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The Effect of Restructuring Electricity Distribution Systems on 
Firms’ Persistent and Transient Efficiency: The Case of Germany
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abstract

We evaluate the efficiency of electricity distribution operators (DSOs) as provid-
ers of local public infrastructure. In particular, we consider two types of efficiency, 
i.e., short-term (transient) and long-term (persistent). We apply the recently devel-
oped four-component stochastic frontier model, which allows identifying deter-
minants of the two types of efficiency, after controlling for firm heterogeneity and 
random noise, to a panel dataset of German DSOs observed during 2006–2012. 
Those DSOs operating in the eastern parts of Germany have undergone a profound 
restructuring after the reunification in 1990. We find that this was beneficial for 
their efficiency as they perform, on average, better in terms of persistent efficiency 
than DSOs in West Germany. Both eastern and western DSOs perform similarly 
well in terms of transient efficiency, which is expected as the sector is highly reg-
ulated. As such, we provide new insights on identifying the nature and sources of 
public infrastructure productive inefficiency, which is relevant for public policies.
Keywords: Production, Persistent efficiency, Transient efficiency, Stochastic 
frontier model, Determinants of efficiency 
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“Germans still debate the process that has been made bringing east and west to-
gether. In terms of motorways and other infrastructure the east sparkles today.”

— The Economist, 2. October 2015

1. INTRODUCTION

The German reunification in 1990 is often referred to as one of the most important polit-
ical events of the twentieth century and recognized as an unprecedented example of the economic 
integration of two neighboring regions with different structure and degree of economic develop-
ment (Burda and Hunt, 2001). Within the shortest period of time, economic and political unity 
was achieved between the communist German Democratic Republic and the Federal Republic of 
Germany.

Immediately after the reunion, a process of urban restoration and local infrastructure reno-
vation has commenced in the eastern parts of the reunified country (Sinn, 2002). Previous literature 
refers especially to the telephone, water supply and waste water disposal systems as examples of 
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the ambitious modernization of a desolate public infrastructure (e.g., Burda and Hunt, 2001; Moss, 
2008).

Compared to other urban areas in West Germany, the country’s division after World War II 
led to a decline in population growth, a loss of market access and, subsequently, lower economic ac-
tivities in western regions close to the inner-German border (Redding and Sturm, 2008). However, 
following the reunification, Bavarian jurisdictions adjacent to the border experienced growth of both 
population and local economic activities, accompanied by regional congestion and higher costs of 
living (Jones and Wild, 1994). Despite these immediate effects, the separation of Germany into east 
and west had long-run impact. Fifteen years after the reunification, regional income in eastern parts 
of Germany is still lower than that in the western parts due to the economic closeness and the lower 
level of international market integration of the former communist state (see Buch and Toubal, 2009). 
While the living standards, consumption behavior and purchasing power widely converged among 
eastern and western regions (Berlin-Institut, 2015), the labor market has not recovered yet from its 
poor performance documented, for example by Hunt (2001, 2002) and Snower and Merkl (2006). 
Evi dence on the performance of distribution system operators (DSOs) in the context of reuniting the 
two countries and the associated restructuring process has not yet been provided.

The focus of this paper is the analysis of the persistent impact of the restructuring—that 
followed the reunification—on the current performance of providers of electricity distribution ser-
vices, i.e., DSOs. The service of electricity distribution is crucial for regional growth and welfare as 
it connects residents and local industries to the national power grid and supplies them with electrical 
power, which is used for business-related and every-day-life activities such as lighting, heating, 
cooking, communicating, etc.

For the last twelve years of separation (1978–1990), the eastern electricity distribution 
sector was organized based on the former fifteen energy regions (Energiebezirke) of East Germany. 
This region-based structure followed an organizational but not an economic rationale (Matthes, 
2000). At that time, the political and managerial decisions regarding the sector were solely made by 
the central state in line with the communist paradigm of a centrally planned economy, jurisdictions 
and private owners of electricity distribution networks have been dispossessed by the government 
in the 1950s.

Subsequent to the reunification and after initial setbacks, the eastern energy sector was 
restructured in a rigorous way. At the very beginning, between 1989 and 1995, the transition was 
especially ineffective due to a large number of stakeholders, property right issues, and the required 
compatibility of the two technological systems. Integrating both countries’ electricity sectors, thus, 
became the major challenge for the decision-makers who operationalized the reunion. With western 
structures as a role model, the eastern electricity distribution had undergone a profound restructuring 
process that caused a complete reshaping and involved radical changes in operating areas, opera-
tional management and ownership (Birke et al., 2000).

During the process of reunification, the eastern enterprises were transferred to a privatiza-
tion agency (Treuhandanstalt), which was responsible for conveying them into newly structured 
organizations. The pursued strategy for this reorganization was to broadly adapt the existing struc-
ture of the western German electricity distribution sector, i.e., implementing local and regional 
distribution networks. The privatization agency primarily intended to sell the enterprises to western 
electricity firms as they were expected to have the necessary capital and knowhow for the imminent 
restructuring, and hence, requiring no further subsidies. However, those eastern jurisdictions that 
claimed back their enterprises, which have been previously taken away from them, were successful. 
As a result of this restructuring, the sector in the East is composed of local and regional DSOs that 
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operated much smaller networks than their region-based predecessors, that are both publicly or pri-
vately owned, and obviously, no longer centrally controlled.

Another aftermath of the reunification was a massive input reallocation. On the one hand, 
labor force moved from East to West, and physical capital and enormous investments, on the other 
hand, from West to East (Burda, 2006). Between 1992 and 1998, about 72 billion euros were in-
vested into the eastern Germany’s infrastructure (Burda and Hunt, 2001) that has been run down 
under the communist rule. While the impact of these investments on regional growth in eastern 
Germany is subject to debate (Koetter and Wedow, 2013), they indisputably caused a general mod-
ernization of infrastructure. Alongside the massive capital flows, the eastern economy benefited 
immediately from adopting sound and well-functioning institutions as well as using the best infra-
structure available at that time which is considered to be the main reason why the eastern parts of 
the country is vastly superior compared to the western parts (Snower and Merkl, 2006; Sinn, 2002; 
Burda and Hunt, 2001).

The question arises whether such immediate and comprehensive restructuring, and in par-
ticular the modernization, and the transfer of technology and knowledge, positively influenced the 
performance of East German DSOs in the long-run. We analyze this by applying a state-of-the art 
stochastic frontier model that allows identifying determinants of time-variant (transient/short-run) 
and time-invariant (persistent/long-run) performance. We use a novel panel dataset of eastern and 
western German DSOs observed between 2006 and 2012. We approximate the restructuring by the 
location of the DSOs. We find that both eastern and western DSOs are equally efficient with respect 
to their transient efficiency. We further show that the DSOs operating in the East German areas ex-
hibit, on average, a higher persistent efficiency than those located in West Germany.

