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Locational (In)Efficiency of Renewable Energy Feed-In Into the 
Electricity Grid: A Spatial Regression Analysis

Tim Höfera and Reinhard Madlenerb

abstract

This paper presents an econometric analysis of curtailment costs of renewable 
energy sources (RES) in Germany. The study aims at explaining and quantifying 
the regional variability of RES curtailment, which is a measure to relieve grid 
overstress by temporarily disconnecting RES from the electricity grid. We apply a 
Heckit sample selection model, which corrects bias from non-randomly selected 
samples. The selection equation estimates the probability of occurrence of RES 
curtailment in a region. The outcome equation corrects for cross-sectional depen-
dence and quantifies the effect of RES on curtailment costs. The results show that 
wind energy systems connected to the distribution grid increase RES curtailment 
costs by 0.7% per MW (or 0.2% per GWh) in subregions that have experienced 
RES curtailment over the period 2015–2017. The implication of this finding is that 
policymakers should set price signals for renewables that consider the regional 
grid overstress, in order to mitigate the cost burden on consumers due to excess 
generation from RES.
Keywords: RES Curtailment, Spatial econometrics, System integration cost, 
Grid-related cost, Renewable energy sources
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1. INTRODUCTION

In order to mitigate climate change, governments all over the world have been transform-
ing their electricity generation systems from conventional power plants to renewable energy sources 
(RES). This shift in the electricity generation structure is having severe impacts on the entire elec-
tricity system, especially on the grid infrastructure. The challenges arise from central power plants 
with a steady electricity production being replaced by a multitude of small and dispersed renewables 
with variable electricity generation.1 Renewables are primarily connected to the distribution grid, 
whereas coal-fired or nuclear power plants are connected to the transmission grid.2 At times of high 

1.  Between 2010 and 2017, the share of renewables in gross electricity consumption increased from 17% to 36.2% 
(BMWi, 2018).

2.  Based on data from the renewable power plant record issued by the German Federal Network Agency (Bundesnetza-
gentur, BNetzA) and the German transmission system operators (TSOs), 24.5% of the installed capacity of renewables is con-
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renewable energy output, this can lead to bidirectional power flows and grid overstress. To prevent 
the failure of electric network components, the responsible system operator (SO) can decrease the 
electricity output of power plants. If doing so, the SO is obliged to first reduce the output of con-
ventional power plants—the so-called redispatch.3 Only if the conducted redispatch measures are 
insufficient to relieve the bottleneck in the electricity grid is the SO allowed to curtail the output 
of renewables—the so-called RES curtailment.4 If the SO does reduce the output of a renewable 
generator, it has to refund the operator of the generator in question for the restrained electricity. The 
costs for the curtailment comprise the curtailment compensation for the respective renewable energy 
technology and the difference between the potential and the realized electricity supply. The SO is 
authorized to pass on the costs resulting from this RES curtailment to the consumers in the region 
concerned.

The need for RES curtailment in Germany has increased tremendously over the past years. 
In 2017, the reduced output of renewables reached 5,518 GWh, whereas it amounted to 555 GWh 
in 2013 (BNetzA, 2018a). The associated costs for RES curtailment totaled €43.7 million and €610 
million in 2013 and 2017, respectively (BNetzA, 2018b). Onshore wind turbines are by far the most 
frequently and heavily curtailed renewable energy technology in Germany, accounting for 80.8% 
of the overall quantity of RES curtailment (BNetzA, 2018a). In 2017, 89% of the implemented 
RES curtailment measures were due to a bottleneck in the transmission grid (BNetzA, 2018a). Fur-
thermore, 89% of all RES curtailment measures were instructed by transmission system operators 
(TSOs) and conducted by distribution system operators (DSOs) (BNetzA, 2018a). In our analysis, 
we consider RES curtailment conducted by TSOs and DSOs alike. Most of the implemented RES 
curtailment measures occurred in northern and eastern Germany, where a high amount of installed 
renewable energy capacity meets a relatively low electricity load. Figure 1 depicts the amount of 
RES curtailment compared with the installed capacity of wind energy systems (BNetzA, 2017a, 
2018a).

This study aims at identifying the main drivers for RES curtailment measures and at ex-
plaining the regional variability of RES curtailment costs. For this purpose, we analyze the RES 
curtailment costs of four DSOs in Germany.5 Since the DSOs publish only general information on 
their curtailment measures—such as the time and duration of a measure and the type of the curtailed 
renewable energy technology—but not on the curtailment costs, we have calculated the curtailment 
costs ourselves. To explain the locational differences of the RES curtailment within the DSO re-
gions, we partition the DSO region into smaller subregions based on the high-to-medium voltage 
substations (Egger, 2017; Hülk et al., 2017). We then allocate all variables to these subregions and 
apply a two-step Heckit sample selection model (Heckman, 1976). The first part is a probit model 
that corrects bias from non-randomly selected samples. The second part is a linear model that cap-

nected to the low voltage grid, 43.4% to the medium voltage grid, 29.7% to the high voltage grid, and 2.4% to the extra-high 
voltage grid in Germany (BNetzA, 2019).

