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Peak Load Habits for Sale? Soft Load Control and Consumer 
Preferences on the Electricity Market

Thomas Broberg,a Runar Brännlund,a* and Lars Perssona

abstract

The main purpose of this paper is to estimate lost consumer values due to various 
restrictions on household electricity use involving behavior adaptation. To do this, 
we conduct a choice experiment where households choose between hypothetical 
electricity contracts including various restrictions on the use of high-power house-
hold appliances. In addition, we use a contingent valuation question related to 
complete blackouts to study a restriction on other types of electricity usage (heat-
ing, lighting, TV, etc.). The results indicate a significant difference between the 
value lost due to the soft control, and the blackouts. Furthermore, policies aiming 
at stimulating behavioral changes are costly and it is far from obvious that demand 
response requiring behavioral adaptation is more cost effective than supply re-
sponse (i.e., increased production of electricity).
Keywords: Value of lost load, Choice experiment, Electricity contracts, Demand 
response
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1. INTRODUCTION

In Europe, and elsewhere, electricity markets are changing and the transformation is char-
acterized by three key factors: (i) deregulation of electricity markets, (ii) new technologies with 
respect to generation, distribution and use, and (iii) substantial changes in the production mix as a 
result of energy and climate policy as well as changes in relative production costs for different tech-
nologies. These factors in combination with a rigid demand side characterized by daily and seasonal 
consumption patterns, and consumers that are not exposed to the time of use marginal generation 
cost, have raised concerns about security of supply. Because of this concern, there is an ongoing 
discussion of whether energy-only markets, which are the most common market design, should be 
complemented with a capacity mechanism to ensure enough generation in peak periods (Joskow, 
2008a, 2008b; Eurelectric, 2015; Newbery, 2016). Related to this is also the discussion of demand 
management and demand flexibility, which can be seen as part of such a capacity mechanism (Str-
bac, 2008; Broberg and Persson, 2016). 

The Swedish electricity generation structure with about 85% hydro- and nuclear power 
contributes to a relatively flexible and robust power system with modest climate impacts. Neverthe-
less, the current Swedish interest in demand flexibility is driven by future challenges mainly related 
to further integration of European electricity markets and the Swedish target of 100% renewable 
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electricity production by 2040. The Swedish aim to increase the share of renewable electricity inev-
itably leads to a large share of intermittent sources such as solar and wind, while the market integra-
tion may lead to less control of domestically produced electricity.

In line with these observations, the main objective of this study is to estimate Swedish 
household’s willingness to accept load restrictions for electricity use during peak hours. Two types 
of load restrictions, or control, are considered: “soft control,” which refers to a temporary restric-
tion in the maximum possible load (in watt) for high-power appliances and installations; and “hard 
control,” which refers to a complete loss of power for 30 minutes during peak time. We use a stated 
preference approach asking electricity consumers to choose between hypothetical electricity (de-
livery) contracts with different attributes concerning maximum load during a specific time of the 
day. Each hypothetical contract is appended with a monetary compensation, enabling an estimate 
of the monetary compensation required for load restrictions. The resulting monetary compensation 
for the “soft” load control can be interpreted as the value of potential lost load (VoPLL), whereas 
the monetary compensation for complete loss of load corresponds to the value of lost load (VoLL).

We contribute to the previous literature and the policy discussion in two ways. First, the 
results of the analysis elicit consumer preferences for demand flexibility, and hence the potential for 
demand side management (DSM). Second, the analysis gives estimates of VoPLL and VoLL, which 
is of paramount importance if/when explicit capacity mechanisms are considered. Any capacity 
mechanism should be designed such that the optimal level of supply security is reached cost-effec-
tively, for which information about the value of lost load is needed (Ovaere et.al. 2019). In addition 
to these two contributions, we explore households’ power consumption for home appliances in the 
peak hours. A better knowledge of household habits and consumption patterns is important not only 
for determining the potential for demand response, but also for determining the costs in terms of 
utility losses associated with curtailment actions. Importantly, this analysis is based on respondents’ 
reported consumption patterns.

The stated preference approach is commonly used in situations where market values do not 
exist (Johnston et al., 2017). Several applications in the previous literature relate to assessment of 
the utility loss following a power outage, i.e. estimation of VoLL (e.g. Doane et al., 1988; Beenstock 
et.al., 1998; Layton and Moeltner, 2004; Carlsson and Martinsson, 2007; Carlsson et al., 2011; and 
Reichl et al., 2013). Recently, stated preference approach has also been applied to study demand 
flexibility (Parsons et al., 2014; Broberg and Persson, 2016; Daniel et al., 2018; and Richter and 
Pollitt, 2018). Despite its documented weaknesses,1 the stated preference approach is used in these 
contexts to overcome difficulties in estimating consumer surplus from electricity consumption using 
price and quantity data.2 

The reminder of the paper is structured as follows. Section 2 provides an extended back-
ground and motivation underlying the research questions in focus, as well as a review of the related 
literature. Section 3 includes a conceptual framework with explanations of VoLL and VoPLL. Sec-
tion 4 provides descriptions of the methodological approach and data used in the empirical analyses. 
The empirical results are presented in Section 5. Section 6, finally, is devoted to a discussion and 
concluding comments. 

1. It is well-known that stated preference results must be carefully interpreted and communicated as they may be subject 
to hypothetical bias (Ready et al., 2010; Loomis, 2011) and framing effects (Hanemann, 1991).

2. Estimated demand functions are usually only defined in the segment of observed prices. A power outage corresponds 
to a situation where the price is so high that households do not want to use any electricity. To our knowledge, such high elec-
tricity price has not been observed in any country. 
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2. BACKGROUND AND PREVIOUS RESEARCH

DSM in Sweden has targeted large industrial electricity consumers at moments of imminent 
power shortages. These moments have typically occurred on days with high power consumption due 
to exogenous factors, sometimes combined with problems in the power grid or in large-scale nuclear 
power production. The balancing of intermittent power production, however, requires more adapt-
able resources that can be activated at short notice during any times of the year. In general, large 
industrial plants are ill-suited to provide such continuous (dynamic) demand response due to their 
relatively high start/stop costs. For that reason, interest has shifted towards the household sector 
(Torriti et al, 2010). The household sector in general, and detached and terrace houses in particular, 
may have a large potential in this context. 

The basic idea is that DSM programs can be used to create timely load shifting/saving 
among households. Contracts can be designed so that households are financially compensated if 
they reduce their power demand at moments when the stability of the power system is threatened. 
Such contracts may be designed in different ways, but ultimately part of the load is controlled re-
motely by an external actor (Babar et al., 2014).3 In the contractual context, a central role is given to 
aggregators that mediate energy services between suppliers, grid owners and end users. The role of 
the aggregator is to consolidate the fragmented supply of household power services and package it 
into products that can be sold on the spot market or the regulating markets. 

At the household level, demand response can work through automatic response and/or 
through behavioral changes. Activities related to automatic response can be referred to as efficiency 
activities, and those related to behavioral changes to curtailment activities (see, e.g., Gardner and 
Stern, 2008). Examples of the former are electricity and appliances for heating, the refrigerator and 
the freezer, which to a large extent are regulated automatically. Examples of the latter are high-
power appliances like the kitchen stove and the coffee machine, and low-power appliances like 
lighting and computers. Since many single- and two-dwelling buildings in Sweden are heated by 
electricity, automatic response of heating systems has a significant potential to help balance fluctu-
ations in the power system (EI, 2016). For demand response through curtailment activities the story 
may be different because it requires a behavioral change. 