The remainder of the paper is organized as follows: After describing the method to the 
evaluation of public infrastructure in the next section, Section 3 presents the formal description of 
the model. In Section 4, we describe the empirical strategy and the data. Section 5 present the results 
of our analysis, and Section 6 concludes.

2. EFFICIENCY MEASUREMENT IN PUBLIC SECTORS

Beginning with the seminal work by Samuelson (1954) and Tiebout (1956) allocative effi-
ciency in local public service provision has been extensively discussed from various angles. More 
recently, the importance of technical efficiency, defined as the minimum input necessary to produce 
a certain level of output, has also been acknowledged as an important component in local public 
economics. Using stochastic frontier (SF) models, which directly incorporate technical inefficiency, 
some scholars analyze the aggregated public service provision of jurisdictions (e.g., Grossman et 
al., 1999), while others consider particular public services such as schooling (e.g., Grosskopf et al., 
2001), libraries (e.g., De Witte and Geys, 2011) and multi-utilities (e.g., Farsi et al., 2008).

The interest in determining the (in)efficiency of DSOs stems from welfare considerations 
(e.g., Shleifer, 1985; Laffont and Tirole, 1993; Armstrong and Sappington, 2007) and the impor-
tance of energy supply for local economic activities. The latter is emphasized by the fact that the 
volume of electricity delivered are often used as proxies for regional gross domestic product (GDP) 
where direct measures of GDP are missing (Henderson et al., 2012). At least in developed countries 
where almost the entire population is supplied with electric power, the efficiency of DSOs is directly 
related to consumer prices. Abstracting from the complexity associated with prices, an efficient 
DSO uses the resources in such a way that the cost of supplying a given amount of electricity is 
minimized. In turn, it is expected to lower prices paid by the consumer. In developing countries 
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where only a small share of the population is supplied with electric power and other public infra-
structures, the implementation of efficient networks could help increasing the benefits from urban 
concentration.1

There are ample empirical works estimating the extent of inefficiency of DSOs for multiple 
regions; e.g., Kumbhakar et al. (2015a) and Bjørndal et al. (2018) analyze DSOs in Norway, Kum-
bhakar and Hjalmarsson (1998) in Sweden, Filippini et al. (2004) in Slovenia, Cullmann (2012) and 
Hirschhausen et al. (2006) in Germany, Filippini and Wetzel (2014) in New Zealand, Giannakis et 
al. (2005) in the UK, Farsi and Filippini (2004) in Switzerland, and Bağdadioğlu et al. (1996) in 
Turkey. A shortcoming of these studies is that they rely on the assumption that inefficiency is either 
time-variant (transient) or time-invariant (persistent). Conceptually transient inefficiency relates to 
non-systematic management problems that are controllable and, therefore, can be reduced in a short 
time period (Filippini and Greene, 2016). Persistent inefficiency, on the contrary, is linked to differ-
ences between DSOs that are systematic in their operation environments or managerial capabilities. 
The distinction between transient and persistent is important for the assessment of public infra-
structure since for public service provision, and in particular, for investment and capital-intensive 
public sectors such as electricity distribution, it is unreasonable to assume that the short- or long-run 
inefficiency could be managed in the same way. On the one hand, electricity distribution can be 
adapted relatively soon to minor changes in the operational environment of DSOs such as variations 
in population density. Also, non-systematic managerial shortcomings can be addressed quickly. On 
the other hand, severe economic shocks and decisions made with respect to the organization of the 
distribution networks are likely to have persistent effects on costs and consumer prices since the 
network is quasi-fixed and not easily reversible. Each type of inefficiency is different in nature and, 
therefore, requires different improvement strategies. For example, improvement of the long-term ef-
ficiency requires systematic changes to the production process, which can only be done to a limited 
extent due to technological constraints.

Recently developed SF models allow estimating the production technology of firms while 
decomposing the error term into noise, DSO-specific effects and the persistent and transient inef-
ficiency components (Colombi et al., 2014; Tsionas and Kumbhakar, 2014; Filippini and Greene, 
2016). This model is referred to as the generalized true random effects model (GTRE) and can be 
readily applied to analyze performance of DSOs. Filippini et al. (2016a) disentangle persistent and 
transient efficiency for network infrastructures, i.e., DSOs in New Zealand to investigate the im-
plication of disentangling the two types of efficiency for price cap regulation. Distinction between 
transient and persistent efficiency has been accounted for in the analysis of the U.S. residential sec-
tor of electricity demand (see Alberini and Filippini, 2015), Swiss hydro power systems (Filippini et 
al., 2016b), and nonprofit nursing homes (see Di Giorgio et al., 2015).

The common drawback of all these studies is the failure to control for determinants of 
two types of inefficiency. Badunenko and Kumbhakar (2017) have extended the GTRE model by 
introducing determinants of inefficiency which they refer to as a heteroscedastic GTRE primarily 
because the determinants are modeled via the variance of inefficiency components. The major ben-
efit of this extension is that factors explaining variations in persistent and transient inefficiency can 
be identified, and their impact (marginal effects) on output (cost) can be estimated. Additionally, the 
variance of the noise term that is often viewed as production risk can also be made heteroscedastic 
to allow for factors to explain production risk.

1. A sufficiently high access to improved public infrastructure can yield in growth-enhancing benefits of urban concentra-
tion prevailing agglomeration costs (e.g., Castells-Quintana, 2016).
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By applying this model, our approach to analyze the performance of DSOs differs notably 
from previous studies that applied homoscedastic GTRE model. We not only identify structural 
differences among DSOs, but we also look at the determinants of structural differences, while ex-
plicitly controlling for systematic and non-systematic differences in the provision of public services. 
The structural differences in our model are introduced via persistent and transient inefficiency.

In many cases, structural differences caused by changes in the operational environments 
can affect the performance of public service provision. De Witte and Geys (2011), for example, 
show that the productive efficiency of public libraries is lower when right-wing councils are major-
ity whereas it is higher in jurisdictions with higher income of the population and higher levels of 
urbanization. Likewise, since DSOs operate locally, the structural differences between jurisdictions, 
and more generally between the DSOs operation areas, are expected to influence the performance 
of service providers. Moreover, in the case of DSOs, the operational environment also include eco-
nomic and market conditions because, at least in Europe, electricity distribution is a public service 
that local governments delegate to private or publicly-owned firms.