3.  The legal aspects of redispatch are covered in Art. 13 EnWG. EnWG stands for the German Energy Industry Act (En-
ergiewirtschaftsgesetz).

4.  The SO can reduce the output of solar PV systems with a minimum capacity of 30 kW and other renewables with a 
minimum capacity of 100 kW (EEG 2012, Art. 6 (2)). Thereby, the SO can curtail the renewables to 60%, 30%, and 0% of the 
generation capacity. The legal aspects of curtailing renewables are covered in Art. 13 EnWG and Art. 14 EEG. EEG stands for 
the German Act on Granting Priority to Renewable Energy Sources (Erneuerbare Energien Gesetz).

5.  We incorporate only four out of 890 DSOs into our analysis since these four DSOs account for the majority of RES 
curtailment measures in Germany (BNetzA, 2017c) and publicly provide well-structured and comprehensive data. The grids 
of these four DSOs cover an area of approximately 40% of Germany and represent regions with different characteristics—
namely wind-dominated, PV-dominated, and low load (Ecofys and Fraunhofer IWES, 2017).
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tures cross-sectional dependence via spatial lags of the explanatory variables (SLX) and correlated 
common effects (CCE). Whereas the first part explains the impact of the explanatory variables on 
the probability of occurrence of RES curtailment, the second part illustrates the effect of the vari-
ables on RES curtailment costs. More specifically, we quantify the increase in RES curtailment costs 
due to an additional megawatt (MW) of installed renewable energy capacity and an additionally 
generated gigawatt-hour (GWh) of electricity.

The regional RES curtailment costs are integration costs of renewables in the present, 
rather inflexible, electricity system. Hirth et al. (2015) classify such integration costs into three 
categories: grid-related, balancing and profile costs. According to this definition, grid-related costs 
reflect the marginal value of electricity in different regions and refer to opportunity costs of trans-
porting electricity from the place of generation to the place of consumption. Balancing costs are 
defined as costs that arise due to forecasting errors of future weather conditions. Profile costs reflect 
the costs resulting from matching electricity supply and demand and arise due to the variability of 
the output of renewables. A wide variety of literature exists that investigates the system integration 
costs of renewables in general and grid-related costs in particular. We refer the interested reader to 
the publications by Hirth (2015), Hirth et al. (2015), Holttinen et al. (2013), Holttinen et al. (2011), 
Milligan et al. (2011), and Smith et al. (2007), which also provide reviews of studies on integration 
costs of renewables.

In contrast to the large number of studies on grid-related integration costs, the number of 
studies that explicitly incorporate curtailment costs into their analysis is still limited. The following 
studies, which do incorporate curtailment costs, focus on calculating the costs instead of quanti-
fying and explaining the regional correlation between installed capacity of renewables and RES 

Figure 1: �RES curtailment per unit of installed wind energy capacity, by German federal 
state, 2017
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curtailment costs. Ueckerdt et al. (2013) developed a mathematical definition of integration costs of 
renewables, comprising profile, balancing, and grid costs. As an example, the authors parametrize 
these cost components for increasing wind shares in Germany. A simple power system model is used 
to quantify the profile costs. The balancing and grid costs are parametrized based on a literature 
review. Grid-related costs incorporate investment costs in the electricity infrastructure as well as 
congestion management costs. However, the authors do not quantify or explain the reasons for the 
varying grid costs in different regions in Germany. Strbac et al. (2007) investigated the costs and 
benefits of wind energy in the United Kingdom using a generic model of the power system. Their 
simulation model explicitly incorporates the annual curtailed electricity output of wind turbines for 
different levels of wind capacities. The overall additional costs of integrating wind power consider 
balancing costs and grid costs, among others. The authors do not distinguish between different wind 
turbine locations and different grid costs at these locations. Denny and O’Malley (2007) conducted a 
cost-benefit analysis of wind energy systems, considering different wind turbine capacities, varying 
power plant mixes, and distinct electricity demand levels for the electricity system in Ireland. The 
model calculates the net benefits of wind power, including the curtailment and network reinforce-
ment costs. No differentiation between different locations is made. Ecofys and Fraunhofer IWES 
(2017) qualitatively investigated the reasons for the occurrence of RES curtailment in all of the 
federal states of Germany. They conclude that the different proportions between installed wind and 
solar capacity and the load are the decisive factors for the varying amount of curtailed renewable 
electricity generation. Rural regions with high installed wind or solar capacities and low load ex-
perienced the highest amount of RES curtailment. In contrast, suburban and urban areas with little 
installed wind or solar capacities and a high load exhibit almost no RES curtailment. This aligns 
with the results of the studies by Agricola et al. (2012) and Büchner et al. (2014). The studies find 
that wind and solar power are the main drivers for the reinforcement of the distribution grid and that 
mainly low-load regions are affected by an increased overstress of the grid. The latter three studies 
find a positive qualitative correlation between the installed capacity of renewables and the overstress 
of the electricity grid as well as a negative correlation between the load and RES curtailment. How-
ever, the studies do not quantify the effect of renewables on curtailment costs. To the best of our 
knowledge, no comparable published study has so far quantified the impact of different renewable 
energy technologies on RES curtailment costs.

