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Global Oil Export Destination Prediction:  
A Machine Learning Approach

Haiying Jia,a Roar Adland,b and Yuchen Wangc

abstract

We use classification methods from machine learning to predict the destination of 
global crude oil exports by utilising micro-level crude oil shipment data that incor-
porates attributes related to the contract, cargo specifications, vessel specifications 
and macroeconomic conditions. The results show that micro-level information 
about the oil shipment such as quality and cargo size dominates in the destination 
prediction. We contribute to the academic literature by providing the first machine 
learning application to oil shipment data, and by providing new knowledge on 
the determinants of global crude oil flows. The machine-learning models used to 
predict the importing country can reach an accuracy of above 71% for the major 
oil exporting countries based on out-of-sample tests and outperform both naïve 
models and discrete regression models. 
Keywords: Random forests, Gradient boosted trees, Machine learning, Crude 
oil, Choice models
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1. INTRODUCTION

Oil is one of the most important raw materials and is the lifeblood of the global economy. 
Indeed, oil and gas provide over 50% of primary energy supplies to the world (IEA, 2019) and is 
the primary power source for transportation. The fourteen member states of the Organization of 
the Petroleum Exporting Countries (OPEC) control over 80% of world crude oil reserves (OPEC, 
2016), while consumption is mainly driven by the OECD (Organisation for Economic Co-operation 
and Development) countries, China and India. The geographical separation of oil consuming and 
producing nations means that oil needs to be transported at great distances, with forty percent of the 
annual global oil production transported via the oceans in specialised oil tankers (Clarksons, 2016; 
Adland et al., 2017). The global oil trade is greater than any other commodity in terms of value 
and it was the world’s first trillion-dollar industry in terms of annual sales (Doyle, 1994). Major 
oil producing countries such as Saudi Arabia, Norway, Nigeria and Venezuela derive much of their 
national income from the production of oil. For many other countries, such as the US and China, the 
cost of importing oil is a major component of their foreign exchange balance. Thus, oil trade and the 
price of oil are crucial factors both for national and foreign policy. 
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At the macro level, oil trade flow (i.e. the spatial supply and demand balance) is driven by 
factors such as population growth, per capita energy usage, and structural changes (e.g. innovation 
in energy efficiency and the emergence of alternative sources of energy). At the micro level, the 
ultimate destination of oil exports is the result of a complex and dynamic system including, for 
instance, contractual agreements (long-term bilateral agreements and short-term commercial con-
tracts), political factors (sanctions or restrictions), new pipelines and refineries, the use of storage, 
and regional price fluctuations. 

The objective of this paper is to predict the destination of oil exports at the micro level in 
a data-driven framework by utilizing actual oil shipment information and training machine learning 
algorithms based on supervised classification techniques. Based on crude oil shipment data for the 
period January 2013 through mid-March 2016, we investigate how destinations are determined 
based on four attribute clusters: cargo information (such as sellers’ identity, cargo grade and cargo 
size), vessel information (such as vessel identity and its technical specifications), geographic in-
formation (load terminals and ports), and macroeconomic data (e.g. regional oil prices and crack 
spreads). We train the machine learning algorithm based on historical data and demonstrate the 
models’ out-of-sample accuracy. 

To our knowledge there is no comparable academic research in the oil trade domain. We 
contribute to the literature in at least three ways. Firstly, we contribute to the choice model method-
ology literature by applying cutting edge machine learning techniques in the prediction. Compared 
to traditional discrete choice models, our approach lessens the dependence on often unrealistic sta-
tistical assumptions (such as factor independence) and remain completely data-driven thanks to 
the increasing availability of maritime big data. Secondly, the unique dataset of micro-level oil 
shipment information, which is primarily derived from the Automated Identification System (AIS) 
for satellite tracking of vessels, provides a new and rich information of global oil trades. The high 
dimensionality in the attributes is key in training machine learning algorithms to predict trade pat-
terns. Thirdly, the variety of machine learning models that are employed in this research provides a 
good combination of interpretability and accuracy. 

This last contribution is key in real life applications and, thus, our methodology is poten-
tially important as a building block in commercial applications that deal with oil and freight market 
analysis. For instance, the public destination information in ship tracking data is known to be of low 
quality and can be easily manipulated. Accordingly, analysts that want to track cargoes as a proxy 
for economic activity or to estimate short-term regional supply of crude oil need a tool to benchmark 
such information against the likely outcome predicted from past trading patterns and micro data. 
Importantly, our work suggests that micro data is substantially more valuable for predictive oil trade 
models than observable macroeconomic data such as crack spreads and oil prices. 

The remainder of the paper is organized as follows. Section 2 reviews the relevant liter-
ature, which is followed by methodology in Section 3 and data description in Section 4. Section 5 
describes the feature engineering process, Section 6 presents the results, and Section 7 concludes 
the paper.