3. METHODOLOGY

3.1 Multi-input multi-output production technology

We express the multi-input multi-output production technology in terms of a transforma-
tion function which, in implicit form, can be expressed as F(x,y,z) = A where x, y and z are vectors of 
outputs, inputs, and environmental variables. In general A = 1 but to make the transformation func-
tion stochastic, we assume A = exp(v) where v is a stochastic noise term that can take both positive 
and negative values. The above transformation function assumes that the production process is fully 
efficient. If there is inefficiency in the use of inputs, which is what we are assuming because of our 
application, the above transformation function can be written as

( , , ; ) = 1θA F x y z β

where 1θ ≤  is input efficiency (a scalar) and β  is the vector of the parameters of a parametrically 
specified technology F. In general, an input-oriented (IO) inefficiency model is chosen when inputs 
are endogenous (choice) variables and the outputs (mostly services) are exogenous (demand deter-
mined). The z variables are always exogenous.

For identification purpose, it is standard to assume the transformation function to be homo-
geneous of degree one in x, which implies

( , , ; ) = , > 0.λ θ λ λ∀A F x y z β  (1)

Setting 1
1=λ θ− x , (1) can be rewritten as

1 1 1
1 1= ( , , ; ),θ − − −

−x A f x y z β  (2)

where ( )1 2 1 1= / , /−  Nx x x xx , 1 1(1, , , ; ) = ( , , ; )− − F fx y z x y zβ β  and N is the number of inputs. Tak-
ing the logs of both sides of (2) we obtain

1 1log = log ( , , ; ) log .θ−− + +x f vx y z β  (3)

Denoting log = , 0θ − ≥u u , we obtain a typical composite error IO transformation (popularly known 
as stochastic input distance) function
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1 1log = log ( , , ; ) .−− − +x f u vx y z β  (4)

This fits into the SF function introduced by Aigner et al. (1977) and Meeusen and Broeck (1977). In 
the efficiency literature it goes by the name input distance function (IDF).

3.2 Stochastic IDF with panel data

The SF model originally proposed by Aigner et al. (1977) and Meeusen and Broeck (1977) 
has traveled a long way since its inception. The panel version of the standard 1977 SF model (with-
out any amendments) can be written as

1, 1,2 log = log ( , , ; ) ,−− − +it it it it it itx f u vx y z β  (5a)

where = 1, ,i n denotes the ith DSO and = 1, , it T  denotes the time period in which DSO i is ob-
served, vit is the noise term and 0≥itu  is time-varying technical inefficiency. See Kumbhakar et al. 
(2015b) for a detailed discussion of various models with different specifications of the time-varying 
inefficiency term, uit.

Although panel data are extensively used in the literature, only a few papers use models 
that make use of the panel nature of the data by including DSO heterogeneity. Kumbhakar (1991), 
Kumbhakar and Heshmati (1995), Kumbhakar and Hjalmarsson (1993), and Kumbhakar and Hjal-
marsson (1995) introduced heterogeneity but they interpreted it as persistent inefficiency, viz.,

1, 1, 0log = log ( , , ; ) ,−− − − +it it it it i it itx f u u vx y z β  (6)

where u0i is assumed to be persistent inefficiency not firm heterogeneity. Greene (2005) used the 
same specification but interpreted the time-invariant term u0i as firm-effects instead of persistent 
inefficiency. Since the time-invariant component can include both firm effects (heterogeneity) Co-
lombi et al. (2014); Kumbhakar et al. (2014) and Tsionas and Kumbhakar (2014) introduced a 
model that split the error term into four components. The first component captures firms’ latent 
heterogeneity (see Greene, 2005) and the second component captures long-run/persistent/time-in-
variant inefficiency as in Kumbhakar and Hjalmarsson (1993); Kumbhakar and Heshmati (1995) 
and Kumbhakar and Hjalmarsson (1995), both of which are time-invariant. The third component 
captures time-varying inefficiency (see Kumbhakar, 1987), while the last component captures ran-
dom shocks. Both the third and fourth components are observation-specific (i.e., vary across firms 
and over time). Thus the model that captures all the four components can be formally expressed as

1, 1, 0 0log = log ( , , ; ) ,−− + − − +it it it it i i it itx f v u u vx y z β  (7)

where 0 0≥iu  and 0≥itu  represent persistent and time-varying inefficiency, respectively, while v0i 
captures latent firm heterogeneity and vit is the classical random noise. We call this homoscedastic 
four-component model. The four-component homoscedastic model has been applied to analyze the 
efficiency in health care, agriculture, transportation (Colombi et al., 2014; Kumbhakar et al., 2014) 
and U.S. banks (Tsionas and Kumbhakar, 2014). Kumbhakar and Lai (2016) further extended the 
model by considering a system of revenue share equations each having four-components.

In the homoscedastic four-component model, all the components are independently and 
identically distributed (i.i.d.) random variables. Thus, the model can not be useful for policy pur-
poses unless efficiency levels can be systematically changed by changing the policy variables. In 
other words, we need a model in which inefficiency is systematically related to some firm character-
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istics. For example, if the regulators want the firms they regulate to move faster to the frontier (in-
crease the catch-up rate) by giving them incentives (carrots), the time-varying inefficiency has to be 
related to some policy variables that the regulators can change. Similarly, to talk about reducing pro-
duction risk, the model has to allow the variances of the time-invariant firm-effects and/or the noise 
term to depend on some exogenous factors. In summary, although the homoscedastic four-compo-
nent model can give us estimates of persistent and time-varying efficiency, the model cannot explain 
the determinants of inefficiency, and therefore, cannot be used for prescribing policies to increase 
efficiency. Similarly, the model can not explain differences in risks within and between firms.

3.3 Determinants of inefficiency

Since our application focuses on the role of being located in East Germany (i.e., having 
undergone restructuring) as well as some other firm-specific characteristics that are outside DSO’s 
influence on efficiency, we argue that both the regulator and firms are interested in knowing what 
determines persistent and time-varying inefficiency, and what their marginal effects are. For ex-
ample, the regulator might be more interested in the drivers of persistent inefficiency, while firms 
presumably strive to eliminate the short-run inefficiency.