In summary, the main merit of our paper is to quantify and explain the regionally diverging 
RES curtailment costs by means of an econometric model. The first part of our model elucidates 
why RES curtailment occurs only in some regions of Germany and not in others. The second part 
of our model analyzes the correlation of installed capacity and generated output, respectively, of 
renewables and RES curtailment costs. As part of our analysis, we also calculate the regionally 
disaggregated amount and costs of RES curtailment in Germany in a higher spatial resolution than 
available in official publications. These results could, for example, be used to introduce price sig-
nals that incentivize a welfare-enhancing deployment of renewables (Haucap and Pagel, 2013). 
Such price signals would, among other things, incorporate the regionally varying RES curtailment 
costs. Alternatively, the results of this study could be used to incentivize the reinforcement of the 
electricity grid or the further implementation of flexibility options in regions with high RES curtail-
ment. Possible flexibility options are energy storage systems, electric vehicles, or power-to-heat and 
power-to-gas applications.

Although we focus our analysis on four DSOs in Germany, the developed methodology 
may be applied to other regions and countries worldwide as well. Canada, China, Denmark, Ireland, 
Italy, Japan, Portugal, Spain, Sweden, and the USA also curtail the output of renewables due to 
congestions in the electricity grid (Bird et al., 2016).
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The remainder of the paper is structured as follows. Section 2 introduces the applied meth-
odology. Section 3 describes the calculation of RES curtailment costs, which is the dependent vari-
able in our regression and gives an overview of the incorporated explanatory variables. Sections 4 
and 5 present the study area and the regression results, respectively. Finally, Section 6 summarizes 
the main insights from our analysis and concludes.

2. METHODOLOGY

We apply a two-step Heckit sample selection model—or Tobit type II model (Heckman, 
1976, 1979; Amemiya, 1985)—in order to analyze the effects of different renewable energy tech-
nologies on RES curtailment costs. The Heckit model corrects bias from non-randomly selected 
samples or incidentally truncated dependent variables. The first part of the model is the so-called se-
lection equation and is based on a probit estimator. The resulting estimates are then used to compute 
the Inverse Mills Ratio (IMR), which is included in the outcome equation to correct for selectivity 
bias (Heckman, 1979). In our case, the selection equation predicts the likelihood of occurrence of 
RES curtailment in the considered regions and takes the form (Wooldridge, 2005):

*
1 0 1 1 1= ,t ty xα α ε+ +  (1)

y1t > 0, t = 1,...,T, where *
1ty  is a latent variable with the following relationship to the observed vari-

able: 1ty  is one if *
1ty  > 0, and zero if *

1ty  ≤ 0. 0α  is the intercept parameter, 1α  depicts the k × 1 vector 
parameter of coefficients, itx  is the 1 × k regressor vector at time t = 1,...,T, and ε  is the error term. In 
our case, y is unity if RES curtailment occurred in a region in 2015–2017, and zero otherwise. The 
model is estimated using the maximum likelihood (ML) estimation method.

The outcome equation is a linear regression model that considers cross-sectional depen-
dencies among the DSO subregions. We introduce these spatial dependencies since the regions are 
linked via the electricity grid.6 Neglecting spatial dependence among the dependent variable, the 
explanatory variables, or the error term might lead to biased and/or inefficient estimates (Anselin, 
1988; Anselin et al., 2004; Anselin and Rey, 2010). Two main model types that deal with such 
cross-sectional dependencies are the common factor models and the spatial econometric models. 
The former capture the spatial dependence by several observable or latent factors; the latter use 
spatial weights matrices to incorporate spillovers among regions. Pesaran (2006) developed the cor-
related common effects (CCE) approach to estimate a model with a multifactor error structure. The 
basic idea of the CCE estimator is to filter the individual specific regressor by means of cross-sec-
tion aggregates such that the differential effects of unobserved common factors are eliminated. The 
idea of spatial models is to incorporate spatial lags of the dependent variable, the explanatory vari-
ables, or the error term in order to capture the spatial dependence (Elhorst, 2014; Pace and LeSage, 
2010). The Lagrange multiplier test for spatial dependence suggests that spatial dependence in the 
explanatory variables and in the error term exists. In our setting, the impact of the explanatory vari-
ables on RES curtailment costs in neighboring subregions is of special interest, since spillovers to 
neighboring regions are likely. Hence, we introduce spatial lags of the explanatory variables into 
the regression. Whether to use CCE or spatial error models (SEMs) to control for the dependence 
in the error term is related to the concept of weak and strong cross-sectional dependence. Thereby, 
the SEM (CCE) approach is applied if the spatial dependence is weak (strong) (Pesaran and Tosetti, 
2011; Sarafidis and Wansbeek, 2012; Elhorst et al., 2019). However, recent work showed that the 
CCE approach provides consistent estimates if both forms of cross-section correlation—weak and 