2. LITERATURE REVIEW

The use of discrete choice models, both binary and multinomial, has been the dominating 
method in modelling destination choice in transportation, see for instance, Malchow and Kanafani 
(2004), Rich et al. (2009), Steven and Corsi (2012), Piendl et al. (2017), and Alizadeh et al. (2016). 
Discrete choice models in this context have dealt with destination choices for shopping trips (Tim-
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mermans, 1996; Wang and Lo, 2007), car purchases (Train, 1986; Train and Winston, 2007) or the 
demolishing of ships (Alizadeh et al. 2016). Professor Daniel McFadden won the 2000 Nobel prize 
for his development of theory and methods for analyzing discrete choices (Manski and McFadden, 
1981; McFadden, 1974, 1989; McFadden and Train, 2000). In these models, the choice made by 
entities (a person, firm or industry) is statistically related to the attributes of the choices. For exam-
ple, the choice of which port a liner shipping company uses is statistically related to the port service 
level, vessel sizes, cargo information, and other attributes of each available alternative. The models 
estimate the probability that a particular alternative is chosen using econometric methods such as 
parametric models (see, for example, Allenby and Rossi, 1998; Andrews et al. 2002; Hensher and 
Greene, 2003) or nonparametric models (see, for example, McLachlan and Peel, 2005; Train, 2008). 
As an extension, the model is naturally used to predict how choices will change when the attributes 
of the alternatives change. However, the imposed statistical model cannot possibly include all the 
factors or information that lead to decisions as their determinants are only partially observed or 
imperfectly measured. Therefore, discrete choice models rely on statistical assumptions and specifi-
cations to account for, for example, individual taste differences (Vij and Krueger, 2017). Traditional 
statistical techniques were designed for relatively small datasets with standardized structures, i.e. 
similar type of variables. The underlying assumption is that the relationship is homogeneous, that 
is, the same relationship between variables hold across the entire measurement space. This leads to 
models where only a few parameters are necessary to trace the effects of the various factors involved 
(Breiman et al.1998). 

As the result of increasing availability of information and the exponential growth in data in 
recent years, machine learning methods have been gaining popularity in various areas due to their 
ability to model large amounts of data without explicitly imposing a statistical model form. The 
term “machine learning” was coined by Samuel (1959), in which he suggests that computers can be 
programmed to “behave in a way which, if done by human beings or animals, would be described 
as involving the process of learning”. Machine learning typically refers to the scientific study of 
algorithms that computer systems use to progressively improve their performance on a specific 
task (Bishop, 2006). Machine learning is today used in various research areas such as, for instance, 
image recognition for oil spills (Kubat et al. 1998), cancer prediction (Cruz and Wishart, 2006), 
information extraction (Freitag, 2000), and biology (Kampichler et al. 2010). 

A large dataset not only involves a large number of observations for many variables, but 
also has high complexity in the data structure. This may include high dimensionality, a mixture of 
data types and nonstandard data structure (Breiman et al. 1998). High dimensionality in machine 
learning means there is a large number of attributes, which can be features required to represent 
data, or independent parameters. In this case, the number of observations may be less, but rich infor-
mation for each observation leads to high dimensionality which demands better handling of the data. 
Mathematically, in a dataset with M dimensions, the number of parameters needed to specify distri-
butions in M dimensions increases by the factor of M2 for a normal distribution, unless one makes 
the very strong assumption that the variables are independent (the typical i.i.d. assumption in tradi-
tional statistical models). Indeed, thanks to the complex impact of high dimensionality on statistics, 
mathematicians have termed it “the curse of dimensionality” (Bellman, 1961). With accelerating 
computer capability, the analysis of complex high dimensional databases with mixed data types is 
increasingly feasible without imposing a model structure a priori. Micro-level oil shipment data 
represents exactly such a dataset, which motivates our choice of the machine learning methodology.
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3. METHODOLOGY

3.1 Multinomial Logit Model

Discrete choice models that are based on utility maximization theory have gained popu-
larity in transportation research, where the family of these models is typically used to predict indi-
vidual choices in transport mode and routes. There is an extensive literature on the development of 
discrete choice models (see Cirillo and Xu, 2011, for a review). For our purpose, one of the most 
widely used models—the multinomial Logit model (MNL) - is a useful benchmark for the classifi-
cation performance of machine learning techniques. MNL assumes that the probability of choosing 
one of the J alternatives yj from the choice set Y (i.e. the multinomial output variable Y) is a function 
of a group attributes (i.e. input variable X) (Manski and McFadden, 1981; McFadden, 1987):
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where, yj is a choice from a finite set of alternatives Y; Xi is a vector or attributes of alternative i, 
and β is a vector of parameters. McFadden (1987) suggested the size of alternatives Y should be 
limited to 100 categorical outputs. In practice, MNL has mainly been used to generalize small-scale 
problems with a modest number of alternatives and attributes.

3.2 Supervised Classification

The objective in our destination choice problem is to find a mapping function from the 
attributes (X), which are factors influencing seaborne oil trade, to the output variable—the export 
destinations (Y). Not only is the number of attributes large, which makes MNL model estimation 
difficult; most importantly, it is not plausible to impose any form of mathematical functions on this 
mapping. Therefore, we here introduce supervised machine learning techniques (as opposed to un-
supervised, i.e. no observed output variable Y). The goal of supervised learning is to find algorithms 
(functions) that, given a sample of data, best approximates the relationship between X and Y. 