Previous research reveals that people demand substantial economic compensation to en-
gage in DSM programs. For example, Broberg and Persson (2016) finds, in a choice-experiment 
study, that people very much dislike restrictions on the use of household appliances during the 
evening peak hours. In a related context, there is extensive research related to estimating the value 
of lost load (VoLL). In general, results from the VoLL literature confirm the findings in Broberg and 
Persson (2016) that people and firms assign a relatively high value to have access to electricity. In 
a review, Van der Welle and van der Zwaan (2007) find that the average value for developed coun-
tries is in the range 4–40 $/kWh, but also that the value differs substantially between sectors and 
countries. In a more recent review, Schröder and Kuckshinrich (2015) conclude that VoLL varies 
substantially within, as well as between, end-user groups, countries and estimation methods. Their 
reported values range between a few €/kWh to more than 250 €/kWh for non-household end-users 
and between a few €/kWh and 45 €/kWh for households. Overall, the review reveals that the VoLL 

3. Both dynamic pricing schedules and DSM programs can be designed to cost-effectively stimulate demand response. 
One obstacle for trade with DSM products is that it may be difficult to verify that load curtailment really has taken place. Ver-
ification is thus necessary for trade to result in power reductions that are equalized with power production (Borenstein, 2014). 
On the other hand, DSM programs may be easier for customers to handle, especially if the targeted loads are automatically 
controlled and the curtailment not noticeable to customers.
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is very situation- and time specific, implying that when, where and for how long a blackout occurs 
are important determinants. The review also reveals that the methodology used to estimate VoLL 
may explain differences in results. For household end-users, it seems like studies based on the stated 
preference approach tend to result in lower estimates than indirect approaches, e.g. using a house-
hold production function to measure VoLL in terms of the lost value of leisure time (for an example 
see de Nooij et al., 2007). 

The VoLL for Swedish households has been estimated several times using the stated pref-
erence approach. Carlsson and Martinsson (2007) and Carlsson et al. (2011) use an open-ended 
contingent valuation question and estimate that Swedish households on average are willing to pay 
about € 0.5–22 to avoid an unplanned blackout at 6 pm wintertime with the duration of 1, 4, 8 or 24 
hours.4 These fairly low WTP estimates are to a large extent driven by the large share of respondents 
stating zero willingness to pay for avoiding a blackout.5 In a similar study for Sweden, Carlsson and 
Martinsson (2008) employ a choice experiment approach to elicit the average willingness to pay 
for avoiding an unplanned power outage that could happen any time of the day on a weekday or a 
weekend either November-March or April-October. The results show that the WTP differs between 
weekdays and weekends and that the season only matters for a 24-hour power outage: the WTP for 
avoiding a 24-hour power outage in the cold and dark season is slightly higher than a power outage 
in the relatively warm and bright season. Overall, their WTP estimates for avoiding a power outage 
on a weekday lasting for 4 to 24 hours range between €0.7–10. These estimates may seem surpris-
ingly low but are partly explained by the scenario used in their choice experiment in which power 
outages with different durations are avoided during a five-year period. 

The analyses presented in this paper differ from the above-mentioned literature in several 
ways. Our hypothetical DSM program is characterized by controlling the maximum level of load at 
the household level. That is, instead of a strict focus on VoLL, we also report on values of potential 
lost load (VoPLL). In essence, VoPLL captures the value of a secure and sufficient power supply to 
the household. From the household perspective, VoPLL is the expected disutility of not being able to 
use all of their loads as they are used to. The expected disutility stems both from actual load shifting, 
but also a loss of option value. The option value could be interpreted as the possibility to use an 
appliance or installation when needed. Note that a given limit in load is not necessarily binding at 
all times. By definition, or at least by logic, VoPLL must be lower than VoLL, and is thus more rel-
evant for analyzing demand response. Using the method of contingent valuation, we however also 
estimate the average monetary compensation required to accept five 30-minute blackouts during 
the winter season. Given the specific design, we estimate VoLL while also assessing the relative 
importance of different categories of household appliances and installations not covered by our soft 
control scenarios (VoPLL). In this way, we obtain measures of several levels of restrictions and, in 
addition, we are able to make comparisons to the related (VoLL) literature.

The hypothetical DSM-program studied in this paper focuses on short restrictions at spe-
cific times during the typical peak hours of the day and year: 0.5–3 hours for the soft load control of 
high-power appliances and 30 minutes for the blackouts. The focus on shorter periods of restrictions 
is motivated by our expectations on how future DSM programs may function. Based on previous 
research, we expect people to require compensations for engaging in extended curtailment activi-
ties that are substantially higher than the cost associated with supply-side flexibility (Broberg and 

4. A relevant comparison can be made to the compensation of at least €90 that the distributors by law must pay each 
household experiencing a 12–24-hour blackout (https://www.ei.se/sv/for-energikonsument/el/Elnat/elavbrott). 

5. 90% of the respondents stated a zero willingness to pay for a one-hour outage, and 40% stated zero for a 24-hour out-
age (Carlsson and Martinsson, 2011).
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Persson, 2016). It is therefore unlikely that there will be a notable market for extended curtailment 
activities. Another motivation for the set-up here is that we want to relate to the VoLL-literature 
where it is often assumed that a power outage, or blackout, lasts for several hours, although they 
often are shorter than one hour, at least in Sweden (see EI, 2016).

Furthermore, our analysis also differs from many previous studies by asking for the will-
ingness to accept a restriction (or blackout) instead of the willingness to pay to avoid a restriction, 
as in Carlsson and Martinsson (2007, 2008) and Carlsson et.al. (2011). Previous VoLL-related litera-
ture comparing WTP and WTA measures using the stated preference approach suggest that the latter 
measure is significantly higher (see e.g. Doane et al., 1988; Hartman et al., 1991; Beenstock et.al., 
1998; Praktiknjo, 2014).6 We argue that a WTA-framing is logical as the market-based DSM pro-
gram that we study requires that household’s voluntary accept personalized restrictions that cause 
utility losses. A WTA-framing may also potentially lead to fewer protest answers concerning black-
out scenarios, and provide estimates that are more in line with actual preferences. The reason being 
that a respondent that have signed a contract with the distributor may perceive that the latter has 
an obligation to deliver, and requiring a payment for avoiding more interruptions in delivery may 
therefore be provocative (Willis and Garrod, 1997). 

3. CONCEPTUAL FRAMEWORK 

In our scenario, a household know that their maximum load will be constrained a certain 
number of days during the winter season at 6 pm, and that the constraints will last for 0.5–3 hours 
(centered at 6 pm). The exact days when the constraint occur is however not known. The house-
hold’s electricity use varies over days, due to both deterministic and stochastic factors, and they 
form expectations about if, and to what extent, the constraints will affect them. Hence, it is the 
households actual load at the time of the load constraint that is uncertain and not if the constraint 
will take place or not.