In our specification we use the determinants of persistent inefficiency to appear in the 
(pre-truncated) variance of 0iu , which is time-invariant, viz.,

( )2 2 2
0 0 0 0 0 0(0, ) where = exp , = 1, , ,σ σ σ+

i u i u i u u i uu N i nz γ  (8)

where 2
0σ u  is a constant and 0u iz  is the vector of covariates that determines the hetero-

scedasticity function of persistent inefficiency and is by definition time-invariant. Since 
( )1

0 0 0 02( ) = (2 / ) = (2 / ) expπ σ πi u i u i uE u z γ , the 0u iz  variables can be viewed as determinants of 
persistent inefficiency.2 Variables in 0u iz  may vary by firms, but not over time within firms. This 
means that 2

0σ u i is explained only by time-invariant covariates.
In a similar fashion, we introduce determinants of time-varying inefficiency via the 

pre-truncated variance of uit. More specifically, we assume

( )2 2 2(0, ) where = exp , = 1, , , = 1, , ,σ σ σ+
 it uit uit u uit u iu N i n t Tz γ  (9)

where 2
uσ  is a constant and zuit denotes the vector of covariates that explains time-varying ineffi-

ciency. Since itu  is half-normal, ( )1
2( ) = (2 / ) = (2 / ) expit uit uit uE u π σ π z γ , and therefore, any-

thing that affects σ uit also affects time-varying inefficiency.3

The model presented above can be estimated using either the classical ML method pro-
posed by Colombi et al. (2014) or the simulated ML method advocated by Filippini and Greene 
(2016). Details on these can be found in Colombi et al. (2014), Filippini and Greene (2016) and 
Badunenko and Kumbhakar (2017). Colombi et al. (2014) also provide the formula for computing 
persistent and transient inefficiency. For completeness we discuss these in the appendix.

2. Persistent inefficiency can also be modelled assuming the pre-truncation mean of u0i to be a function of the zui0 vari-
ables.

3. Similar to persistent inefficiency, time-varying inefficiency can also be modelled assuming the pre-truncation mean of 
uit to be a function of the ziuit variables.
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4. EMPIRICAL MODEL AND DATA

Based on the input distance function approach, we estimate a translog input distance func-
tion for three inputs (x1, x2, x3), two outputs (y1, y2), and R time-varying external factors combined 
in vectors x, y, and z, respectively. In our application we consider one time-varying external factor, 
i.e. R = 1, represented by z1. Further, we include a linear time trend t, its square t2 and interactions 
with inputs and outputs to accommodate (non-neutral and non-monotonic) technological change:4

1 0 2, 1, 3, 1,2 3
log = log( / ) log( / )β β β− + +it x it it x it itx x x x x  (10)

1, 2,1 2
log( ) log( )β β+ +y it y ity y

( )2 2
2, 1, 3, 1,22 32

0.5 [log( / )] [log( / )]β β+ +x it it x it itx x x x

( )2 2
1, 2,12 22

0.5 [log( )] [log( )]y it y ity yβ β+ +

2, 1, 3, 1,2 3
log( / ) log( / )β+ x x it it it itx x x x

2, 1, 1, 2, 1, 2,2 1 2 2
log( / ) log( ) log( / ) log( )β β+ +x y it it it x y it it itx x y x x y

3, 1, 1, 3, 1, 2,3 1 3 2
log( / ) log( ) log( / ) log( )β β+ +x y it it it x y it it itx x y x x y

1, 2,1 2
log( ) log( )β+ y y it ity y

2, 1, 3, 1,2 3
log( / ) log( / )β β+ +x t it it x t it itx x t x x t

1, 2,1 2
log( ) log( )β β+ +y t it y t ity t y t

( )2
1, 0 01

log( ) 0.5 .β β β+ + + + − + −z it t tt i i it itz t t v u v u

The data for 242 German DSOs is gathered and combined from two sources, the German 
Federal Statistical Office and ‘ene’t’, a professional data provider (RDC, 2006–2012; ene’t, 2015). 
The merged dataset is unique and it allows us to model the production process while controlling 
for structural characteristics such as population density and the location of the operation areas. Our 
sample is an unbalanced panel observed over 7 years (2006–2012) with a total of 1370 observations 
of which 442 refer to the 71 DSOs in our sample that are located in eastern parts of Germany and, 
therefore, subject to restructuring after 1989. The remaining 946 observations belong to 171 DSOs 
located in western parts of Germany. Table 1 shows the characteristics of our data.5

We model the production process using three inputs and two outputs.6 The input variables 
are labor input (xL) measured in total number of hours worked,7 network length (xN) in kilometers 
(km),8 and transformer capacity (xC) in megawatt hours (MWh).9 Outputs are the annual amount of 

4. We thank an anonymous reviewer for suggesting to extend our specification to accommodate non-neutral technical 
change.

5. Due to non-disclosure requirements of the Federal Statistical Office the minimum and maximum values of the data 
cannot be presented. This requirement extends to the presentation of regression results. We, therefore, present the 1 percent 
and 99 percent quantiles as lowest and highest values.

6. Our modelling of the technology closely corresponds to previous academic and regulatory specifications related to 
DSOs in Germany. In addition to the literature mentioned in section 2, the reader is referred to, e.g., BNetzA (2006) for further 
reading about applied approaches of technology modelling.

7. We are aware of the criticism of this choice due to the potentially distorting effect of outsourcing: a utility can improve 
its efficiency simply by switching from in-house production to outsourcing. However, there is no data available that would 
provide a closer approximation

8. Network length is the sum of cables and overhead power lines.
9. Capacity gives the installed power of the trafo stations in MVA.
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electricity delivered (yE) in MWh and the number of connected customers (yC). Since the technology 
of electricity distribution is subject to the characteristics of its operational environment (Bjørndal 
et al., 2018; Nieswand and Seifert, 2018), we incorporate population density (zD), defined as the 
number of connection points per squared km in the operational area, to capture exogenously induced 
neutral technology shift. Neglecting such shift variables from the production process is likely to bias 
estimates of inefficiency.10

The variances of the transient and persistent inefficiency, 2
uit

σ  and 2

0u i
σ , are modeled to de-

pend population density and location, respectively

( )2
0 1 ,log =u r itit

zσ δ δ+  (11)

( )2
0 1 ,00

log =u s ii
zσ γ γ+  (12)

Additional to the production process, we let population density influence transient inefficiency by 
letting ( )2log uit

σ  vary with zD, i.e. 1= =r it Dz z z . Given that zD also appears in the frontier function 
(10), we separate the twin effects of zD, viz., separate the frontier shift from transient efficiency 
change due to this external factor. Omitting one from the model is likely to affect the other.

Note that the external factors that influence persistent inefficiency can not change over 
time and may include dummy variables. We create a location dummy (zEast) that takes value 1 for 
the DSOs operating in the eastern parts of Germany and 0 otherwise. Our main interest is to identify 
the potential influence of the restructuring process after 1989 on the persistent inefficiency of the 
eastern German DSOs. More specifically, we would like to know whether the restructuring of the 
electricity distribution sector in East Germany is associated with a higher persistent efficiency. For 
this purpose, we specify the variance of persistent inefficiency ( )2

0u i
σ  as a function of the location 

dummy zEast, thus 20= =s i Eastz z z  in (12). Since the dummy variable takes a value of 1 for the DSOs 
operating in East Germany, a negative (positive) coefficient would imply a lower variance of per-
sistent inefficiency, and hence, higher (lower) average persistent efficiency.