There are several supervised machine learning techniques, such as Artificial Neural net-
works (ANN) (refer to Zhang, 2000, for an overview of ANNs), k-Nearest Neighbour (kNN), 
Bayesian network (BN), Support Vector Machines (SVMs), and Decision trees. ANN is inspired by 
the complexity in biological neuron networks and has a growing number of applications. However, 
our research question is not suitable for ANN due to the lack of “depth” in the data and the lack of in-
terpretability of the resulting model. The SVM approach is a supervised machine learning technique 
(Kotsiantis, 2007; Vapnik, 1995) and the main idea is to separate the data by a hyperplane, creating 
the largest possible distance between the hyperplane and the instances on either side of it. However, 
as pointed out by Kotsiantis et al. (2006), SVMs may not be applicable in many real-world prob-
lems, as many cases involve non-separable data for which no hyperplane exists. Similarly, kNN has 
limitations in handling imbalanced data (an issue in our trade data set) and missing values. For the 
purpose of this research, we therefore focus on the following supervised classification techniques: 
Bayesian Network, Decision Trees, Random Forest and Gradient Boosted Trees.

3.2.1 Naïve Bayes Classification (NB)

NBs are very simple Bayesian networks with one strong assumption, which is the indepen-
dence among the attributes (X). In other words, in order to calculate the probability of each event, it 
is assumed that the probabilities of each event are conditionally independent given the target value. 
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Thus, the probability of choosing output yi based on the whole attribute set X, which is given as P(yi 
|X), is the unconditional probability of yi occurring in each sub event. We then compare the proba-
bility of choosing yi with the probability of choosing yj:

( | ) ( ) ( | ) ( ) ( | )
( | ) ( ) ( | ) ( ) ( | )

i i i r

j j j r

P y X P y P X i P y P X i
P y X P y P X j P y P X j
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If P(yi│X)>P(yj│X), the classification label value would be more likely to be yi. NBs are fast and 
easy to implement but the strong assumption in the network is the biggest weakness as most real-life 
cases would have inter-dependent predictors or attributes X.

3.2.2 Decision Trees

Decision trees utilize a “divide-and-conquer” approach to the problem of supervised learn-
ing (Witten and Frank, 2005). Figure 1 illustrates a simplified binary decision tree, which is usually 
drawn upside down with its root at the top. In each node, a split into two descendant subsets is made 
based on features and set of conditions. The crucial point is how to determine the splits, the terminal 
nodes, and their assignments, in other words finding good splits and knowing when to stop. The 
fundamental idea is to select each split of a subset so that the data in each of the descendant subsets 
are “purer” (more homogeneous) than the data in the parent subset.

Figure 1: Decision Tree Diagram

There are many algorithms to build decision trees for classification (see Wu et al. 2008 for a review). 
The Classification and Regression Trees (CART) of Breiman (1984) are among the most widely 
used and popular algorithms. CART employs a measure of node impurity, a Gini index, based on the 
distribution of the observed y values in the node, and splits a node by exhaustively searching over all 
x and s for the split {x ∈ s} that minimizes the total impurity of its two child nodes. If all datapoints 
at one node belong to the same class then this node is considered “pure”. Therefore, by minimizing 
the Gini index, the decision tree finds the features that separate the data best. The process is applied 
recursively on the data in each child node. The splitting stops if the relative decrease in impurity 
is below a pre-specified threshold. The disadvantages that have been identified by applications in 
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the literature include lower accuracy and instability comparing to other more complicated machine 
learning methods like Random Forest and Boosted Trees. 

3.2.3 Random Forest

The Random Forest (Breiman, 2001) model, as implied by the name, builds multiple deci-
sion trees to form a forest by randomly selecting observations and features. It classifies a new object 
from an input vector by submitting the input vector to each of the trees in the forest with each tree 
producing a prediction. In the end, it merges the results from each tree to get a more accurate predic-
tion by choosing the category which has the most votes over all the trees in the forest. The Random 
Forest algorithm in Figure 2 illustrates a simplified Random Forest structure with n decision trees.

Figure 2: Random Forest Diagram

Random Forest has certain advantages as it: i) handles categorical predictors naturally, 
ii) is quick to fit even for large problems, iii) makes no formal distributional assumptions and iv) 
automatically fits highly non-linear interactions. The main limitation of the Random Forest model is 
that it is easy to overfit and has a relative longer run-time as more accurate predictions demand more 
trees. Nevertheless, in most real-world applications, the Random Forest algorithm is fast enough.

3.2.4 Gradient Boosted Trees

Similar to Random Forest, Gradient Boosted trees (GBT), see Friedman (1999a, b, 2001, 
2002), also build multiple trees and combine the outputs from individual trees to improve predic-
tive accuracy. GBT differs in the way that trees are built one at a time, while each new tree helps 
to correct errors made by a previously trained tree. Boosting is an ensemble technique in which the 
predictors are not made independently, but sequentially (Grover, 2017). The boosting algorithms 
combine weak learners to form a strong rule for classification, essentially the algorithm converts rel-
atively poor hypotheses (weak learners) into very good hypotheses (strong learners) (Kearns, 1988). 

In GBT, the algorithm trains many models sequentially. Each new model gradually min-
imizes the loss function of the whole system using the Gradient Descent method, i.e. to find local 
minimum of the loss function by taking steps proportional to the negative of the gradient of the 
function at the current point. The learning procedure consecutively fit new models to provide a more 
accurate estimate of response variable (Pedregosa et al. 2011, Chen and Guestrin, 2016). 
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Note that GBT always uses regression trees even for classification problems. The learning 
rate can be controlled to reduce the risk of overfitting. The GBT algorithm performs well in applica-
tions with unbalanced data, which in this context means an unequal number of instances for different 
classes. Though unbalanced data is common, most machine learning classification algorithms are 
sensitive to imbalance in the predictor classes. For example, in a hypothetical extreme case, if a 
dataset consists of 10% class A and 90% class B, a machine learning model that has been trained 
and tested on such a dataset would predict class B for all samples and still gain a very high accuracy. 
Effectively, an unbalanced dataset will bias the prediction model towards the more common class.