6.  Furthermore, the Moran I test fails to reject the null hypothesis of zero spatial autocorrelation.
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strong—are present (Pesaran and Tosetti, 2011; Bresson G. and Hsiao C., 2008; Ertur and Musolesi, 
2017; Chudik et al., 2011). In our case, the CD-test developed in Pesaran (2004, 2015) rejects the 
null hypothesis of weak cross-section dependence. Hence, we apply the CCE approach in order to 
capture common unobserved effects.

The outcome equation incorporates spatial lags of the explanatory variables and common 
correlated effects in order to capture cross-sectional dependence and takes the form (Elhorst, 2014; 
Pesaran, 2006):

*
2 2 2

=1

=

= ,

m
T

it i it ij jt it
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e f
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λ ε

+ + +

+

∑
 (2)

i = 1,...,n, j = 1,...,m, where *
2ity  is a latent variable that is related to the observed variable by 2ity  = *

2ity  
× 1y . iβ  is the temporal fixed effects for region i = 1,...,n, β  and θ  represent the estimation parame-
ters of the explanatory variables and their spatial lags, respectively. ijw  is an element of the N × N 
row-stochastic spatial weight matrix W for the j = 1,...,m neighbors of region i. Furthermore, ijλ  is 
the vector of factor loadings, tf  represents the unobserved common effects, and itε  is the unit-spe-
cific error term. We construct the spatial weight matrix W based on the row-stochastic first-order 
queen-contiguity matrix of the form:

1

1
=ijw n

 (3)

if i and j (i ≠ j) share common borders and zero otherwise.7 In order to control for all spatial-invari-
ant effects that change over time, we use a spatial time-fixed effects model8 (Arellano, 2003; Baltagi, 
2005; Hsiao, 2003).

Note that this model is similar to the sample selection model with spatial dependence of 
Flores-Lagunes and Schnier (2012). The difference is that we use the CCE instead of the SEM ap-
proach to capture spatial dependence in the error term. Furthermore, our outcome equation is related 
to and based on earlier studies that consider both common factors and spatial effects (Pesaran and 
Tosetti, 2011; Bai and Li, 2013; Bailey et al., 2016; Yang, 2017). 

3. DESCRIPTION OF REGRESSION VARIABLES

For our analysis of RES curtailment costs, we only consider power plants connected to the 
distribution grid. Furthermore, we restrict our analysis to four DSOs in Germany. In order to con-
duct this analysis, we need energy sector data of high spatial resolution. However, such data are not 
publicly available. Hence, we had to derive the necessary data, such as the RES curtailment costs, 
ourselves.9 Furthermore, we needed to combine several data sources in order to create the explana-

7.  The queen-contiguity matrix guarantees that all regions with a common border are treated as neighbors. Regions with-
out a common border are not treated as neighbors. In contrast the k-nearest neighbor matrix or the fixed or inverse distance 
matrix might treat regions without a common border as neighbors under certain circumstances. In these forms of the spatial 
weights matrix, regions that do not share a common border can still be treated as neighbors. In our context, we believe that 
the queen-contiguity matrix is the most appropriate method. Although the results are relatively insensitive to different weight 
matrices, the underlying structure of W remains the strongest assumption in spatial models (Anselin, 2002).

8.  We do not use a random effects model, since the assumption of zero correlation between the random effects and the 
explanatory variables is very restrictive (Elhorst, 2014).

9.  The data available on RES curtailment measures comprise, among other things, the time and duration of a measure, the 
ID of the affected renewable energy technology, the reduction stage to which the capacity of the renewable power generator is 
reduced, the reason for the curtailment, and the responsible SO.
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tory variables. The following subsections describe how we compiled the dependent and explanatory 
variables.

3.1 Dependent Variable

The calculation of RES curtailment costs in the considered DSO subregions comprises 
three steps: (1) calculating the potential hourly electricity output of renewables during the curtail-
ment measures, (2) computing the reduced power output of renewables stemming from curtailment 
measures, and (3) determining the RES curtailment costs in the DSO subregions.

The first step (1) is to calculate the potential electricity generation of the affected renew-
able energy technology during the time of curtailment. The potential electricity output describes 
the electricity generation of a renewable generator for the case that the SO had not curtailed the 
respective generator. The output of wind turbines and PV systems depends, amongst other things, 
on the installed capacity as well as on the prevalent wind speed and global irradiation, respectively. 
The dataset MERRA 2 provides spatially disaggregated data of the latter two components in an 
hourly resolution.10 A wide range of literature uses MERRA 2 data to calculate the hourly electricity 
output of wind turbines (Andresen et al., 2015; Drew et al., 2015; Sharp et al., 2015; Staffell and 
Green, 2014) and PV systems (Heide et al., 2010; Pfenninger and Staffell, 2016). Knorr (2016) and 
Killinger (2017) provide even more comprehensive calculations of wind energy and PV electricity 
output.

