gorton et al. (2013).

Second, our positive and significant value for the HP estimator is consistent with Keynes 
(1930) theory of normal backwardation, as a larger number of hedgers wanting to hedge their risk 
produces a larger HP which should by related to speculators demanding larger premia to take on 
that risk. Basu and Miffre (2013), De Roon, Nijman, and Veld (2000) and Bianchi and Piana (2018), 
among others, obtain similar results. HP is only significant for maturities of over one year, which 
could be explained by hedgers normally buying or selling contracts to hedge their medium- and 
long-term risk to secure the continuity of their operations on the long run.

Third, TRM is negative and significant for all maturities. These results are consistent with 
a negative slope of the yield curve predicting a decrease in GDP (Estrella and Hardouvelis, 1991; 
Harvey, 1988) which could lead to an inverse relation with premia. 

Finally, the 5Y T-Bill and DEF have a positive effect on risk premia, however only for ma-
turities up to two years. The DEF is considered as a good measure of market uncertainty, especially 
at the short-term. Higher short-term uncertainty should induce the average investor to demand larger 
premia especially for short term investments which is consistent with DEF affecting only short-term 
premia. If the treasury bill yield serves as a proxy for the current state of the economy, being higher 
when the economy grows and lower on slow economic periods, we would expect to get a negative 
effect of it on risk premia, such as in Bhar and Lee (2011). However, interest rates were unusually 
and constantly low during our sample period, which might alter the way in which treasury bill yields 
represent the state of economy. 

These results suggest that these 5 market variables are able to explain half of the variation 
of oil risk premia in our model for all studied maturities. In addition to the economic insight the 
regression results provide, they can also be used to obtain estimates of risk premia and therefore ex-
pectations of future spot prices. For example, many practitioners who currently use futures prices as 
a proxy for the market’s spot price expectations, could infer them directly from our market variables. 

Figure 4 shows expected spot price estimations for two different maturities obtained by 
adding the expected risk premia from our regression analysis to the observed futures prices, along 
with analysts’ forecasts and futures prices observations. The figure shows that by adding the risk 
premia to futures prices we obtain a less volatile version of the analysts’ forecasts, that represents 
an estimation of the expected prices. In addition, Table 7 shows that the new expected spot price 
estimations fit the analysts’ forecast better than futures for all maturities, meaning that there indeed 
is information hidden in our identified market variables that can be extracted to create simple risk 
premia estimations. In this way it appears to be possible to make a reasonable estimation of expected 
prices directly from market variables that match the analysts’ predictions, however deeper analysis 
would be needed to come up with a robust methodology.

6. CONCLUSIONS 

This paper develops a framework to extract time-varying commodity risk premia from 
multi-factor models using futures prices and analysts’ forecasts of future spot prices. The model is 
calibrated for oil using a 3-factor stochastic commodity-pricing model with an affine risk premia 
specification with WTI futures data from NYMEX and analysts’ forecasts from Bloomberg and the 
U.S Energy Information Administration from 2010 to 2017.
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Results from the model calibration show that risk premia are statistically significant and 
time varying, that short-term risk premia tend to be higher than long-term ones and that risk premia 
volatility is much higher for short maturities. These three findings give us a sense on how the market 
price expectations evolve over time and how they differ by maturity.

Figure 4a:  2 year ahead expected prices obtained adding the regression estimated risk premia 
to the observed futures prices (dotted line) in comparison with analysts’ forecasts 
(dots) and futures prices (solid line).

Figure 4b:  5 year ahead expected prices obtained adding the regression estimated risk premia 
to the observed futures prices (dotted line) in comparison with analysts’ forecasts 
(dots) and futures prices (solid line).
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We then use the term structures of oil risk premia obtained to perform an empirical analysis 
to explore the macroeconomic and oil market specific variables that may explain their stochastic 
behavior. We find that inventories, hedging pressure, term premium, default premium and the level 
of interest rates all play a significant role in explaining the risk premia and thus could be used also 
for estimating expected commodity prices when reliable analysts’ forecasts are not available.

The macroeconomic determinants that were found through the regression analysis, may 
help countries that are heavily dependent on commodity prices define their public policies. For in-
stance, the regression can be used to estimate simple commodity price forecasts that can be used as 
an input to the country’s budget estimations. 
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APPENDIX 1: ROTATION OF CORTAZAR AND NARANJO (2006)’S MODEL INTO 
OURS

Given the state space model of the form

1t tY x′=

( )t t tdx Ax b dt dw= − + + Σ

where A and Σ are n×n diagonal matrices, b is a n×1 vector whose elements are zero excepting its 
first one and tdw  is an n×1 vector of correlated Brownian motions such that t tdw dw dt′ = Θ . The cova-
riance matrix ′ΣΘΣ  is positive definite and therefore admits a Cholesky decomposition. Let’s define 
the matrix M as 

0 0 1

0 1 0

1 0 0

M

 
 
 =
 
 
 





   



where 1M M− = , then the matrix M M′ΣΘΣ  is still positive definite and still admits a Cholesky de-
composition (L) so that

LLM M′ ′ΣΘΣ =

then applying the transformation 1
t tML Mxξ −=  where 1ML M−  is an upper triangular matrix

( )( )11't t tY MLM ML Mx h ξ− ′= =


( )( )( ) ( )1 1 1 1 ˆ ˆˆ
t t t t td ML MAMLM ML Mx ML Mb dt ML M dw A b dt dwξ ξ− − − −= − + + Σ = − + +

where h is an n×1 vector, Â is an n×n upper triangular matrix whose first eigenvalue is zero, b̂ is 
an n×1 vector with zeros in all its entries except for the first one and ˆ

tdw  is an n×1 vector of uncor-
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related brownian motions. This formulation is the one used by Dai and Singleton (2000) modified to 
hold for a matrix A with one zero valued eigenvalue by adding the b̂ vector.