Conceptually, we think of the household’s demand for electricity as being a function of 
the electricity price, living habits/preferences, and various external factors such as e.g. temperature, 
precipitation, darkness and traffic conditions. Some of these factors are uncertain to the household 
implying that its demand for electricity during the peak hours is stochastic (uncertain).7 Given these 
assumptions, the inverted demand function, or willingness to pay function, for the household can 
be written as:

( , , )θ=p p q x  (1)

where p is willingness to pay, q electricity quantity, x household characteristics and other determin-
istic demand factors, and θ is a stochastic component with a known distribution. 

If the price for electricity is p*, VoLL for the household is defined as the expected change 
in consumer surplus (CS) that follows from a power outage (q = 0) in line with:

6. The issue of WTP vs. WTA has been widely discussed in literature. Standard theory suggest that the two measures 
should be equivalent in case of small or no income effects (Randal and Stoll, 1980). However, empirical results show that the 
WTA not having some good tend to be several times higher than the WTP for acquiring the same good, especially if the valued 
good is far from an ordinary private good (Horowitz and McConnell, 2002). The WTP/WTA disparity has been explained by 
large income-effects and low complementarity between the valued public good and a composite private good (Hanemann, 
1991) and loss-aversion among consumers (Kahneman and Tversky, 1979). 

7. Weather conditions, timing of cooking etc. define different states that occur with different probabilities, and therefore, 
the utility derived from energy usage is state contingent. 
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where k, the upper limit of the unconstrained level of consumption, depends on θ, the stochastic 
component, and g(θ) is the density function for θ with limits m1 and m2. The upper limit, k, is the 
quantity where marginal willingness to pay, p(q,x,θ), equals the (certain) consumer price for elec-
tricity.

In the questionnaire, we ask households about their willingness to accept a temporary load 
constraint larger than zero ( 0>q ). As the household’s demand for electricity in the peak hour is 
stochastic, we define the potential lost load as the expected loss in consumer surplus because of the 
load constraint as:

( ) 2
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( ( , , ) *) ( , , *, ) ( )

θ

θ
θ θ θ θ

≥ =

 = ⋅ − = ⋅  ∫ ∫
k m

q m
VoPLL E h p q x p dq CS q x p g d , (3)

where h is a variable that equals one if k > q , and zero if k ≤ q . The latter follows from the fact 
that the constraint is not binding if k lies below the maximum allowed level. Therefore, the loss of 
consumer surplus is zero.

An illustration is given in Figure 1, where the demand can be in two states: high demand 
(H) or low demand (L), with probabilities s and (1-s) respectively. Furthermore, as above, if the 
constraint is not binding there is no loss of consumer surplus. Given a load constraint equal to q , the 
expected loss in consumer surplus equals:

* *( , ) ( ) (1 ) ( , ) ( )θ θ   = ⋅ ⋅ − − + − ⋅ ⋅ − −      ∫ ∫
H Lq qH H L L

q q
VoPLL s h p q dq p q q s h p q dq p q q , (4)

illustrated by the area C+D+F times the probability for the high demand state, plus the area D times 
the probability for the low demand state. From Figure 1, the expected value of this limited load 

Figure 1. VoPLL and VoLL in terms of consumer surplus.
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constraint is lower than VoLL, i.e. when consumption is set to zero.8 If the load constraint is more 
lenient (q), the term within the second bracket in Eq. 4 equals zero (h = 0), and the expected loss of 
consumer surplus becomes lower.

4. METHODOLOGICAL APPROACH AND DATA

4.1 The choice experiment

To estimate VoPLL, we introduce choice situations with hypothetical contracts for demand 
side management where at least one contract contains a temporary maximum load restriction, as 
well as a monetary compensation. A contract involving load restrictions can be defined by many 
attributes. However, for different reasons the number of attributes must be limited. First, it is im-
portant to consider the cognitive limitations of the respondent in respect of the complexity of the 
issues being investigated. Second, it is important that the suggested contracts are reasonable and 
realistic from the respondent’s point of view. Considering this, our hypothetical contracts center on 
four attributes related to load control, and one attribute in the form of a monetary compensation. The 
attributes and their respective levels are described in Table 1. The attributes define the maximum 
high-power load that the household can use (“load control”), the number of electricity interruptions 
during the winter season that will occur (“days”), the duration of each interruption (“duration and 
timing”), whether there is flexibility in which appliances that will be curtailed (“choice of appli-
ances”), and the size of the monetary compensation (“monetary compensation”).9

Table 1: Contract characteristics.
Attribute Description Levels

Load control

Equipment will be installed to monitor and restrict the use of electricity. 
During the restriction, your household must adapt and consume 
accordingly. If not, the main fuse will blow. Only the appliances mentioned 
in the previous questions are considered for the restriction.

Max 2,000 watt
Max 3,500 watt
Max 5,000 watt

Choice of appliances

During any restriction your household is free to choose which appliances 
to use within the limit or not. If not, you are bound to use the chosen 
appliances in the previous question. Irrespectively of whether or not there 
is flexibility, you still need to adapt to the total load control.

Pre-specified
Flexible

Duration and timing The duration of restriction may vary between contracts. The specific hours 
are defined in the contract.

5.30pm–6pm
5pm–6.30pm
4.30pm–7.30pm

Days 
The restriction on electricity use will occur on a given number of days 
during December through February. Restrictions will only be on weekdays 
but may be spread across separate days.

5 days
10 days
20 days

Monetary compensation Your household will be given a monetary compensation for the given 
period of load control. 

SEK 300
SEK 750
SEK 1,500
SEK 2,500

Importantly, any restriction on electricity use will be communicated the day before at 3pm. In addition to restrictions speci-
fied in the contracts, random disruptions (just like today’s situation) may still occur.

Prior to the table, the respondents were informed that they were soon to be faced with 
hypothetical contracts. They were also informed that the purpose of the contracts was to restrict the 

8. VoLL is the area A+B+C+D+F times s, plus B+D times (1-s).
9. The currency used in the survey is Swedish crowns, SEK, and the exchange rate is about SEK/EURO=10.
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use of electricity for a given compensation during times when the grid is stressed. It was mentioned 
that the restricting contracts contribute to a more reliable supply of electricity in general. Moreover, 
the actual choice of appliances considered for the specific attributes was explicitly linked to the pre-
vious questions in the questionnaire. An example of a choice card is given in Figure 2.

The hypothetical contracts were tested in focus groups and two pilot studies (including 100 
respondents each). The pilot studies served as inputs in the explicit design of the final versions of 
the hypothetical contracts.

Figure 2. Example of choice card.

By design, each respondent was faced with eight choice sets, where the attribute levels 
were varied in a statistically efficient way.10 This implies that the number of choice observations 
equals the number of respondents times eight. Each choice set implies a discrete choice between 
two hypothetical contracts and the status quo contract. In the behavioral process, it is assumed that 
each contract corresponds to a specific utility level and that the respondent chooses the alternative 
that provides the highest expected level of utility. The data generated translates to the probability of 
choosing a specific contract, given the attribute levels characterizing the contracts. The analysis of 
this type of data is typically done within the logit framework. The multinomial logit model (MNL) 
is based on a rather strong assumption that unobserved factors affecting the choice of alternatives are 
independent. Unobserved factors affecting the utility of each respective contract may however be 
correlated with observable factors included as attributes in the experiment and it has become com-
mon practice to instead analyze the responses in the random parameter logit (RPL) framework. The 
RPL model is a more general version of the MNL and allows unobserved factors underlying choices 
to be random and to follow a pre-specified distribution; see e.g Train (2009). 