5. ESTIMATION RESULTS

5.1 Distance function estimation

Table 2 shows the estimated coefficients of the IDF in (10), which represents the produc-
tion technology of the German DSOs. The IDF is estimated under the assumption of homoscedastic 
noise components (random effect and random noise) and heteroscedastic inefficiency components 
(transient and persistent) as in (11) and (12).

10. Their effect would not be captured by the noise and DSO-specific fixed effects.

Table 1: Descriptive statistics
Variable  Unit  Name  Q1  Q25  Med  Q75  Q99  SD 

Customers  number yC 1,287 7,919 16,456 29,469 1,124,662 163,351
Electricity delivered  MWh yE 13,968 100,736 212,064 431,549 16,051,738 3,443,759
Labor  hours xL 2,799 44,721 94,267 186,940 2,725,095 400,250
Network length  km xN 70 259 444 845 54,182 8,885
Capacity  MVA xC 7 40 75 155 13,155 1,858
Population density  inhabitants/km2 zD 20 123 240 467 1,381 302
Location (East)  dummy zEast 0 0 0 1 1 0

Notes: tnobs = 1370, years = 2006–2012, firms = 242, source: Federal Statistical Office and ‘e’net.’ 
Each firm is observed at least 4 years and the average time span firms are observed is 5.661. 
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Table 2: Estimates of the input distance function
Dependent var.: –log(x1) Estimation results 

Parameter Variable Coefficient SE p-value

β0 Intercept  0.2516  0.0199  0.0000 
βx2

xN  0.5234  0.0134  0.0000 
βx3

 xC  0.2537  0.0142  0.0000
βy1

yE –0.0829  0.0108  0.0000 
βy2

yC –0.3141  0.0114  0.0000 
βz1it

zD  0.1798  0.0099  0.0000
βt t  0.0034  0.0041  0.4048
βtt t2 –0.0038  0.0012  0.0016
βx22

(xN)2  0.2060  0.0170  0.0000
βx32

(xC)2  0.0782  0.0048  0.0000
βy12

(yE)2 –0.0213  0.0075  0.0044 
βy22

(yC)2 –0.0480  0.0044  0.0000
βx2x3

xN ⋅ xC –0.1029  0.0103  0.0000 
βx2y1

xN ⋅ yE  0.0127  0.0097  0.1896 
βx2y2

xN ⋅ yC –0.0718  0.0088  0.0000 
βx3y1

xC ⋅ yE –0.0287  0.0092  0.0017 
βx3y2

xC ⋅ yC  0.0511  0.0086  0.0000 
βy1y2

yE ⋅ yC –0.0009  0.0045  0.8437 
βx2t xN ⋅ t –0.0011  0.0022  0.6114 
βx3t xC ⋅ t  0.0008  0.0024  0.7293 
βy1t yE ⋅ t –0.0023  0.0016  0.1484 
βy2t yC ⋅ t  0.0047  0.0017  0.0051 

Note: All variables, except for t, are median-corrected and are in logs. The left hand side variable x1 is labor, while xN and 
xC are log ratios of network length (x2) and capacity (x3) to labor, i.e., xN = log(x2/x1) and xC = log(x3/x1). Total number of 
observations is 1370, the number of DSOs is 242, the minimum, average and maximum number of time periods a DSO is 
observed are 4, 5.67, and 7, respectively.

Since the IDF is dual to the cost function (see Färe and Primont, 1995), 1 1log / log( / )jx x x−∂ ∂  
measures the cost elasticity of input xj ( = ,j N C). Scaling our variables by the respective medians 
before estimation, allows interpreting the coefficient of the first order term of 1log( / )jx x  in the 
translog representation of production technology in (10) directly as an estimate of cost elasticity of 
input xj at the median values of all inputs and outputs.11 Thus, our results displayed in Table 1 sug-
gest that, e.g., increasing its network input by 1 percent, increases costs by 0.52 percent at the me-
dian as the point estimate of the coefficient of xD equals 0.52. Table 1 further indicates that the cost 
elasticity of network is by far the largest (0.52), followed by the cost elasticity of capacity (0.25) and 
labor (0.23).12 Given that electricity distribution is a network-intensive sector, these are reasonable 
estimates and comparable to other empirical work on the German DSOs (e.g., Cullmann, 2012).

Duality results further imply that 1log / log mx y−∂ ∂  is the cost elasticity of output ym 
( = ,m C E). The point estimates of coefficients at the output variables are negative, which indicates 
that an increase in electricity delivered by 1 percent is associated with an increase in the use of all the 
inputs and, hence, costs by about 0.08 percent.13 Similarly, cost is increased by 0.31 percent when 

11. The derivative 1 1log / log( / )jx x x−∂ ∂  is equal to the coefficient at the first order term plus coefficients at the second 
order terms multiplied by log of either median scaled inputs or outputs. This derivative depends on the specific values of all 
inputs and outputs, however if they are all set equal to their respective medians, expression under log is equal to 1, making the 
terms beyond the first order coefficients all zero.

12. Due to homogeneity of degree 1 of the cost function, the cost elasticity of labor at median values of all variables is 
obtained as 1 0.52 0.25 = 0.23− − .

13. Again, the coefficient at the first order term of log my  in the translog representation of production technology in (10) 
gives an estimate of cost elasticity of output my  at the median values of all inputs and outputs.



The Effect of Restructuring Electricity Distribution Systems on Firms’ Efficiency  / 11

Copyright © 2021 by the IAEE.  All rights reserved.

the number of connected customers is increased by 1 percent. Therefore, adding new connections 
is more costly than increasing the supply of electricity delivered using the existing infrastructure.

As our IDF is a full translog in t, technical change (TC) contains both neutral and non-neu-
tral components. Technical change is neutral if 

2 3 1 2
= = = = 0x t x t y t y tβ β β β . The LR test statistic of 

this hypothesis equals 215.34, which exceeds the critical value of the mixed chi-squared distribu-
tion at the 1 percent level, 12.4827. The technical change is therefore decidedly non-neutral. The 
speed of the technical change is decreasing evidenced by the coefficient at the squared time variable 
–0.0038.