APPENDIX 2: EXPECTED VALUE AND COVARIANCES OF STATE VARIABLES

In this section we show how to get the expected value and covariances of the state variables 
of any model of the type

( )t t tdx Ax b dt dw= − + + Σ

t tdw dw dt′ = Θ

Where tdw  are correlated Brownian motions with a correlation matrix given by t tdw dw dt′ = Θ . First 
we define the following state space vector

At
t ty e x=

and applying Ito’s Lemma

At At
t t tdy e dx Ae x dt= +

( )( )At At
t t t tdy e Ax b dt dw Ae x dt= − + + Σ +

At At
t tdy e bdt e dw= + Σ

This last equation can be integrated as follows

T T TAs As
s st t t

y e bds e dw= + Σ∫ ∫ ∫

( )T TAs As
T t st t

y y e ds b e dw− = + Σ∫ ∫

( ) ( )T TA T t AT As AT As
T t st t

x e x e e ds b e e dw− − − −= + + Σ∫ ∫
Now it is straightforward to obtain the expected value and the variance of the state space 

variables

( ) ( ) ( )0

T tA T t A
t T tE x e x e d bτ τ

−− − −= + ∫

( ) ( )
0

'
T t A A

t TCov x e e dτ τ τ
− − − ′= ΣΘΣ∫

APPENDIX 3: METHOD TO AVOID NUMERICAL INTEGRATION

To get the expected values and covariances of the state variables as shown in Appendix 2 
numerical integration seems to be necessary. Nevertheless, there is an alternative method shown by 
Pashke and Prokopczuk (2009) which does not need numerical integration but uses eigenvalues and 
eigenvectors of some matrices. 
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To solve for the expected value of the state variables of equation 13 first we decompose 
1A UVU −=  where V is a matrix containing all A‘s eigenvalues in its diagonal and U is a matrix con-

taining all its eigenvectors. It can be shown that 1A Ve Ue Uτ τ− − −= , where ( )V T te −  is a diagonal matrix 
with ( )iv T te −  (where vi is the i-th eigenvalue of matrix A) in its i-th position. It can be shown that

( )

( )

1

1

0

1
0

1
0

n

v T t

T t V

v T t

n

e

v

e d

e

v

τ τ φ

−

− −

−

 −
 
 
 = =
 
 −
 
 

∫



  



thus, the expected value of the state variables can be written as

( ) ( ) 1 1V T t
t T tE x Ue U x U U bφ− − −= +

The variance shown in equation 14 can be calculated using the same properties as the ex-
pected value, so that

( ) ( )1 1

0

T t V V
t TCov x U e U U e d U UHUτ τ τ

− − − − − ′′ ′ ′= =∫
where H represents the integral just for ease of notation. As Ve τ−  is a diagonal matrix containing 

ive τ−  in each of its diagonal elements, a closed form solution for the integral H can be obtained 
element-wise. To obtain the element in the i-th row and the j-th column of the matrix the next ex-
pression has to be evaluated

( )
( )( )

1 1 1 1 1 1
, 0 0

1 i j

i jji

v v T t
T t T t v vvv

i j ij ij ij
i j

e
H e U U e d U U e d U U

v v

τττ τ τ
− + −

− − − +−− − − − − − − −′ ′ ′     = = =      +∫ ∫

APPENDIX 4: MODEL IMPLIED VOLATILITIES

First, let D be a function of the state variables and time. Its returns can then be modeled as

D D D

dD
dt dw

D
µ σ= +

Applying Ito’s Lemma we find that

1 1 1 1

2

dD dD
Ddx Ddxdx D dt

D D D D dt
′ ′= ∇ + ∇ ∇ +

where ∇ represents the jacobian operator. Replacing dx from Equation 2,

( ) 1
2

x

dD
D Ax c D DdD Ddt dt dw

D D D

′∇ − + + ∇ ∇ + ∇
= +

Additionally, it can be found that,

2
D

dD dD
dt

D D
σ   =  
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which means that,

2
2D

D D

D
σ

′∇ ∇
=

Now replacing D by the expected spot prices ( )t TE S  calculated in Section 2.1 the Jacobian 
results in

( ) ( ) ( )A T t
t T t TE S h e E S− −′∇ =

so that we can get the following structure for the expected spot’s implied volatility

( )
( ) ( )( )2 A T t A T t

E S h e e hσ − − − − ′′=

Following the same procedure for futures prices the Jacobian and the future prices’ implied 
volatility respectively result in

( ) ( )( ) ( )A T t
t tF T h e F T− +Λ −′∇ =

( )( ) ( )( )( )2 A T t A T t
F h e e hσ − +Λ − − +Λ − ′′=