In general, individual (or household) q’s utility from choosing contract (alternative) j can 
be defined as11

β ε′= +qj q qj qjU X  (5)

10. The total number of different choice sets was 16 and the respondents were divided into two blocks to reduce the 
cognitive burden. The design of the choice sets was decided by simulating a choice model based on Bayesian priors using the 
software Ngene. The design with the lowest D-error was chosen.

11. Without loss of generality and for interpretational convenience, the panel structure of the data (repeated choices) has 
been left out in the model description. The panel structure is however considered in the estimation.
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where Xqj is a vector of observables related to the alternative and the respondent (including alterna-
tive specific constants), βq is a corresponding vector of parameters representing taste, and εqj is an 
error term. Given an assumption of homogenous preferences (taste), i.e. βq = β, and that the error 
term is independent and identically distributed extreme value type-1 with variance 2 / 6π , the prob-
ability for choosing alternative i would be of the standard logit type defined as:

( ) ( )
( )1

exp

exp

β
β

β
=

=
′

′∑
qi

qi J
qjj

X
L

X
 (6)

The RPL specification however allows for heterogenous preferences and correlation be-
tween unobserved factors influencing choices. This is done by introducing a vector of parameters 
that instead vary randomly over individuals and is characterized by a joint density function ( )|β Ωf ,  
where Ω  represents underlying distributional parameters such as the mean and variance. The indi-
vidual parameters are however unknown and the probability defined by equation (6) is not appli-
cable. The probability is instead defined as the integral of the standard logit probabilities, ( )βqiL , 
over all possible values of coefficients: 

( )
( )

( )
1

exp
|

exp

β
β Ω β

β
=

′
=

′∫∑
q qi

qi J
q qjj

X
P f d

X
 (7)

where βq represents individual taste among the respondents. The distribution for the parameters can 
take on any form such as normal, lognormal, triangular. In the present study, there is no prior infor-
mation concerning the distributions and the normal is therefore used. 

The output from the RPL model described above gives (i) estimates of the parameters with 
corresponding standard errors and (ii) the standard deviation of each random parameter reflecting 
preference heterogeneity. In general, the interpretation of the parameters as such is analogous to the 
standard logit measuring the effect on the likelihood of choosing an alternative (although the abso-
lute numbers require a transformation to be directly comparable). A statistically significant standard 
deviation is interpreted such that the parameter actually varies across individuals and preference 
heterogeneity is present. 

By including a monetary compensation in the contracts, it is possible to normalize prefer-
ences to willingness to accept (WTA) measures. The marginal WTA is the monetary compensation 
required to move from the opt in base, or reference, contract to a contract with the specified attribute 
level. The marginal WTA is calculated as the ratio of the preference for the respective attribute 
and the compensation attribute. In principle, and by the econometric specification, we allow for 
negative compensation levels.12 In the analysis, the models are specified such that all the attribute 
levels except the monetary compensation are dummy coded. The reference levels are “5,000 watt,” 
“pre-specified appliances,” “5.45pm–6.15pm” and “5 days,” respectively. This means that the mar-
ginal WTA reported for, say, 2,000 watts translates to how much compensation, on average, the 
respondents require to accept the corresponding one-dimensional move from the reference levels.

The attributes defined in Table 1, and their respective effect on choices, may to some extent 
be correlated. First, the load control is a prerequisite for the other attributes, which motivates the 
dummy coding structure defining a reference case as a combination of attribute levels. The other 
attributes are simply not relevant without the load restriction. Second, it is possible that there is a 
link, or interaction mechanism, between the attributes. The level of restriction may matter for the 

12. Although unlikely, it is possible that households may be willing to pay for a restriction in their use of electricity. 
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disutility of, say, duration. For example, a longer duration is probably worse if it is combined with a 
stricter load control. To be more complete in our analysis, we therefore present results from estima-
tion of both a main effects only specification and a specification allowing for interactions between 
the 2,000 watt restriction and the levels of the other attributes in the contract.

4.2 The contingent valuation scenario

In eliciting preferences related to full blackouts, the contingent valuation method is ad-
opted. 13 The choice experiment approach described above is attractive in its potential to simultane-
ously cover several dimensions of a hypothetical scenario. As described, it is possible to separate the 
preferences for the different attributes and their respective levels. If this is not of particular interest, 
but instead the focus is on the preferences concerning a specific “package” of characteristics, the 
contingent valuation approach is more appealing, due to its simplicity relative to the choice exper-
iment. 

After the choice experiment questions, respondents were faced with a question related 
to full blackouts. It was explained to the respondent that the household would receive a monetary 
compensation if they accept that the electricity is cut for 30 minutes, 5 times during the period of 
December through February. It was made clear that all electricity would be cut, i.e., a blackout, and 
that it would be at 5.45pm–6.15pm on weekdays. It was also made clear that they would not be no-
tified in advance. The respondents were then faced with seven bids ranging from SEK 100 to SEK 
4,000 to accept blackouts as described. Each bid was presented separately, and the respondent did 
not know how many bids would be offered. The question was designed such that it allowed respon-
dents to express uncertainty when they stated whether to accept the respective bid. In the end, each 
respondent’s answer could be summarized in a matrix as illustrated in Figure 3.14 

Figure 3. Bid vector for the compensation in the contingent valuation question.

4.3 Data

The data used in the choice experiment and the contingent valuation analysis was collected 
through a web survey conducted in 2017. 

The questionnaire consisted of three parts addressing three different research questions. 
The first part focused on household use of electricity in general and the use of specific appliances 

13. The WTA for a full black-out is an extension of the choice experiment, although not possible to include directly in 
the design.

14. For a discussion on uncertainty and contingent valuation, see e.g., Broberg and Brännlund, 2008.
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during Swedish peak demand hours. The second part concerned households’ choices of hypothetical 
electricity contracts as described above. The third (final) part introduced the contingent valuation 
question related to blackouts. The order of questions (parts) was discussed during development of 
the questionnaire. The first part was considered as a warm-up section, while the multidimensional 
contract choices deserved the main focus given its relatively complex design.

The study population was Swedish households living in single-family homes or duplexes. 
The main reason for choosing this population is that we expect that more or less all households in 
the survey pay their own electricity bill and are in control of all major power-consuming appliances 
in the house. This is not necessarily the case for households living in multi-dwelling houses. For 
example, the electricity bill may be included in the apartment rent and some households residing in 
apartments may not have their own laundry appliances. 

In total, the questionnaire was answered by 1,007 respondents, sampled from a web-panel 
managed by Norstat. General characteristics of the respondents are provided in Table 2 and nothing 
in the descriptive statistics raises fundamental questions about the representativeness of the sample. 
Males are somewhat overrepresented (52 percent), which also has been the case in other energy re-
lated surveys in Sweden (see Broberg and Persson, 2016 and Ek and Söderholm, 2010). The average 
age in the sample may appear high at first but considering that the population is homeowners and 
that only people over 18 years old are allowed to answer the questionnaire, the average age is not 
particularly high.