4. DATA

4.1 Seaborne Oil Trade Shipment Data

We utilize a unique dataset comprised of 73,312 oil shipments loading from 212 ports in 76 
countries and exporting to 95 countries between 1 January 2013 and 15 March 2016. The dataset is 
a multi-dimensional database of oil shipment information including: 

1.  Cargo information: oil grade (e.g. ARAB Crude, Basrah light etc.); producer country/
region; API gravity (e.g. light, medium or heavy), sulfur content (e.g. sweet or sour), 
cargo size (bbls) and seller identity.

2.  Geographic trade information: load port/country/region, load date, offtake port/country/
region, offtake date. 

3.  Vessel information: Details about the vessel undertaking each shipment (e.g. vessel 
name, IMO, flag, class, year-of-build, deadweight)

The cargo data is provided by ClipperDataTM and enriched with technical vessel data from the World 
Fleet Register of Clarkson Research (2016). For the illustration of trading patterns in Figure 3, the 
cargo data has also been merged with ship positioning data derived from the Automatic Identifica-
tion System (AIS).

Figure 3: Global Seaborne Oil Trade Flows

Source: Sample data in combination with AIS paths 
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As an example, Figure 4 illustrates the major global seaborne oil flows during the sample period for 
the top 20 country pairs measured by the total number of shipments. The offtake/load (import/ex-
port) country matrix illustrates the frequency of crude oil trade between two countries. For instance, 
the most common trade by number of shipments is between the United States and Saudi Arabia 
(2,582 shipments), followed by US-Mexico (2,479 shipments) and Saudi Arabia-Japan (1,658 ship-
ments). For Chinese oil imports, Angola and Saudi Arabia are the top two seaborne sources of oil in 
terms of the number of shipments.

Figure 4: Top-20 Crude Export (top) - Import (bottom) Country Pairs by No. of Shipments

Source: Derived from Clipper Data

Figure 5: Top-20 Crude Oil Exporting Countries by Volume (billion barrels)

Source: Derived from ClipperData

Figure 5 ranks the exporting countries over the sample period in terms of total seaborne shipment 
volume (billion barrels). Saudi Arabia tops the list by exporting nearly 8 billion barrels by sea over 
the time period, followed by UAE, Venezuela, Kuwait and Iran. Similarly, Figure 6 ranks the top-20 
oil importing countries in global seaborne oil trade. It shows that countries including China, India, 
and OECD countries are among the top destinations. 
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Figure 6: Top-20 Crude Oil Importing Countries by Volume (billion barrels) 

Source: Derived from ClipperData

4.2 Oil Market Data and Other Economic Data

Most crude oil is sold on Free-on-board (FOB) basis, which means the buyer takes own-
ership at the point of loading and arranges and pays for seaborne transportation. Even though long-
term offtake agreements dominate in the commercial relationships between oil buyers and sellers, 
ensuring some rigidity in global crude oil trade, the observable trading patterns are a result of com-
plex commercial decisions. Firstly, as integrated oil companies and refining companies (the oil 
buyers) often have operations across multiple countries, cargoes may be directed to different ports 
depending on local tank storage levels, local refinery economics (crack spreads, foreign exchange 
rates) and logistical bottlenecks (e.g. port congestion). Secondly, third-party trading companies such 
as Glencore, Vitol, Trafigura and Gunvor are large players in the global crude oil trade and will trade 
crude oil in the spot market to take advantage of perceived arbitrages, such as geographical price 
spreads or the cost of physical storage vs futures prices. Thirdly, countries such as the United States 
or China will occasionally make strategic purchases of oil to build their national reserves. Fourthly, 
oil flows can be disrupted due to trade embargoes and company sanctions, political unrest and other 
exogenous factors such as natural disasters and acts of terror.

To proxy some of the macro-level attributes that affect the destination of crude oil exports 
we chose six categories of time series: (1) crude oil prices (incl. spot and futures prices in Europe 
and the US), (2) natural gas prices (spot and futures at different locations), (3) oil products prices 
(gasoline, jetfuel/kerosene in different locations, quoted on FOB or Cost-Insurance-Freight CIF 
basis), (4) crack spreads, (5) inventory levels (LPG), and (6) foreign exchange rates (USD, JPY, 
CNY, EUR, BRL spot and futures), in total 38 time series. The crack spread represents the differ-
ential between the price of the input in the refining process (crude oil) and the value of the output 
(petroleum products).

5. FEATURE ENGINEERING

Feature engineering refers to the process of data cleaning and deciding what information to 
include in the machine learning models. In total, we include 31 predictors reflecting the cargo and 
shipment information, as well as 38 time series predictors reflecting the market conditions. In this 
section we describe the steps taken to process the data prior to training the machine learning models. 
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Firstly, as the machine learning techniques applied in this research are not capable of di-
rectly handling categorical variables, such as geographical information, they are converted to nu-
merical values. We experimented with different encoding methods, including one-hot encoding and 
label encoding. The trade-off is to balance model performance and the number of variables and, 
thus, the complexity of the model. One-hot encoding expands the number of variables drastically by 
creating a vector to denote the presence or absence of a categorical variable. The dimension of the 
vectors depends on the number of categories for an attribute. In our research problem, there are 30 
categorical variables, and, as an example, one of the categorical variables (load port) alone has 212 
categories (unique port names). As one-hot encoding method slows down the learning significantly, 
we apply label encoding by assigning a value from 1 to Nx, where Nx is the number of categories 
for attribute x. 