The (potential) hourly electricity output of a wind turbine, WindP , is computed as follows 
(Gonzalez Aparicio et al., 2016):

2 31
= ( ) ( ) ,
2Wind pP r cπ υ ρ υ⋅ ⋅ ⋅ ⋅ ⋅  (4)

where r is the radius of the rotor, pc  is the power coefficient of the wind turbine, which depends on 
the prevalent wind speed, ρ is the air density at standard atmospheric conditions, and υ is the hourly 
wind speed at hub height. The wind speed at hub height is computed by vertically interpolating the 
wind speed from different heights to the hub height of the wind turbine (Engelhorn and Müsgens, 
2018; Gonzalez Aparicio et al., 2016; Schallenberg-Rodriguez, 2013; Kubik et al., 2013). See Eqs. 
(A.1) and (A.2) in the Appendix for details of the interpolation.

The (potential) hourly electricity output of PV systems, PVP , is calculated as follows (Ring-
ler et al., 2016; Huld et al., 2010; Pfenninger and Staffell, 2016):

= ( , ) ,PV Inverter STC rel
STC

G
P P G T corr deg

G
η η ′ ′⋅ ⋅ ⋅ ⋅ ⋅  (5)

where Inverterη  is the inverter efficiency, STCP  is the power under standard test conditions, G is the in-

plane irradiance, and relη  is the instantaneous relative efficiency of the module. =
STC

G
G

G
′  and 

=
STC

T
T

T
′  denote the in-plane irradiance and module temperature, respectively. Both parameters are 

10.  MERRA 2 stands for “Modern Era Retrospective-Analysis for Research and Application” and is provided by NASA. 
The data set comprises hourly and spatially disaggregated data on wind speeds in different heights, diffuse and direct solar 
irradiance, surface incoming shortwave flux, and surface temperature, amongst others (Rienecker et al., 2011). The spatial 
resolution is 0.625° longitude and 0.5° latitude.
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normalized to standard test conditions. corr is a correction parameter to include losses, and deg is 
the degradation of the maximum power output over time.11 The in-plane irradiance G is comprised 
of the direct irradiance Gdir, the diffuse irradiance Gdiff, and the reflected irradiance Grefl. All of these 
components depend on the inclination and orientation (azimuth) of the PV system and on the solar 
altitude angle. We assume that the PV systems have an inclination of 15° and an orientation facing 
south-west (45°) (Egger, 2017). In contrast to wind turbines and PV systems, where the electricity 
generation depends on the current weather condition, hydroelectric and biomass power plants gener-
ate electricity (more or less) independently of the current weather situation. Hence, we assume that 
these renewables operate at full nameplate capacity during the curtailment measure.

Note that the applied procedure overestimates the electricity output of both wind turbines 
and PV systems. This is in line with the existing literature (Yi et al., 2011; Egger, 2017; Engelhorn 
and Müsgens, 2018; Pfenninger and Staffell, 2016). In order to adjust the calculated generation to the 
actual generation, we apply correction factors,12 and verify the calculated yearly electricity genera-
tion of wind energy and PV systems by comparing these with the published figures of ENTSO-E.13 
Figures A.1 and A.2 in the Appendix show the comparison between the calculated and the published 
electricity output of wind turbines and PV systems in Germany for the years 2015-2017.

The second step (2) is to calculate the reduced power output of renewables due to curtail-
ment measures. The reduced output of a curtailment measure is the difference between potential 
(step 1) and realized electricity generation. The realized hourly output of a renewable energy gener-
ator is the reduction stage—60%, 30%, or 0% of the nameplate capacity—multiplied by the capacity 
of the power plant. In principle, renewable energy operators can choose between two possibilities 
to calculate the lost power output due to curtailment measures: the so-called flat-rate procedure 
and the peak-billing procedure (BNetzA, 2014). The former assumes that the affected renewable 
energy technology could have generated the same amount of electricity during the curtailment as 
in the last complete measured quarter-hour before the curtailment. In the latter, the actual possible 
electricity output of the renewable power generator during the curtailment is computed as shown in 
eqs. (4) and (5). We have adopted the peak-billing procedure to calculate the reduced power output 
of renewables.