The coefficient associated with the environmental variable zD is used to capture cost differ-
ences due to the characteristics of the operational area. In our model, population density influences 
total cost through two channels that must be jointly considered to capture the overall effect of pop-
ulation density on production and costs, respectively. The first channel is the production processes, 
which is captured by the technology: The coefficient of population density (0.18) has the usual 
constant elasticity interpretation and shows that if population density increases by 1 percent, total 
costs would reduce by 0.18 percent. The second channel is through inefficiency: Population density 
is modeled further to determine transient inefficiency (in which it appears in non-logarithmic form 
and is further discussed in section 5.3). To interpret the marginal effect of population density on total 
costs in a meaningful way, we visualize its joint effect on costs through technology and inefficiency 
in Figure 1.14 The Kernel density of the overall marginal effect shows that increasing zD always 
reduces total costs for our sample DSOs. However, the magnitude of this effect varies roughly be-
tween 11 and 18 percent with the marginal effect mainly ranging between 14 and 18 percent. Thus, 
increasing the population density by 1 percent, decreases total costs by 11 to 18 meaning that total 
cost of electricity distribution declines with population density.15

Figure 1:  Kernel estimated density of the elasticity of costs with respect to population density zD.
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5.2 Overall, persistent and transient efficiency

Table 3 shows selected statistics (first column) of the DSO-specific overall efficiency val-
ues (second column) and its decomposition into persistent (third column) and transient efficiency 
(fourth column) components. An efficiency score of less than 100 percent is associated with over-
use of inputs, which implies observed costs higher than potential costs. The overall efficiency is the 
product of persistent and transient efficiency.

14. Figure 1 shows the estimated kernel density of elasticity of total costs with respect to population density. More specif-
ically, it is calculated as 1ln / ln = 0.18 / lnd dx z u z∂ ∂ − + ∂ ∂ , where u is replaced by E(u).

15. We also tested for the potential impact of other control variables on the technology, such as the share of overhead 
cables and the location of DSOs. We did not find those variables to be statistically significant and, therefore, excluded them 
from our analysis.
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Table 3: Descriptive statistics of efficiency estimates
  Efficiency scores in percent 

Statistic  overall  persistent  transient 

p1  25.18  27.19  82.84 
p25  56.59  59.76  93.20 
p50  67.71  71.56  94.75 
p75  83.10  89.55  95.73 
p99  88.27  91.43  98.17

Note: p# denotes the #th sample percentile.

From Table 3, we observe fairly large differences across the DSOs in terms of their ef-
ficiency. The overall efficiency of our sample DSOs ranges from about 25 to 88 percent while its 
median value is 68 percent. This finding suggests that, on average, at the given level of produced 
output, inputs could be reduced by roughly one third (32 percent). Compared to other studies on 
German DSOs and Germany’s regulatory benchmarking results (Cullmann, 2012; Swiss Economics 
and Sumicsid, 2014, 2018), the minimum figures seem to be rather low. However, as revealed by 
the remaining two columns in Table 3, this is mainly due to the low values in persistent efficiency, 
which has not been considered and captured before. Our results on transient efficiency (see column 
four in Table 3) are indeed in line with previous findings.16

Examining the components of overall efficiency in more detail, we find that transient ef-
ficiency is between 83 and 98 percent with a median of 95 percent while persistent efficiency is 
much lower and ranges from 27 to 91 percent with a median value of 72 percent. Consequently, we 
conclude that inefficiency in the operations of German DSOs is mainly driven by persistent, hence, 
structural reasons rather than short-term managerial inefficiency.

We emphasize that our results regarding the transient efficiency are not only comparable 
to previous studies but also indicate that the currently employed regulation scheme successfully in-
centivizes the German DSOs to reduce inefficiency and operate in a relatively cost efficient manner. 
It is worth noting that, however, even small values of inefficiency translate into notable monetary 
amounts of revenue caps and we would likely observe much lower transient efficiency in the ab-
sence of this regulatory practice.17

5.3 Determinants of persistent and transient inefficiency

In this section we examine the determinants of inefficiency. More specifically, we are inter-
ested in examining whether population density and the location of the DSOs explain their persistent 
and transient efficiency, respectively.

Table 4 presents the point estimates of the parameters associated with the error compo-
nents. Focusing first on the variance of persistent inefficiency, we find a significant and negative 

16. In our sample, the mean value of transient efficiency is 94 percent. Cullmann (2012) estimated an average efficiency 
of roughly 88 percent while the German regulator identified mean values of 92.2 percent, 94.7 percent and 94.1 percent for the 
regulatory periods 2009–2013, 2014–2018, and 2019–2023, respectively (Swiss Economics and Sumicsid, 2018).

17. In 2009, Germany introduced the so-called Anreizregulierung (incentive regulation) based on benchmarking exer-
cises. This regulation specifically aimed to incentivize efficient cost structures and used frontier models for determining parts 
of the revenue allowances. We argue, that, even though our sample starts in 2006, our analysis is valid and comprehensive 
because firms already started working towards efficient cost structures throughout our observed time period since the intro-
duction of this regulatory scheme was announced in 2005 and data collection for the first regulatory period already conducted 
in 2006.



The Effect of Restructuring Electricity Distribution Systems on Firms’ Efficiency  / 13

Copyright © 2021 by the IAEE.  All rights reserved.

coefficient for our location dummy zEast (i.e., 20 = 3.79z iγ − ), which means that the variance of ineffi-
ciency is smaller for the DSOs in Eastern Germany. Thus, on average, East German DSOs perform 
better than their West German counterparts in terms of persistent efficiency. This result confirms our 
previous discussion and the literature (e.g., Sinn, 2002) and must be attributed to the restructuring of 
the East German electricity distribution sector, that followed the German reunification.

Figure 2 provides more details on the persistent efficiency estimates by displaying its dis-
tribution for eastern and western DSOs separately. The solid line represents the distribution of per-
sistent efficiency for the East German DSOs while the dashed line represents it for the West German 
DSOs. Two observations are worth noting. First, eastern DSOs perform uniformly well and better 
than most of the western DSOs. Second, the mass of the solid distribution is at the level of efficiency 
where dashed distribution tails. This suggests that most of the eastern DSOs are at par with best 
practice western counterparts. These two observations seem to confirm that the best operating west-
ern structures served as a role model for the eastern DSOs (Birke et al., 2000).

Figure 2: Kernel estimated density of the persistent efficiency
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Table 4 further suggests that the variance of transient inefficiency is positively influenced 
by population density (i.e. 1 = 0.2593z itγ ). Thus, DSOs operating in areas with higher population 
densities are, on average, more inefficient (less efficient) than those operating in less densely pop-
ulated areas. Note that the marginal effect of population density on transient efficiency (TEit) is 
observation-specific and vary with the respective values of zD. Since 1it itTE u≈ −  for small values 
of uit, / = /it Dit it DitTE z u z∂ ∂ −∂ ∂ . Table 5 presents the elasticity of transient efficiency with respect to 
population density. Since elasticity is negative for all observed DSOs, increasing population density 
by 1%, decreases efficiency (increases inefficiency) by between 0.0108 and 0.7463%.