Secondly, random missing data values are present for some of the categorical variables 
with a missing ratio of 1.8%. For all the variables except one (Sulphur), less than 0.5% is missing. 
The variable Sulphur represents the crude oil cargo’s sulphur content as a percentage of volume, 
ranging from 0.1% to 6.8%, and is missing in 20% of the cases. There are various techniques to 
treat missing values: such as deleting, random filling, estimating based on another predictive model, 
finding the k-nearest neighbors, or creating a separate category as unknown. We choose to impute 
the missing values with the mean for the particular feature. This is a basic imputation method that 
serves our purpose well, though it has been criticised as reducing variance in the dataset. We also 
note that the variable API gravity (density of the crude oil cargo) provides supplementary informa-
tion on cargo quality. 

Thirdly, the dataset is also inherently imbalanced, in the sense that certain trading partners 
dominate in the sample either as exporters or importers. This is sometimes explained by geograph-
ical proximity but also long-term commercial offtake agreements for crude oil, bilateral free-trade 
agreements between countries, sanctions or security concerns etc. Because of this imbalance, we 
choose to split the dataset and apply the machine learning algorithms at the export country level. 
This decision is also driven by the empirically poor prediction performance when utilizing the full 
dataset. In an initial experiment, the prediction accuracy of the Decision Tree algorithm was only 
28.8%. To improve performance, the dataset is divided by origin countries into 76 sub-samples: 

1{ , , , , }, ( 76)n NDF DF DF DF N= … … = .
As our main cross-validation approach, each dataset DFn is then divided into: i) a train-

ing set—the sample of data used to fit the models, ii) a validation set—the sample of data used to 
provide an unbiased evaluation of the fit of the model from the training dataset while tuning model 
hyper-parameters, and iii) a testing set—the sample of data used to provide an unbiased evaluation 
of a final model fit (out-of-sample performance). The size of the three periods are set simply by 
randomly allocating 60% of observations to the training set, 20% for validation and 20% for testing. 
In each case we train the three models, namely Decision tree, Random Forests and Boosted tree, 
respectively, on each subset. 

6. RESULTS

6.1 Performance Measures

Once the best fitting model has been identified through training and validation, the model 
is then used to predict the oil export destination countries for each exporting country. By comparing 
the predicted values to the actual value in the test sample, the accuracy of the classification output 
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can be classified according to Table 1. For instance, True Positive (TP) means to correctly predict yi 
when the actual value is in fact yi.

Table 1: Parameters measuring prediction performance
Predicted Value

Yes No

Actual Value
Yes True Positive (TP) False Negative (FN)
No False Positive (FP) True Negative (TN)

Based on these four parameters (TP, TN, FP, FN), four prediction performance measures are calcu-
lated: accuracy, precision, recall and F1 score. Accuracy measures the ratio of correctly predicted 
values to the total number of out-of-sample values, i.e. Accuracy = (TP+TN)/(TP+TN+FP+FN). 
Precision measures the ratio of correctly predicted positive values to the total predicted positive 
values, i.e. Precision = TP/(TP+FP). Recall, which is also called sensitivity, measures the ratio of 
correctly predicted positive values to all the actual positive values, i.e. Recall = TP/(TP+FN). F1 
scores is the weighted average of Precision and Recall, by taking into account both false positives 
and false negatives. When sample data is imbalanced, i.e. uneven class distribution, F1 scores gives 
a more realistic performance measure.

6.2 Overall Performance

Our aim is to predict the destinations of export shipments in the global seaborne oil trade. 
Thanks to the richness of the dataset, the geographical levels of prediction can be scaled down from 
regions to individual countries, ports or even terminals. In total, there are 76 exporting countries and 
95 destination countries in the sample. 

Table 2 reports the statistics of the average prediction accuracy from the three machine 
learning models in the training and test sample, measured as the average performance within a per-
centile when exporting countries DFn are ranked by the total number of shipments. As an example 
“Mean 95 percentile of obs” refers to the average prediction accuracy for the countries with number 
of shipment below 3,666, which is the 95-percentile in the sample. Similarly, “Mean 10 percentile of 
obs” refers to the average prediction accuracy for the countries with number of shipments below 18, 
which is the lower 10-percentile in the sample. Overall, the test accuracy does not differ materially 
between the training sample and test sample for the majority of the subsamples. As the samples are 
of different sizes we have to be careful of drawing strong conclusions here, as the level of homo-
geneity could be different, but this is nevertheless encouraging. The relatively high accuracy also 
presumably reflects the fact that the trading patterns for crude oil are somewhat stable. 