The third step (3) encompasses the calculation of RES curtailment costs per generator and 
the allocation of these costs to the considered DSO regions. The costs associated with RES curtail-
ment measures are obtained by multiplying the reduced power output by the fixed remuneration tar-
iff of the affected renewable energy technology.14 Subsequently, we aggregate the RES curtailment 
costs per generator per year and allocate the aggregated RES curtailment costs to the DSO subre-
gions. Figure 2 shows the cumulative RES curtailment costs in the DSO subregions between 2015 
and 2017. Table A.2 in the Appendix shows the calculated RES curtailment costs for the four DSOs 

11.  We do not include the degradation of the maximum power output over time in our analysis.
12.  For PV systems, we correct the energy yields directly by comparing the calculated with the actual yearly electricity 

generation, as suggested by Pfenninger and Staffell (2016). In the case of wind turbines, we correct wind speeds instead of 
adjusting energy yields, as proposed by Staffell and Pfenninger (2016). To calculate these wind speed correction factors, we 
follow the suggestions of Engelhorn and Müsgens (2018) and raise the ratio of empirical to calculated electricity generation 
to the power of one-third.

13.  ENTSO-E stands for European Network of Transmission System Operators for Electricity. The data can be down-
loaded at the transparency platform of ENTSO-E: https://transparency.entsoe.eu/

14.  The remuneration of renewables is type-specific and differs depending on the commissioning date and installed ca-
pacity. Of this remuneration tariff, the power plant operator receives 100% if the respective renewable energy generator was 
installed before 2012 or if the compensation payment exceeds 1% of the annual revenues of the generator (BNetzA, 2014). In 
this analysis, we assume that the power plant operator receives 100% of the lost remuneration.
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and compares these with the published RES curtailment costs of the German federal states in which 
the DSOs operate. As can be seen, we underestimate these curtailment costs in the federal states. 
This has several reasons. First, in most cases, one DSO does not cover the total area of the relevant 
federal state. Hence, other DSOs might be responsible for some curtailment measures conducted in 
the respective federal state. Second, we only include curtailment measures of renewables that are 
within the DSO regions. This entails that curtailments of offshore wind turbines are not included. 
Third, using the peak-billing procedure to calculate the lost electricity output generally underes-
timates the curtailment costs, while the flat-rate procedure overestimates them (Ostermann et al., 
2017). Thus, the calculated RES curtailment costs can be regarded as the minimum costs arising due 
to reducing the output of renewables.

Figure 2: �Cumulative RES curtailment costs in the German DSO subregions considered, 
2015–2017

3.2 Explanatory Variables

The primary drivers for an overstress of the electricity grid and, therefore, the main reasons 
for the increasing RES curtailment costs, are the expansion of wind turbines and solar PV systems 
(Agricola et al., 2012). Secondary drivers are the development of bioenergy, hydroelectric, geother-
mal, and conventional power plants, as well as the deployment of storage systems, and the amount 
of load in a region (Agricola et al., 2012). Since we base our analysis on DSO regions and the 
RES curtailment costs conducted on the DSO level, we only include power plants connected to the 
distribution grid. According to the low installed capacities of conventional base-load power plants, 
geothermal power plants and storage systems in the distribution grid of the regions considered, we 
do not include these in our analysis.
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In contrast to the above-explained variables, which contribute to rising grid overstress and 
RES curtailment costs, the regional electricity demand decreases the probability of grid overstress 
(Agricola et al., 2012; Büchner et al., 2014; Ecofys and Fraunhofer IWES, 2017). A reason for this 
is that the capacity of the distribution grid is higher in urban and suburban regions (Agricola et al., 
2012; Büchner et al., 2014; Ecofys and Fraunhofer IWES, 2017). Since no data on regionally disag-
gregated electricity demand with such a high spatial resolution are publicly available, we calculate 
the electricity demand in the subregion based on the recommendations of Robinius (2016) and Hülk 
et al. (2017). Based on their suggestions, we distribute the overall electricity demand in Germany 
to the DSO subregions based on the population and the gross value added (GVA) of the subregions.

Table 1 shows the descriptive statistics for the dependent and explanatory variables. Table 
A.1 in the Appendix depicts the data sources used. Furthermore, Figures A.3, A.4, and A.5 in the 
Appendix show the installed capacity of different types of power plants as well as the electricity 
demand, and the average wind speed per DSO subregion.

Table 1: Descriptive statistics for the dependent variable and the explanatory variables
Variable Unit Year Mean Std. dev. Min Max Total

RES curtailment [€] 2015–2017 286,737 1,385,723 0 23,722,656 763,868,462
Wind energy [MW] 2017 31.4 53.0 0 625 27,887
PV systems [MW] 2017 17.0 20.4 0 216 15,105
Bio energy [MW] 2017 3.5 6.4 0 140 3,118
Hydro energy [MW] 2017 0.4 1.4 0 16 389
Conv. peak-load [MW] 2017 17.0 99.5 0 1,770 15,101
Load [GWh] 2017 146.9 327.3 5.8 7,441 130,480
Wind speed [W/m2] 2015–2017 7.7 0.9 3.4 9.6