Table 2. Survey sample descriptive statistics.
Mean/share Std.dev 

Age 53.15 16.78
Male 0.52 0.50
Retired 0.33 0.47
Single household 0.11 0.32
Households with children 0.33 0.47
District heating/Combustion (main or additional source) 0.32 0.47
Upper north counties 0.05 0.22
Stockholm county 0.19 0.39
Highly educated 0.52 0.50
Median monthly household income (SEK) (category variable) 40,000–50,000

As mentioned, the first part of the questionnaire pertains to use of electricity in general and 
the use of specific appliances during Swedish peak demand hours in particular. More specifically, 
we ask about their use of high-power appliances during weekday afternoons in the winter season 
(December-February). Typical examples of high-power appliances are stoves, ovens, electric ket-
tles, dishwashers, washing- and drying machines (see Broberg et.al., 2018 for details). Low-power 
appliances include lightbulbs, TV, stereo, computers, toys, hobby equipment. From a pure energy 
perspective, the aggregate of low power appliances contributes more to total electricity use than 
high-power appliances, while each of them is less important from a pure power perspective. 

Figures 4 and 5 describe households’ use of electric appliances/installations during the 
evening peak load. Figure 4 shows the share of households reporting that they use specific appli-
ances/installations during the peak period for four or five workdays during a typical week. About 
90 percent of the households use the stove, and about 25 percent run their laundry machine between 
4.30 and 7.30 pm. Between 5.45 and 6.15 pm, about 50 percent of the households use their stove, 
while less than 10 percent use their laundry machine. A general pattern is that households tend to use 
kitchen appliances during the power system peak hours.
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Figure 4.  Share of households routinely using specific high-power appliances/installations at 
peak hours in the winter season.

To highlight potential heterogeneity in the sample, corresponding statistics were con-
structed for households with and without children separately. This analysis revealed that households 
with children more frequently use the dishwasher, laundry machine and dryer from 4.30–7.30 pm 
and 5.45–6.15 pm respectively. On the other hand, households without children seem to use the cof-
fee machine more frequently. The analysis also shows that households with children seem to engage 
in kitchen activities more frequently in the half-hour peak.15

Figure 5 shows the reported number of appliances that households use during the peak 
hours 4–5 workdays per week. Almost all households responded that they use one or more electrical 
appliances during 4.30–7.30 pm, while about 60 percent responded that they use one or more ap-
pliances 5.45–6.15 pm. The median household routinely uses four appliances during the three-hour 
peak and 1–2 appliances during the half-hour peak. 

A rough estimate of the households’ expected power demand from high power-appliances 
during workdays at 5.45–6.15pm suggests that the load restrictions of 5,000, 3,500 and 2,000 watts 
may necessitate curtailment activities in 45, 63 and 81 percent of the sampled households where the 
average curtailment amounts to 1.4 kW, 2.1 kW and 2.7 kW. 16 

In a separate question, we asked the respondents to choose the high-power appliances that 
they would prefer to have control over if their maximum load were to be restricted to 2,000 watts 
during workdays 5.45–6.15pm. As expected, a large fraction chose kitchen appliances; approxi-
mately 35 percent the stove, 16 percent the oven, 10 percent the microwave oven, 10 percent the 
coffee machine, and 6 percent the electric kettle. Only 5 percent chose the dishwasher, 5 percent 

15. These descriptive results are in line with the results from a previous study estimating daily load curves for two dif-
ferent types of homeowner households using detailed metering data (Zimmermann, 2009). In this study it is shown that the 
households electricity consumption peak in the evening between 6 pm and 10 pm for households without children, and 5 pm 
to 9 pm for families with children. It is also shown that lighting is the most energy consuming activity during peak hours, 
followed by appliances related to kitchen activities. See also Vesterberg and Krishnamurty (2016) for related results.

16. The expected power demand from high-power appliances was calculated from estimates of the maximum electrical 
power drawn by specific appliances and the households’ expected use of these appliances during workdays. For example, a 
specific appliance was given the weight 0.9 if used 4–5 workdays, 0.5 if used 2–3 workdays and 0.1 if used 0–1 workdays. 
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the laundry machine and 1 percent the dryer. Even if some numbers are small, it suggests that these 
appliances are important to households since they actually use them at the time of the restriction.

To further deepen our understanding of household use of electricity, we asked a set of 
knowledge-based questions. The answers from these questions reveal that a fairly large fraction of 
homeowners in Sweden have limited understanding of their power consumption, electricity prices, 
and contract possibilities. For example, almost 30 percent of the respondents did not know what fuse 
rate they had, and 77 percent stated no understanding about the relation between the fuse rate and 
the maximum possible load.

5. RESULTS

This section reports from both the choice experiment and the contingent valuation. The 
choice experiment covers the hypothesis related to soft load control and VoPLL, while the contin-
gent valuation addresses the issue of a full black out and the VoLL in peak load hours.

5.1 The choice experiment and VoPLL (soft load control)

The estimated models are specified with dummy variables and the parameter estimates for 
the different attributes of the contracts should be interpreted as changes from the reference level. For 
example, the parameter estimates for 2,000 watts in Table 3 should be interpreted as the change from 
5,000 watts, which is the reference level. Interaction terms between the most stringent load control 
of 2,000 watts and the other attribute levels are introduced in a second model specification. This is 
done to capture the potential relationship, or link, between the different attributes of the contracts. 
Specifically, it is reasonable to believe that how a respondent perceives a load restriction depends on 
the duration of the restriction and how many days it may be enforced. 

All parameter estimates are presented in Table 3. Given the RPL specification, the respec-
tive coefficients can be interpreted as the mean preferences (recall that we allow for individual 
heterogeneity) and are presented along with the standard errors and significance levels. The stan-

Figure 5.  Number of high-power appliances/installations that households routinely use during 
the peak hours on 4–5 workdays in a typical week. Share of households that use at 
least a specific number of appliances/installations.
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dard deviations of the distributions and the respective significance levels capture and illustrates the 
heterogeneity in preferences.17

Most of the point estimates in Table 3 have the expected sign. Stricter control in terms of a 
maximum load of 2,000 watt, duration and occasions are all related to discomfort and disutility, ac-
cording to the point estimates. Notably, the flexibility attribute representing the possibility to change 
appliances during the disruption is not statistically significant at any relevant level. Moreover, it is 
only the interaction between a maximum load of 2,000 watt and the duration that is statistically sig-
nificant. The sign of this coefficient is interpreted such that a longer duration combined with stricter 
control means more disutility. Finally, the parameters Alfa A and B reflect “generic” preferences for 
contract A or B relative to today’s contract. In theory, there should be no difference between generic 
contracts such as A and B in our case, but in practice it is typical to find preferences for one or the 
other. In our specification, we allow for such differences although the explicit interpretation is of no 
particular interest.

Table 3. Results from the random parameter logit. 
Without interactions With attribute interactions

Attributes Coeff Stand. err. Std. dev. Coeff Stand. err. Std. dev.