Comparing the performance of eastern and western DSOs in terms of transient efficiency, 
we find that there are virtually no difference between the DSOs in the two groups. Figure 3 illus-

Table 4: Estimates of the parameters of the error components
Parameter Variable Coefficient SE p-value

Random effect σv0i
–1.2902  0.0516  0.0000 

 
Random noise σvit

 –6.0397  0.1750  0.0000 
 

Persistent inefficiency (u0i)    
γ0 Intercept of log σ2

u0i
–0.2336  0.0613  0.0001 

γ1 zEast –3.7889  0.2866  0.0000 
 

Transient inefficiency (uit)    
δ0 Intercept of log σ2

uit
–5.3809  0.2539  0.0000 

δ1 zD  0.2593  0.0697  0.0002 
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trates that using Kernel densities of transient efficiency scores separately for eastern and westerns 
DSOs. Consequently, we find that the location of DSOs matters in terms of persistent (structural) but 
not in terms of transient (non-systematic) performance.

The equivalence of transient efficiency between eastern and western DSOs is expected 
since all DSOs are subject to the same regulatory scheme, which incentivizes efficient operations as 
discussed in section 5.2. There is no obvious reason why DSOs in different locations would not have 
the same ability and incentive to reduce their transient inefficiencies when it is under their control.

This finding is further in line with the relevant theoretical and empirical literature, which 
provides evidence for the fact that (time-varying) efficiency of firms does not vary among different 
types of DSOs when they are highly regulated. In highly regulated sectors, such as it is the case 
in Germany,18 private and state-owned firms are expected to perform equally well, at least under 
complete regulatory contracts (e.g., Laffont and Tirole, 1993). The theoretical prediction is further 
widely supported by empirical studies on electricity companies. For example, Atkinson and Hal-
vorsen (1986) show that the private and public electricity utilities in the USA exhibit similar levels 
of relative efficiency.

6. CONCLUDING REMARKS

Efficiency of public service provision has experienced an increasing attention in local pub-
lic economics. Providing these services efficiently is relevant for maximizing welfare and assuring 

18. Beginning in 1998, the EU Directives 96/92/EC and 2003/54/EG initiated a gradual liberalization of the German 
electricity market. This process opened end-consumer markets and involved the unbundling of the distribution networks from 
other parts of the value-added chain of electricity provision. Further, in 2009, the regulatory scheme changed from a cost-plus 
regulation to a revenue-cap-based incentive regulation, which involved cost benchmarking and aimed to foster cost efficiency. 
Due to the liberalization and the newly implemented regulatory approach, the once monopolistic electricity distribution mar-
ket was transformed into a much more competition-oriented environment.

Table 5:  Descriptive statistics of elasticity 
of transient efficiency with 
respect to population density

Statistic Marginal effect 

p1 –0.0108
p25 –0.0667 
p50 –0.1297 
p75 –0.2525 
p99 –0.7463

Notes: p# denotes the #th sample percentile.

Figure 3: Kernel estimated density of the transient efficiency
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economic activities in both developed and developing countries, regions and municipalities. Many 
core public infrastructures, e.g., telecommunication, sanitary, and electricity distribution, are net-
work-based sectors for which it is reasonable to assume that inefficiency has both transient and 
persistent components.

Using a sample of German electricity distribution companies, we estimate an input dis-
tance function accounting for both persistent and transient inefficiency. We find that overall ineffi-
ciency is mainly driven by the persistent component, which is of structural and long-term nature. 
Our findings further show that DSOs located in East Germany exhibit, on average, lower persistent 
inefficiency, i.e., higher persistent efficiency, induced by the restructuring process that took place 
after the reunification of Germany. The transient component contributes to overall inefficiency to a 
much smaller extend as we observe relatively high transient efficiency among all DSOs, irrespec-
tive of their location. From this, we conclude that the regulatory scheme in place is successfully 
addressing the aim of incentivizing efficient production and cost structures. This further suggests 
that persistent inefficiency is not yet reduced by implemented regulatory instruments but offers large 
potential for further improvements in the sector. Given our results, further restructuring could be 
considered, especially of the western DSOs. We leave, however, identifying effective regulatory or 
policy instruments targeting structural inefficiency for further research.

Our analysis shows that disentangling both types of inefficiency is an important exercise 
because it identifies improvement potentials, it can explain which factors actually drive short-term 
and long-term efficiency and, thereby, helps identifying appropriate strategies to achieve this im-
provement. Short- and long-term inefficiencies are likely to be issues in most public infrastructures 
due to the network-based technologies. Thus, we consider the applied methodology as being also 
relevant to other public sectors, e.g., gas distribution, water supply, sewerage, and local transporta-
tion.
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APPENDIX

A1. Methodology

A1.1 Full maximum likelihood method

Rewrite model (7) as

1, 1, 0log = log ( , ; ) ,it it it i itx f −− + +x y β    (13)

where =it it itv u−  and 0 0 0=i i iv u−  decompose the error term into two ‘composed error’ terms (both 
of which contain inefficiency and noise terms). This decomposition will be useful later when we 
discuss the estimation of the model.

To obtain a tractable likelihood function, we follow Colombi et al. (2014) and draw results 
from skew normal and closed skew normal (CSN) distributions. Assuming vit is an independent 
[in probability] random normal variable and uit is an independent random half normal variable, 

it  in (13) has a skew normal distribution. Using the same argument, 0i  in (13) has a skew normal 
distribution when 0iv  is an independent random normal variable and 0iu  is an independent random 
half normal variable. Thus, the composed error term 0i it+   in (13) has a CSN distribution (being 
the sum of two independent skew normal distributions), which has a well defined pdf that is used to 
define the log-likelihood function, the maximization of which gives the MLE of all the parameters.

The model in (13) can be rewritten in a compact form, viz.,

1, 1, 0log = log ( , ; ) ,i i i T i i ii
x f v i−− + + + ∀1 Aux y vβ  (14)
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where bold symbols denote vectors for DSO i, 0 1= ( , , , )i i i iTi
u u u ′

u , 1= ( , , )i i iTi
v v ′
v , = [ ]T Ti i

− 1A I , 
Ti

1  is the column vector of length iT  and Ti
I  is the identity matrix of dimension iT . Since the composed 

error term 0=i T i i ii
v + +1 Au v  follows a CSN distribution, its joint density can be derived from the 

definition of a CSN probability density function, and the resulting panel level log-likelihood func-
tion of the four component model is given by:19

( ) ( )0 0log , , , , = ( 1) log 2 log , ,i u v u v i T i i ii
L T φ ′+ + +0r AV Aβ γ γ γ γ Σ

( )1log , ,T i i ii++ Φ R r Λ  (17)

where 1, 1,= log log ( , ; )i i i ix f −− − r x y β , the diagonal elements of Vi are ( ) ( )0 0exp expu i u uit u  z zγ γ ,  
( ) ( )0 0= exp expi vit v T v i v T Ti i i

′+ 1 1z I zγ γΣ ,20 ( ) ( ) 11 1 1= =i i i i i i i i

−− − −′ ′ ′− + +V V A AV A AV V A AΣ Σ Σ , Ri =
( ) 1 1= =i i i i i i

− −′ ′ ′+R V A AV A AΣ Λ Σ , ( ), ,q xφ µ Ω  is the density function of a q-dimensional normal vari-
able with expected value μ and variance Ω and ( ),qΦ µ Ω  is the probability that a q-variate normal 
variable of expected value µ and variance Ω belongs to the positive orthant.