We note the tendency for the predictive power of the machine learning algorithms to drop 
when the number of observations in the subsample decreases from thousands to a few dozens. Coun-
tries in the lower quartile include, for instance, Poland (12 shipments), Philippines (40), South Af-
rica (21), Lavia (21), Chile (17), Mauritania (13), St. Croix (12), Ireland (6) and Belgium (1). There 
are several points to note here. Firstly, when there is limited data to train the model, we face the dif-
ficulties of over-fitting and noise. Secondly, countries with such low volumes—like the ones listed 
above—tend not to be oil exporters at all and are present in the dataset only due to rare occurrences 
of transhipments or re-exports of crude oil cargoes. The random nature of such trades means they 
are by definition hard to predict using historical data. Thirdly, we note that the number of shipments 
(or number of destination countries for that matter) need not be a good proxy for the difficulty of the 
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classification problem. Indeed, a country with few shipments can have only a single trading partner 
(New Zealand being an example of this) and so has a 100% predictable outcome. Conversely, very 
large crude oil exporting countries will typically have a large and diverse group of trading partners, 
with flows that also change over time, making the destination somewhat less predictable. We see this 
reflected for the largest exporters in Table 3.

Table 2: Prediction accuracy statistics
Decision Tree Random Forest Boosted Tree

Training sample

Mean all 59.7% 63.5% 61.6%
Median 61.9% 66.7% 67.8%
Mean 95 percentile of obs 63.9% 66.1% 70.7%
Mean 75 percentile of obs 63.6% 67.8% 71.2%
Mean 25 percentile of obs 54.99% 55.65% 45.67%
Mean 10 percentile of obs 60.42% 60.42% 41.67%

Test sample

Mean all 54.6% 58.1% 58.4%
Median 58.8% 62.4% 62.5%
Mean 95 percentile of obs 66.6% 68.2% 71.4%
Mean 75 percentile of obs 65.2% 69.4% 72.8%
Mean 25 percentile of obs 33.3% 33.4% 29.9%
Mean 10 percentile of obs 26.0% 16.7% 22.9%
Mean all 59.7% 63.5% 61.6%
Median 61.9% 66.7% 67.8%

As machine learning is a data-driven technique, results can be highly dependent on the data 
structure of a subsample and it may therefore be difficult draw strong generalized conclusions. In or-
der to have a better understanding of prediction performance, we therefore focus on the F1 scores by 
load country subsample in the prediction models, together with the percentage of the most frequent 
offtake country class. Table 3 reports the accuracy performance, measured by F1 score, in predicting 
the offtake (importing) countries for the top-15 oil exporting countries, which together account for 
76% of total seaborne shipment volume in our database. The table is ranked by the Boosted tree 
performance results for the test sample in descending order. We also include the subsample size (i.e. 
number of shipments) and the number of offtake countries.

There are a couple of important takeaways from Table 3. Firstly, without exception, all the 
machine learning models outperform the naïve benchmark models, i.e. simply guessing that the des-
tination is the biggest importer (“most frequent class”), the classical multinomial Logit regression 
model, and the Naïve Bayesan prediction. This suggests that the machine learning approach—with 
its ability to utilize complex relationships between variables—is in fact a valuable addition to pre-
dictive modelling of crude oil flows.

Secondly, we note that the degree of homogeneity in the exporting profile for each load 
country affects the prediction accuracy. Specifically, countries with highly concentrated seaborne oil 
exports tend to have higher prediction performance than other countries. For instance, 93% of Can-
ada’s oil export shipments are destined for the United States in the sample, resulting in the highest 
out-of-sample accuracy of 97.36%. Similarly, Mexico exports 68% of its oil shipments to the United 
States, making it the second most homogeneous country in terms of destination countries, with a 
correspondingly high 90.8% prediction accuracy. On the other hand, Russia’s seaborne oil exporting 
profile is rather fragmented with only 14% of shipments going to its largest export destination, the 
Netherlands, with prediction F1-score below 40% for the test sample.
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Figure 7 shows the variation across countries in terms of the importance of attributes in the 
GBT model. Overall, information about the cargo plays the most important role in all cases. Infor-
mation on the vessels employed appears to be of greater importance than economic and geography 
attributes. It appears that the vessel attribute cluster is more important than the macroeconomic 
variables for oil trades originating in the Persian Gulf (Saudi Arabia, UAE, Iraq, Kuwait, Iran and 
Qatar), while the two attribute clusters (vessel and economic) are on par in ex-Africa trades (Nigeria 
and Angola in Figure 7).

Figure 7: Attribute importance for key countries in GBT-Boosted tree

Table 3: Prediction performance of the models by load countries, F1 score for classifications

Load country
Num. 