Wind energy [GWh] 2017 67.2 159.8 0 1,619 59,715
PV systems [GWh] 2017 14.0 17.0 0 191 12,379
Bio energy [GWh] 2017 18.6 34.8 0 758 16,747
Hydro energy [GWh] 2017 1.6 5.1 0 57 1,419
Conv. peak-load [GWh] 2017 32.7 195.9 0 3,670 29,067

4. STUDY AREA

As a case study for our analysis, we select the four German DSOs Schleswig-Holstein 
Netz AG (SHN), Avacon Netz AG (Avacon), E.DIS Netz AG (Edis), and Bayernwerk Netz GmbH 
(BW). Ecofys and Fraunhofer IWES (2017) defined four different classes of DSOs. In three of these 
classes, RES curtailment measures occurred in the past. The DSOs considered in our study cover 
these three classes. Figure 3 shows the location of the DSOs in Germany. Table A.3 in the Appendix 
provides additional information about the DSO regions.

The first DSO class represents wind-dominated regions in northern Germany, such as the 
federal state of Schleswig-Holstein. The characteristic of this class is a high amount of installed 
wind energy capacity, a low amount of PV systems, and low electricity demand. The occurrence of 
RES curtailment is already very high and will likely rise in the future. The DSO SHN represents this 
first class in our analysis.

The second DSO class comprises low-load regions that are mainly located in eastern Ger-
many, such as the federal state of Brandenburg. In these regions, the installed capacity of wind 
turbines and PV systems is very high. The electricity demand is in the medium range of all German 
federal states. Compared to the first class, the amount of curtailed output of renewables is lower but 
still relatively high. In our study, the DSOs Avacon and Edis are representatives of this DSO class.

PV systems dominate the third DSO class. In contrast, relatively few wind turbines and a 
very high electricity demand are present in this DSO class. RES curtailment occurs rarely and only 
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in a low, but rising amount. The federal state of Bavaria is an example of this DSO class. In our 
analysis, this federal state is represented by the DSO BW.

The last DSO class represents urban and suburban regions with high electricity demand 
and low renewable energy capacities. No RES curtailment occurs in such regions. Hence, we do not 
consider DSOs of this class in our analysis.

To analyze the regional differences within the DSO regions, we perform a spatial division 
of the DSO regions into smaller subregions. We perform this spatial partition by means of the so-
called Voronoi tessellation15 (Egerer et al., 2014; Hülk et al., 2017). The seeds of the Voronoi cells 
are the DSO’s substation at the high-to-medium voltage level. The resulting Voronoi cells are the 
DSO subregions. The Voronoi tessellation constructs the subregions by allocating all points (e.g. 
renewables, conventional power plants, or municipalities) to the subregion with the closest substa-
tion. This procedure considers that the power plants are connected to the closest substation (Egerer 
et al., 2014).We use the resulting DSO subregions as the regional units of our regression models and 
allocate all regression variables to these DSO subregions.

5. RESULTS

The results presented apply for the four German DSOs considered and for the period of 
2015–2017. Furthermore, only RES curtailment measures of power plants connected to the distri-
bution grid are considered.

15.  A Voronoi tesselation is a particular kind of partition of a plane into several regions based on so-called seeds. The 
regions consist of all points closer to that seed than to any other.

Figure 3: Map of Germany and DSO regions considered
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Of the 1,111 considered DSO subregions, 223 regions experienced RES curtailment in 
three consecutive years (2015–2017). None of these subregions is located in the south-western part 
of Germany, where Bayernwerk Netz GmbH operates. Table 2 provides the estimation results for 
the two-step Heckit sample selection model separately for the installed capacity (models 1 and 2) 
and the generated electricity (models 3 and 4) of different power plants present in the subregions. 
Thereby, models 1 and 3 are the selection equations and models 2 and 4 are the outcome equations.

As expected, the results of the probit models indicate that the installed capacity (model 1) 
and the yearly generated electricity (model 3) of all types of renewables—except hydroelectric 
power plants—increased the probability of occurrence of RES curtailment in a DSO subregion. 
In contrast, conventional peak-load power plants did not have any effect on RES curtailment. The 
prevalent load reduced the probability that RES curtailment measures occurred. An increase in the 
installed capacity of wind energy raised the probability of occurrence of RES curtailment in the 
respective DSO subregion by 0.3% per MW.16 Correspondingly, increasing the generated electricity 
of wind energy systems by one GWh raised the likelihood of RES curtailment in a DSO subregion 
by 0.07%. PV systems increased the probability of having to conduct RES curtailment by 0.3% 
per MW and 0.5% per GWh. Similarly, biomass systems raised the need for RES curtailment in a 
DSO subregion by 0.3% per MW and 0.07% per GWh. In contrast, an additional GWh of load in a 
DSO subregion decreased the necessity of RES curtailment by 0.04%.17 These quantitative results 
align with the qualitative findings of Agricola et al. (2012), Büchner et al. (2014), and Ecofys and 
Fraunhofer IWES (2017).