A1.2 A simulated maximum likelihood estimator

Although the CSN framework gives a closed form expression of the log-likelihood func-
tion, implementing it in practice is a daunting task. Using the insights of Butler and Moffitt (1982), 
Filippini and Greene (2016) note that the density can be greatly simplified by conditioning on 0i .  
In this case, the conditional density is simply the product over time of iT  univariate skew normal 
densities. Thus, only a single integral, as opposed to iT  integrals, needs to be evaluated.

Recall that for each i, it  is a skew normal variate with parameters ( ) ( ) 1/2= [exp / exp ]it uit u vit vλ z zγ γ  
and ( ) ( ) 1/2

= exp expit uit u vit vσ +  z zγ γ . Similarly, 0i  is a skew normal variate with parameters 
( ) ( ) 1/2

0 0 0 0 0= exp / expi u i u v i vλ   z zγ γ  and ( ) ( ) 1/2
0 0 0 0 0= [exp exp ]i u i u v i vσ +z zγ γ . Thus, the conditional 

density of 1= ( , , )i i iTi
    is given by

( )0
=1

2| = .
Ti

it it it
i i

t it it it

f λφ
σ σ σ

   
Φ   

   
∏

 
  (18)

Integrate 0i (the distribution of which we know) out to get the unconditional density of i

( ) 0 0 0
0

=1 0 0 0

2 2= .
Ti

it it it i i i
i i

t it it it i i i

f dλ λφ φ
σ σ σ σ σ σ

∞

−∞

        
Φ × Φ        

         
∏∫

   
  (19)

19. Note, this model considers possible heteroscedasticity functions of noise and random effects

( )2 2 2
0 0 0 0 0 0(0, ) where = exp , = 1, , ,i v i v i v v i vv N i nσ σ σ z γ   (15)

( )2 2 2(0, ) where = exp , = 1, , , = 1, , ,it vit vit v vit v iv N i n t Tσ σ σ  z γ   (16)

where 2
0vσ  and 2

vσ  are constants and 0v iz  denotes the vector of time-invariant covariates that determine variance of random 
firm-effects. Similarly, vitz  denotes the vector of covariates that determine variance of both the firm-specific and time-varying 
random noise.

20. Note that ( )0 0exp u i uz γ  and ( )0 0exp v i vz γ  are both scalars, whereas ( )exp uit uz γ  and ( )exp vit vz γ  are both vectors of length 
iT . Changing the notation of (8), (9), (15), and (16), 0uγ , 0vγ , uγ , and vγ  include an intercept, while the variance functions do not 

contain 2
0uσ , 2

0vσ , 2
uσ , and 2

vσ , respectively. Thus, for example, if the random effects component is constant, 0v iZ  is a constant 
and 2

00
= exp( )v i

σ γ  for all i.
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The log-likelihood function for the i-th observation of model (13) is therefore given by

( )0 0log , , , ,i u v u vL β γ γ γ γ

0

0 0 0
0

=1 0 0 00

2
2= log d

( )

it i
Ti it it i i i

i
t i i iit i it

it

r

r

φ
σ σ λφ

σ σ σλ
σ

+∞

−∞

    −
    

         Φ        −       ×Φ        

∏∫



 




0 0 0
0

=1 0 0 0

2 2= log d ,
Ti

it it it i i i
i

t it it it i i i

λ λφ φ
σ σ σ σ σ σ

+∞

−∞

           Φ × Φ                        
∏∫

   
  (20)

where 0 0= ( )it it i ir v u− + . Although, following CSN, one can derive the likelihood function 
in closed form, we approximate the log-likelihood function and avoid using the classical ML 
method, which is quite complicated for the reasons mentioned above. We rely on Monte-Carlo 
integration as a method to approximate the integral in (20).21 For estimation purposes, we write 

( ) ( )1/2 1/2
0 0 0 0 0= [exp ] [exp ] | |i v i v i v i v iV U+z zγ γ , where both Vi and Ui are standard normal random 

variables. The resulting simulated log-likelihood function for the i-th observation is

( )0 0log , , , ,S
i u v u vL β γ γ γ γ

( ) ( )

( ) ( )

1/2 1/2
0 0 0 0

1/2 1/2
=1 =1 0 0 0 0

([exp ] [exp ] | |)2

1= log
[ ([exp ] [exp ] | |)]

it v i v ir v i v ir
TR i it it

r t it v i v ir v i v ir

it

r V U

R r V U

φ
σ σ

λ
σ

    − +
         

   
 − +   ×Φ     
    

∑ ∏

z z

z z

γ γ

γ γ

=1 =1

1 2= log ,
TR i

itr itr

r tR
λφ

σ σ σ

      Φ              
∑ ∏    (21)

where Vir and Uir are R random deviates from the standard normal distribution, and 
( ) ( )1/2 1/2

0 0 0 0= ([exp ] [exp ] | |)itr it v i v ir v i v irr V U− +z zγ γ . R is the number of draws for approximating 
the log-likelihood function. The full log-likelihood is the sum of panel-i specific log-likelihoods 
given in (21).

We use the results of Colombi et al. (2014) to estimate persistent and time-varying cost 
efficiencies. Using the moment generating function of the CSN distribution, the conditional means 
of 0 1, , ,i i iTi

u u u  which are, in principle, similar to the Jondrow et al. (1982) estimator, are given by:

( )
( )

( )1

1

,
(exp{ }| ) = exp 0.5 ,

,
T i i i ii

i i i i i
T i i ii

E
+

+

Φ +
′ ′ ′× +

Φ
R r t

t u y t R r t t
R r

Λ Λ
Λ

Λ
 (22)

where 0 1= ( , , , )i i i iTi
u u u ′

u  and −t is a row of the identity matrix of dimension ( 1)iT + . If −t is the  
τ -th row, Eq (22) provides the conditional expected value of the τ -th component of the cost effi-
ciency vector ( )exp i−u . In particular, for = 1τ , we get the conditional expected value of the per-
sistent technical efficiency.

21. Note that another approximation of (20) can be achieved by using the M-point Gauss-Hermite quadrature method.