offtake 
countries

Num. 
shipments

Most 
frequent 

class

Multinomial 
Logit

Naïve 
Bayes 

Decision 
tree

Random 
forests

Boosted 
tree

 Canada  18  1,683 92.9% 92.2% 84.5% 94.4% 97.2% 97.4%
 Mexico  26  3,630 68.3% 81.8% 62.6% 86.2% 88.8% 90.8%
 Venezuela  40  3,719 44.2% 46.0% 20.8% 82.8% 78.6% 84.8%
 Kuwait  29  3,000 19.6% 23.0% 8.1% 67.5% 73.1% 80.1%
 Iran  17  1,555 30.2% 41.0% 44.9% 73.7% 76.9% 78.0%
 Qatar  26  2,242 40.0% 35.5% 35.6% 66.0% 65.0% 74.1%
 S. Arabia  41  9,980 25.9% 33.9% 23.9% 74.8% 73.8% 73.8%
 UAE  37  4,485 33.5% 29.7% 14.6% 58.6% 64.4% 72.0%
 Angola  35  3,408 48.1% 51.1% 14.4% 56.3% 64.8% 69.7%
 Iraq  38  3,213 20.2% 36.0% 15.9% 58.8% 63.5% 68.9%
 Nigeria  50  3,469 13.1% 20.9% 5.7% 37.8% 43.9% 51.5%
 UK  29  1,227 29.8% 28.3% 18.9% 45.9% 48.5% 47.3%
 Turkey  35  1,765 41.5% 38.9% 8.6% 42.9% 46.8% 46.5%
 Norway  23  1,707 30.2% 16.6% 10.7% 28.4% 32.3% 45.2%
 Russia  49  7,046 14.3% 11.3% 4.9% 39.6% 37.9% 38.3%
 Average  33  3,475 36.8% 39.1% 24.9% 60.9% 63.7% 67.9%
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This suggests that the fleet serving the Persian Gulf oil exports is more heterogeneous, such 
that knowledge of vessel identities provides some additional valuable information on the shipments’ 
ultimate destination. Overall, the dominance of cargo information attributes in the prediction reflects 
the presence of long-term offtake agreements and technical processing limitations of the refineries 
at the destination.

Finally, we note that there are other ways to cross-validate the stability of the prediction 
models than the above holdout 60/20/20 split of the dataset, especially when the sample is small 
or imbalanced. K-fold is particularly useful in this case by repeating the holdout partition k times, 
such that each time one of the k subsets is used as the validation set and the other k-1 subsets are put 
together as a training set. Leave-p-Out leaves p data points out of training data, with Leave-One-
Out (LOO) being the extreme case of this approach (p=1). To illustrate the potential differences in 
reported accuracy depending on the chosen cross-validation method, Table 4 reports the prediction 
accuracy for a small sample (Brunei), medium-size sample (Indonesia) and large sample (Mexico), 
respectively. The experiment suggests that LOO leads to a higher reported accuracy for small size 
samples, such as the case of Brunei with less than 200 data points. However, it is computationally 
expensive for large sample sizes.

Table 4: Prediction accuracy in Decision Tree based on different cross validation methods
Number of shipments Holdout 60/20/20 k-Fold Leave-One-Out

Brunei 197 23% 22% 33% (0.034)
Indonesia 778 60% 59% 58% (0.018)
Mexico 3630 90% 68% 88% (0.005)

Note: Numbers in parenthesis is the standard deviation of the estimated accuracy

6.3 The Case of Saudi Arabia

Saudi Arabia, being the largest crude oil exporter in the world, ships its oil to 40 countries 
around the world, with the US taking over a quarter of all shipments (26.2%) followed by Japan 
(16.8%), India (10.8%) and China (9.3%). We note here that as the volume of individual shipments 
differs this does not match perfectly with the share of the overall traded volume. 

Figure 8 reports the test set accuracy for the destination country of Saudi Arabian oil ex-
ports as a function of tree depth. We note that the decision tree and random forest algorithms con-
verge at a similar rate and to a similar test accuracy of around 75%, albeit with the later performing 
better at greater tree depths. The Boosted tree algorithm performs the best for this particular subset 
with 81% accuracy in the test set. The relative performance is confirmed by measures of Accuracy, 
Precision, Recall and F1 score, which is shown in Table 5. 

The relative importance of the attributes in the classification models is visualized for Saudi 
Arabian seaborne oil exports by the radar chart in Figure 9. The attributes are first clustered into 
the four categories of cargo, vessel, geography, and economic indicators, following the criteria pre-
sented in Section 4. In the case of DF1 (Saudi Arabia), attributes related to cargo information play 
the most important role in the prediction of destinations, followed by attributes for vessels and eco-
nomic indicators. The location of loading terminals and loading ports is the least important attribute 
in predicting export destinations in the case of Saudi Arabia. We note that there are only four loading 
ports (Al Ju Aymah, Ras Tanura, Yanbu, and Khafji) while there are 40 destination countries. More-
over, a ship is often loading in more than one port prior to its international journey (i.e. there are 
more than one shipment on a single ship, creating dependence) such that the informational content 
in the load port attribute is limited.
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Figure 9: Attribute importance for Saudi Arabia subsample

6.4 The Case of Mexico

The destination distribution for Mexico is dominated by two countries—nearly 70% of 
seaborne oil shipments from Mexico ends up in the US, and another 15% of shipments in Spain. 
This high degree of concentration results in a high prediction accuracy even at low tree depths, con-
verging to a high 91% average across the three models in the test set, as reported in Figure 10. The 
overall performance measures are shown in Table 6.

The relative importance of the clusters of attributes also changes for DF2 (Mexico). The 
overall importance of the four attribute clusters is presented in Figure 11. Attributes regarding cargo 

Figure 8: Offtake country prediction accuracy by tree depth (load country=Saudi Arabia)

Table 5:  Prediction performance measures from the five models (load 
country = Saudi Arabia)

Performance scores MNL NB DT RF GBT

Accuracy 42% 28% 75% 76% 76%
Precision 30% 28% 76% 76% 76%
Recall 42% 28% 75% 76% 76%
F1 34% 24% 75% 74% 74%
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information is still the dominant factor in the three models. For the Boosted tree and Random forests 
models, vessel attributes as well as economic indicators are more or less equally important. Refer-
ring to Section 3.3, GBT models improve on other models particularly for unbalanced dataset by 
reducing bias and converting weaker learners to more rigorous learners, as is the case here.