3,500 w –0.070 0.072 0.842*** –0.049 0.074 0.856***
2,000 w –0.666*** 0.094 1.411*** –0.204 0.189 1.441***
Flex 0.080 0.065 0.713*** 0.093 0.085 0.751***
90 min –0.272*** 0.074 1.050*** –0.120 0.082 1.103***
180 min –1.179*** 0.102 1.698*** –0.786*** 0.133 1.685***
10 days –0.525*** 0.064 0.139 –0.543*** 0.075 0.137
20 days –0.793*** 0.086 1.141*** –0.880*** 0.115 1.138***
Alfa A –1.495*** 0.136 3.014*** –1.718*** 0.156 2.993***
Alfa B –1.198*** 0.132 2.939*** –1.328*** 0.138 2.930***
Comp/1,000 1.156*** 0.043 1.158*** 0.043
I_dur –0.564*** 0.125
I_days 0.778 1.102
I_flex 0.008 0.158
Log-likelihood –6,590.419 –6,575.179
Restricted log-likelihood –8,850.421 –8,850.421
McFadden pseudo R2 0.255 0.257
AIC/N 1.641 1.638
No of resp 1,007 1,007
No of obs 8,056 8,056
No of shuffled uniform vector draws 1,000 1,000

*** Significance at 1-percent level

By dividing the coefficients for the respective attribute level with the compensation attri-
bute, the results in Table 3 can be used to calculate the mean marginal willingness to accept (WTA) 
for the various levels of the attributes relative to the respective reference level. These results are 
presented in Table 4, where estimates of mean WTA are presented along with confidence intervals 
for interpretational convenience.18

17. In all cases, according to log-likelihood ratio tests, the RPL specification is preferred over the MNL specification (not 
presented in the tables).

18. The Wald procedure in Limdep was used to obtain functions of parameters from the RPL model and to estimate 
standard errors and confidence intervals for those functions. The procedure was specified to adopt the Krinsky-Robb method 
with 1,000 draws for simulating the properties of the maximum likelihood estimated coefficients. Since the coefficients reflect 
average preferences, the marginal WTA will also reflect average preferences.
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Table 4. Marginal willingness to accept, SEK.
Without interactions With interactions

Point 
estimate

95% confidence 
interval

Point 
estimate

95% confidence 
interval

Compared to a 5,000 watt limit on electricity use, 
the compensation required for a… 
 3,500 watt limit is… 61 –62–184 42 –78–163
 2,000 watt limit is… 576*** 424–729 176 –138–491

Compared to a pre-determined choice of appliances, 
the compensation required for flexible choice of 
appliances is… –69 –179–41 –80 –224–64

Compared to a duration of 30 minutes, the 
compensation required for a duration of…
 90 minutes is… 235*** 109–362 104 –30–237
 180 minutes is… 1,020*** 856–1,185 679*** 458–900

Compared to 5 days during the period, the 
compensation required for… 
 10 days is… 454*** 351–558 469*** 346–593
 20 days is… 686* 552–821 759*** 574–944

Compared to the status quo, the compensation for…
 contract A is… 1,293*** 1,059–1,528 1,483*** 1,214–1,752
 contract B is… 1,036*** 812–1,260 1,146*** 913–1,380

2,000 watt in combination with…
 duration 4.9*** 2.7–7.0
 days –6.7 –25.2–11.8
 flexible choice –7.0 –279–265

*** Significance at 1-percent level

In Table 4 we see that all the statistically significant estimates of marginal WTA have the 
expected sign. Given that a restriction on the use of electricity is related to discomfort or disutility, 
the respondents logically require a positive compensation for any of the attributes in the contracts. 
It can also be seen that stricter restrictions are associated with higher compensation. Starting from 
the reference contract, characterized by 5,000 watts, 30 minutes and 5 days, we find that among the 
possible changes of this contract an increase of the duration to 180 minutes is associated with the 
highest average required compensation, more than SEK 1,000 (€100) for the specification without 
interaction terms.

The results in Table 4 also show that the average compensation required to accept the ref-
erence contract, relative to the status quo contract (including the preference for status quo as such), 
is in the range of SEK 1,036–1,293 for the model without interactions. The status quo compensation 
level is low in comparison to the corresponding valuation (keeping the no-restriction contract) found 
in Broberg and Persson (2016). In that study, the average compensation required to make people 
consider opting into a new contract was estimated at almost SEK 3,000. The likely reason for this 
difference is that the contracts in the current study are characterized by more flexibility and, in gen-
eral, softer load control. 

Turning to the specification allowing for interactions between the 2,000 watt restriction 
and duration, number of days and flexibility, the general findings do not change to any larger extent. 
The marginal WTA estimates are derived from the results reported in Table 3, meaning that e.g. 
only the duration interaction is statistically significant. The interaction is interpreted such that each 
extra minute in duration, given a maximum load of 2,000 watt, corresponds to about SEK 5 extra in 
compensation. Given the statistical insignificance, any interpretation of the other interaction terms 
needs to be done with care. 
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Instead of focusing on the respective attribute level separately, an alternative way to illus-
trate the results is to calculate the minimum compensation for specific hypothetical contracts. In Ta-
ble 5, the contracts are designed for the purpose to compare differences in valuation between “hard” 
and “soft” restrictions on homeowners’ electricity use, but also to allow for a test of the hypothesis 
that shorter, but perhaps more frequent, disruptions may be easier to handle and compensate for. For 
this, we consider four distinct contracts in which we elaborate on all attributes except the flexible 
versus predetermined choice of appliances. The reason for the latter is that the parameter estimate 
for this attribute was not statistically different from zero in any specification. “Hard control” refers 
to a case with the strictest restrictions for all the attributes—2,000 watt load control and 180-min-
ute disruptions for 20 days. “Hard but short” refers to 2,000 watt and 20 days, but only 30-minute 
disruptions. “Hard load only” refers to 2,000 watt, 30 minutes and 5 days. Finally, “soft but often” 
refers to 20 days, but 5,000 watt and 30 minutes. Recall that the calculations are based on the speci-
fication including attribute interactions between 2,000 watt, duration and number of days.19 

All point estimates are statistically significant at the 1 percent level, except for the “hard 
load only” scenario. Notice also that the scenarios are calculated both with and without the compen-
sation needed to accept the reference DSM contract (the average of the range SEK 1,146 to 1,483). 
The compensation to accept the DSM-contracts (including the status quo cost) ranges from SEK 
1,603 for the “hard load only” to SEK 3,671 for the “hard control”. The relatively low average com-
pensation required for the “hard load only” is explained by the negative interaction for 2,000 watts 
and number of days, which is not part of the control.

Table 5.  Willingness to accept, SEK for different pre-specified 
contracts (confidence intervals within parentheses).