Comparing the relative importance of attributes for Saudi Arabia (Figure 9) and Mexico 
(Figure 11), the prediction of export destinations for Saudi Arabia is based on more dimensions of 
the data. This naturally reflects the difference in the heterogeneity and complexity of trading patterns 

Table 6: Prediction performance measures from the five models (load 
country = Mexico)
Performance scores MNL NB DT RF GBT

Accuracy 87% 52% 90% 91% 92%
Precision 78% 83% 84% 88% 91%
Recall 87% 52% 90% 91% 92%
F1 82% 63% 86% 89% 91%

Figure 10: Offtake country prediction accuracy (load country=Mexico)

Figure 11: Attribute importance for Mexico subsample
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originating from the two countries. Saudi Arabia, being the world’s largest oil exporter, has not only 
more trading partners, but also a more diversified ownership of the oil cargoes and a wider specifica-
tion of vessels that are employed to carry out the shipment. Conversely, nearly 70% of oil shipments 
from Mexico are destined for the US, and knowledge of seller information and cargo size/type can 
yield a highly accurate prediction of destination countries.

7. CONCLUDING REMARKS

We have shown that machine learning can be a powerful and effective tool to predict sea-
borne oil trade destinations. Gaining visibility of oil trade flows is of great importance and interests 
to multiple parties, such as oil traders, oil companies or refineries. For many of these players, visi-
bility is currently limited to information gleaned from communication with brokers or in-house data 
sources. With the increasing availability of data, innovative and advanced data science techniques 
are increasingly required for information discovery. The prediction of destinations for individual 
oil cargoes allows better forecasting of regional and local market balances, and also allows for im-
proved prediction of inventory levels and monitoring of the supply chain. 

For policy makers, trading patterns affect everything from national energy security and 
trade balances to the environmental footprint of economic activity. For instance, supranational insti-
tutions such as the World Bank may desire a real-time index of global trade in crude oil to monitor 
changes in economic conditions or the tightness of supply in regional energy markets. Similarly, 
national governments may want to monitor changes in the sourcing of their energy needs, or the 
impact of sanctions and trade embargoes. We acknowledge that machine learning models do not 
adapt quickly to such structural shifts as they learn from historical data, but they nevertheless can be 
useful to detect departures from what is considered “normal” behaviour according to the recent past.

As destination prediction refers by definition to short-term outcomes, our work is perhaps 
most applicable to operational decisions. For instance, for maritime port authorities, better predic-
tions of ships’ destinations can improve operational planning such as the scheduling of port calls and 
minimizing port congestion. It is well documented in the literature (see, for instance, Jia, 2018; Jia 
et al, 2017) that the lack of co-ordination between shipowners, cargo owners and terminals on the 
availability of cargoes and berths create substantial inefficiencies in the supply chain, with increased 
waiting time, sailing speeds and emissions as a result.

For shipowners and operators, the destinations of crude oil cargoes directly affect the de-
mand for seaborne transportation. For instance, a short-term increase in the number of predicted 
long-haul shipments out of a main loading area such as the Persian Gulf will remove ships from the 
market for longer (reducing future supply), therefore potentially creating a near-term increase in the 
cost of transportation. The prediction of cargo destinations is therefore an integral part of freight rate 
forecasting, monitoring of regional the freight market balances and, ultimately, feeds into decisions 
on the optimal geographical allocation of fleets. 

This paper is the first academic research to apply machine learning models in predicting the 
destinations of seaborne oil trade. We base the training of the models on a rich micro-level dataset 
of shipments with detailed information on crude quality, oil buyer and seller identity, cargo size and 
other attributes. However, we have also shown that the “model-form free” approach comes at an 
analytical cost, as it is necessarily harder to generalize the results from machine learning models 
than those from traditional statistical analysis, where a universal relationship can be drawn based on 
regression techniques. Machine learning is data driven, so that feature engineering and results are 
very much case-dependent. Therefore, it requires domain expertise that is applicable to individual 
cases (dataset). 
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Overall, our application to global crude oil exports at the country level results in test sam-
ple F1-score with a median of 68% - a strong performance considering the number of possible 
outcomes. It is possible that the results for certain countries or regions could be further improved by 
the inclusion of different data. However, even in cases where there are relatively few observations, 
classical discrete choice regression models do not perform better. 

We acknowledge that the relative rigidity of global crude oil trade, with predominance of 
long-term offtake agreements and national oil buyers and refinery operations should increase pre-
dictability relative to other applications of choice models in transportation. However, our work still 
points to an important application of micro-level data and machine learning models to improve oil 
and tanker freight market analysis.

We also acknowledge that our machine leaning models suffer from the same inability to 
predict exogeneous shocks as any other empirical models that are, by definition, based on known, 
past data only. Examples from the oil market would be the introduction or removal of sanctions 
on exporting countries, the outbreak of wars or terrorist attacks on refineries and oil processing 
facilities etc. Once such shocks do occur, the model will gradually incorporate their effects in its 
estimates. It is beyond the scope of the current paper to investigate the effects of such shocks and 
we leave this for future research. Future research should also consider the inclusion of other types of 
data that reflect economic uncertainty or political risk, such as market sentiment, leading economic 
indicators or textual analysis of news and social media. 
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