Without SQ cost With average SQ cost

Hard control 2,356*** 
(2,050–2,662)

3,671*** 
(3,323–4,019)

Hard but short 947*** 
(717–1,177)

2,262*** 
(2,018–2,506)

Hard load only 289**
(62–516)

1,603*** 
(1,364–1,843)

Soft but often 759*** 
(562–957)

2,074*** 
(1,837–2,311)

Hard control = 2,000 watt load control and 180-minute disruptions for 20 days
Hard but short = 2,000 watt load control and 30-minute disruptions for 20 days 
Hard load only = 2,000 watt load control and 30 minutes for 5 days
Soft but often = 5,000 watt load control and 30 minutes for 200 days

***, ** Significance at 1-percent and 5-percent level respectively

Part of the motivation for our study was to link the preferences (and the valuation of attri-
butes) to the concepts of VoLL and VoPLL as defined in the introduction and background. Based on 
the results above, it is not possible to calculate a single value of the potential loss of load (VoPLL) 
in terms of SEK per kWh, but only a range of values. The reason is that the average compensation 
required for accepting a DSM-contract may change disproportionally to the change in a numeric 
attribute, e.g. duration. To illustrate, consider two contracts with 2,000 watt and 20 days restrictions, 
but with a duration of 30 and 180 minutes respectively. The average compensations for these two 

19. The standard errors and confidence intervals were estimated through the Wald procedure in Limdep, using the Krin-
sky-Robb method with 1,000 draws for the simulation. 
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contracts would be SEK 2,262 and SEK 3,671 respectively (see Table 5).20 That is, the compensation 
associated with the latter contract is only about 60 percent higher, although the duration is 600 per-
cent longer. As a result, we present an interval for VoPLL based on the difference in compensation 
between the reference contract and contracts with a load control set to 2,000 watt. A contract with a 
change from 5,000 to 2,000 watt, 5 to 20 days and 30 to 180 minutes duration implies a difference 
in time involved equal to 15 days*(180–30) minutes = 2,250 minutes, or 37.5 hours. The 3,000 watt 
tighter restriction would consequently translate to 113 kWh (3,000*37.5) of potential lost load and 
a VoPLL equal to SEK 21 per kWh (SEK 2,356/113).21 

Equivalently, a calculation based on a change from 5,000 to 2,000 watt only would result in 
a VoPLL equal to SEK 39 per kWh (SEK 289/7.5). This difference motivates the use of an interval, 
and the value households attach to their unrestricted use of high-power appliances and installations 
is therefore estimated to between SEK 21 and 39. As mentioned previously, this value captures both 
the value of appliances and installations used, but also an option value capturing the possibility to 
use appliances and installations up to the contract-limit without temporary restrictions.

5.2 The contingent valuation approach and VoLL

As described above, the CV method was adopted to elicit preferences related to a full 
blackout. The responses to the CV question are summarized in figures 6 and 7. Figure 6 illus-
trates the share of respondents who answered that they definitely or probably would accept the 
contract containing complete blackouts if given a specific amount. As can be seen, the acceptance 
rate increases with the size of the compensation, but even at the highest compensation offered (SEK 
4,000), about 50 percent of the respondents turned down the offer. 

Figure 6. Survival curve for accepting compensation for a blackout.

20. These values can in principle be calculated directly from Table 4 by using the formula:
WTA = 1,314.5 + 176 + 679 + 759 + 4.9* duration—6.7*days. Note however that the numbers in table 5 are calculated 

with the exact point estimates, not the rounded values in table 4.
21. Because that fact that both alternative scenarios presuppose an existing contract, it does not matter if we include the 

SQ cost or not in these calculations.



278 / The Energy Journal

All rights reserved. Copyright © 2021 by the IAEE.

A similar story is illustrated in Figure 7, showing the share of respondents definitely turn-
ing down specific amounts offered to them. As can be seen, the share of respondents rejecting offers 
decreases with the level of compensation. At our highest bid, approximately 20 percent answered 
that they would definitely not accept the contract.

Figure 7. Survival curve for definitely rejecting compensation for blackouts.

The average compensation required to accept blackouts can be estimated statistically. Be-
cause a large fraction of the sample did not accept the highest bid offered, it is difficult to estimate 
the distribution of the compensation levels with perfect accuracy. We simply have too little infor-
mation about the right-hand-side tail of the distribution, implying that an estimate of the average 
compensation requires an assumption about the distribution. An alternative approach is to use the 
median compensation, which equals SEK 4,000. To get an estimate of the average compensation, 
we non-parametrically calculate an interval for the average compensation level by measuring the 
area under the curve in Figure 6 using two alternative assumptions: (1) Those who reject SEK 4,000 
would accept SEK 4,001, and (2) the accepted compensation among people who reject SEK 4,000 
are distributed according to a linear extrapolation of the last segment of the curve in Figure 6. That 
is, the curve is extrapolated until the share of households equals unity, in this case at SEK 8,200. 
The latter simply means that the person with the highest compensation demand would accept the 
blackouts for a compensation of SEK 8,200. Indeed, the second assumption seems to the most rea-
sonable of the two. 

The resulting interval for the average compensation is SEK 3,000–4,200 and can be com-
pared with the average compensation required for accepting the scenario “hard but short” in the 
contract choice analysis in the previous section. The “hard but short” scenario is similar to the black-
out scenario with respect to duration and number of days. As expected, the comparison reveals that 
households on average demand higher compensation to accept the blackout scenario. The difference 
in compensation levels also implies that people place a high value on being fully flexible in their use 
of both high- and low-power appliances. 

Making similar assumptions as in the discussion of the scenarios in the choice analysis, 
we can calculate the value of lost load, VoLL, for that particular time of day. Assuming a 5,000 watt 
loss of load for 30 minutes for 5 days, this implies a total loss of 12.5 kWh. Given a required com-
pensation of SEK 3,000–4,200, the value of lost load would be SEK 240–336 per kWh. However, 
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to estimate VoLL in terms of SEK per kWh, the starting point must be the actual load in use at the 
highest peak hour, of which we do not have full information. Assuming that the lost load is ap-
proximately 1.5 kWh at each blackout (see Vesterberg and Krishnamurthy, 2016, for a motivation), 
VoLL is calculated to about SEK 400–600. Again, a comparison with the hard and short scenario in 
the choice analysis reveals that a blackout is perceived as a stricter restriction with more disutility 
attached to it, which is expected.

To find out more about the drivers for the valuation of blackouts we estimate a regression 
model where the dependent variable is the lowest bid that the respondents would definitely or proba-
bly accept. Because the highest bid offered is lower than what a large share of the respondents would 
accept, we adopt a Tobit model. In principle, the Tobit specification is a combination of a linear and 
binary regression model. The Tobit model censors the estimated distribution to a specific number—
in our case SEK 4,000—and utilizes the fact that the censored observations are higher than SEK 
4,000. In the Tobit model, the variables explain the size of the compensation (WTA), given that it is 
lower than SEK 4,000 and the likelihood that a respondent has a WTA above SEK 4,000. 

Table 6 presents the results from two different model specifications. In both specifica-
tions, the dependent variable is the lowest amount the respondents answered that they definitely, or 
probably, would require to accept the blackouts. Model 1 is estimated on the full sample including 
all relevant variables except household income, while Model 2 includes household income. In the 
sample, information about income is missing for 374 respondents, which motivates the two model 
specifications in Table 6. We here discuss the coefficients based on their sign and statistical signif-
icance. A positive (negative) coefficient significantly different from zero means that the variable is 
positively (negatively) correlated with the compensation level. As was the case in the choice experi-
ment analysis, many of the variables are binary and should be interpreted as an average comparison 
between two groups of respondents, e.g., males and females.

Table 6:  Regression result of minimum compensation for accepting 
blackouts.a,b 

Model 1 Model 2

Coef. Std.err. Coef. Std.err.

Age 22*** 7 15* 8
Male 197 159 223 178
Retired –350* 254 39 280
Tight power supply –497*** 166 –491*** 184
Single household –147 263 117 287
District heating/Combustion –1 170 –28 186
Upper north counties 368 410 –101 430
Stockholm county 612*** 213 623*** 238
Waste sorter –344** 168 –444** 184
Labeled electricity –87 236 –24 252
Fixed price contract 258 164 328* 177
Use >3 appliances during 5.30–6 pm 103 215 223 241
Highly educated 111 159 29 177
Above median household income N.A N.A 461** 196
Low effort 343* 208 333 231
Constant 2,329*** 356 2,310*** 438
NOBS
Right-censored
Log-likelihood

992
465

–5,176.58

800
370

–4,209.38
a The dependent variable is the lowest amount the respondents answered that they definitely, or 
probably, would require to accept the blackouts.
b * indicates statistical significance at the 10-percent level, ** at the 5-percent level and ***at the 
1-percent level
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By comparing the results in Model 1 and Model 2, income acts as a confounding variable in 
Model 1. Among other things, a relatively low average income among retired households seems to 
explain why they require lower compensation than others. The same pattern holds for households in 
the upper north part of Sweden and those buying electricity labeled green. Also, there seems to be a 
correlation between the low-effort respondents and income.22 Overall, respondents who report above 
median household income require higher compensations levels, which is fairly intuitive.

Interestingly, respondents who already adjust their loads to avoid internal power failures 
(“Tight power supply”) require lower compensation on average. This is also true for respondents 
who stated that they think it is important for them to sort dairy packaging (“Waste sorter”).23 Ten-
tatively, these results suggest that preferences may adapt to new circumstances and that people 
develop new habits because of experience. The point is that people may perceive the cost of a power 
failure to be higher than it really is. When exposed to a power failure, people may learn about the 
true costs and correct their misperceptions.

6. DISCUSSION AND CONCLUSIONS

The overall objective of this paper is to study household preferences for demand response 
in order to learn more about the balancing potential for demand-side resources. More specifically, 
we estimate Swedish household’s possibilities and willingness to accept load restrictions in electric-
ity use during peak hours. The analysis reveals consumer preferences for various load restrictions at 
different hours of the day, and hence the potential for load shifting and demand side management. 
The analysis also contributes with explicit values of partial (VoPLL) and complete load restrictions 
(VoLL), which is of paramount importance when it comes to balance demand and supply side mea-
sures to meet potential effect challenges. 

We apply a survey approach to elicit preferences concerning a hypothetical DSM program. 
The DSM program includes load control on a number of occasions during the peak hours in the win-
ter season. The load controls, or attributes, in the program are: (i) maximum high-power loads, (ii) 
duration of load control, (iii) number of occasions of load control and (iv) flexibility in the choice of 
high-power appliances within the control. By varying these attributes, we elicit household’s prefer-
ences for the attributes and place a monetary value on them. 

To estimate the relative value of having full access to high-power loads compared to other 
loads (e.g., heating, lighting and TV), we use a contingent valuation scenario involving a complete 
blackout. The difference between the compensation required for a blackout and a DSM program 
with a softer load control, but with similar duration and number of occasions, then reveals informa-
tion about the relative value of different loads.

The overall conclusion from our empirical analyses is that demand response relying on 
behavioral change is expensive in the sense that households require a high compensation for accept-
ing restrictions. The required compensation can in this case be interpreted as the opportunity cost 
of time, e.g. the risk of not being able to make dinner at the usual time may be disruptive for the 
household. According to our results, such disruptions are very costly. 

22. Such correlation may result if some respondents systematically have chosen answers such as “I don’t know,” “Status 
quo” and “I don’t want to answer”.

23. The reason why we included “waste sorter” in the regression model was that it may serve as a “marker” for people 
who have an environmental awareness or in a broader sense have a pro-environmental behavior, which may influence there 
stated WTA.
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The results reveal that households would require a minimum compensation ranging be-
tween about SEK 2,000 and SEK 3,700, depending on how stringent the control is with respect to 
maximum load, duration, and number of days. This is a significant amount of money, considering 
that the yearly electricity bill for a homeowner household is approximately SEK 15,000 on average. 
Another way to illustrate the economic significance of the compensation they require is to relate it to 
the VoLL, i.e. a blackout. Households value, on average, the VoPLL to SEK 21–39 per kWh, which 
should be compared to the actual electricity consumer price of about SEK 1 per kWh. This means 
that the value households attach to secure access to electricity in the afternoon peak hour greatly 
exceeds the marginal cost of providing electricity. 

Looking more specifically at the minimum compensation for accepting five 30-minute 
blackouts in the afternoon peak hour reveals an even higher value than the less restricted load con-
trol, which is expected. According to the results, an average compensation of at least SEK 3,000 
is needed. More likely however, is that the average compensation exceeds this amount considering 
that the median is SEK 4,000. These amounts correspond to a VoLL of approximately SEK 400–600 
per kWh and indicate a rather big difference between the value of the load that was controlled in the 
choice experiment and the remaining load (e.g. lighting and TV). 

Compared to previous literature on VoLL our estimates are placed in the higher range. For 
example, Carlsson and Martinsson (2008) estimate VoLL for Swedish households, conditioned on 
a scenario with one additional power failure in a five-year period lasting for 24 hours. Translated to 
one power failure per year, their results point at a VoLL of about SEK 30–40 per kWh (assuming an 
average annual power consumption of 6,000 kWh for all households in Sweden). One explanation 
for the high values of VoLL in our case, is the scenario they are conditioned on. Compared to to-
day’s rather safe power supply, the scenario of five random blackouts in the peak hour winter period 
mirrors a highly unstable power system. Another explanation is the WTA approach, which typically 
results in higher values than approaches asking people to state their willingness to pay for avoiding 
a power failure. As we argued in Section 2, a WTA-framing is highly justified in our case as the 
market-based DSM programs that we study require households to voluntary accept personalized 
restrictions that cause utility losses. 

The load restrictions studied in this paper would significantly reduce the use of electrical 
power in peak hours. As an example, if the average household’s use of high-power appliances where 
restricted to 2,000 watt during 5.45–6.15 pm workdays, it may necessitate curtailment activities of 
about 2.7 kW, which is equivalent to replacing 56 incandescent lamps (60 watt) with led lamps (8 
watt). According to our results, specific policies aiming at behavioral changes would however be 
very costly. This implies that demand response through curtailment actions may be less cost-effec-
tive than supply response or demand response through automation and passive response. In a Swed-
ish household context, electricity used for heating probably has the largest potential for automated 
or passive response as it on average counts for more than 50 percent of the annual electricity use. 
Therefore, one important area for future research is to investigate to what extent households accept 
external control of their heating systems if such control implies small but still noticeable changes in 
their indoor temperature. 

To conclude, households cannot be expected to actively change their load profiles in the 
absence of very strong incentives. Apart from facilitate trade with demand flexibility based on ac-
tive response, policies should target automatization and passive response. A relatively large share 
of households use of electricity is related to passive use, such as heating, refrigerators, ventilation, 
etc. The load that can be subject to passive response is therefore relatively large, implying a large 
potential for load-shifting without large negative effects on well-being. The results also imply that it 
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is far from obvious that demand response is more cost effective than supply response, i.e., increas-
ing production of electricity. A combination of policies that facilitate trade with demand flexibility, 
stimulates active response, and that removes price ceilings and other price regulations is therefore 
motivated. Such a combination results in a more cost-effective balance between curtailment activi-
ties, passive response and investments in new generation capacity.
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