The results of the outcome equations (models 2 and 4) illustrate the marginal RES curtail-
ment cost increase in those DSO subregions that experienced RES curtailment in all years between 
2015 and 2017. Both models capture cross-sectional dependencies between the subregions by in-
troducing spatial lags of the explanatory variables and common correlated effects. Furthermore, the 
two-step Heckit sample selection method accounts for bias from non-randomly selected samples. 
The corresponding results of models (2) and (4) show that only wind turbines have a significant 
effect on RES curtailment costs (at the 1% significance level). Moreover, the results of the models 
depict that wind energy systems affect only those DSO subregions in which they are located and not 
on neighboring DSO subregions. An additional MW capacity of wind energy increases the yearly 
RES curtailment costs by 0.7% in the respective DSO subregion. Increasing the generated electricity 
by one GWh raises the RES curtailment costs by 0.2% in the DSO subregion. In the least affected 
subregions—i.e. the lowest quartile of all subregions that experience RES curtailment between 2015 
and 2017—this is associated with costs of 18 €/MW per year. The cost per generated unit of electric-
ity in the least affected subregions amounts to 0.005 €/MWh in the respective subregion. Whereas 
these costs are almost negligible, the costs in the most affected subregions (i.e. the highest quartile) 
rise to 28,277 €/MW per year. In other words, in the examined period between 2015 and 2017, the 
yearly RES curtailment costs in the affected subregion induced by an additional MW of capacity of 
wind energy amount to approximately 1.8% of the average overall costs of wind energy systems in 
Germany.18 Furthermore, the RES curtailment costs increase by 8.10 €/MWh in the most affected 
subregions. The average remuneration for onshore wind turbines in Germany between 2015 and 

16.  The probability of occurrence refers to the DSO subregions. The average capacity of wind energy in the subregions 
is 31.4 MW.

17.  The average load in a DSO subregion is 146.9 GWh.
18.  The most frequently installed wind turbine in Germany has a capacity of 3–4 MW and a hub height of 120–140 m 

(Deutsche WindGuard, 2015). The associated overall costs—including investment, planning, development, grid connection, 
and foundation costs—of these wind turbines amount to 1,567,000 /MW (Deutsche WindGuard, 2015).
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2017 amounts to 84–91 €/MWh19 (BDEW, 2017). Hence, the direct RES curtailment costs equal 
approximately 9.2% of the remuneration tariff. Table 3 depicts the cost increase of an additional 

19.  The remuneration tariff for onshore wind turbines in 2015, 2016, and 2017 amounts to 90 €/MWh, 91 €/MWh, and 
84 €/MWh, respectively (BDEW, 2017).

Table 2: Regression results
Installed capacity [MW] Generated electricity [GWh]

Selection eq.a Output eq. Selection eq.a Output eq.
(1) (2) (3) (4)

Wind energy 0.003*** 0.007*** 0.0007*** 0.002***
(0.004) (0.002) (0.0002) (0.001)

PV systems 0.003*** 0.004 0.005*** 0.002
(0.002) (0.005) (0.002) (0.007)

Bio energy 0.003** –0.003 0.0007*** –0.001
(0.005) (0.009) (0.0008) (0.002)

Hydro energy 0.004 –0.035 0.002 –0.229
(0.032) (1.340) (0.008) (0.367)

Conv. peak-load 0.0001 –0.001 0.000 –0.001
(0.0003) (0.001) (0.0002) (0.001)

Spatial Lag Wind energy –0.0002 0.001
(0.002) (0.001)

Spatial Lag PV systems 0.003 0.010
(0.008) (0.010)

Spatial Lag Bio energy 0.007 0.002
(0.009) (0.002)

Spatial Lag Hydro energy –1.351 –0.386
(2.007) (0.551)

Spatial Lag Conv. peak-load –0.001 –0.001
(0.002) (0.001)

Loadb –0.0004*** –0.0004***
(0.0003) (0.0003)

Wind speedc 0.085*** 0.609* 0.063*** –0.797*
(0.087) (0.344) (0.069) (0.410)

BW dummy –0.044 –0.130***
(0.114) (0.112)

Edis dummy 0.249*** 0.350 0.270*** –0.020
(0.079) (0.460) (0.081) (0.525)

SHN dummy 0.269*** 1.351*** 0.263*** 1.333***
(0.102) (0.391) (0.085) (0.427)

dummy 0.024 0.032
(0.087) (0.079)

dummy 0.043** 0.054***
(0.078) (0.073)

IMR –2.843*** –3.272***
(0.547) (0.638)

Constant –3.754*** –2.822***
(0.656) (0.567)

Observations 2,664 642 2,664 642
(Pseudo-)R2 0.309 0.482 0.273 0.489
Adjusted R2 0.469 0.476
Log Likelihood –1,181.963 –1,243.583
Akaike Inf. Crit. 2,389.876 2,513.166
F Statistic 41.580*** 47.741***

(df=14;625) (df=14;625)
Sensitivity 0.897 0.877
Specificity 0.605 0.596

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
a Marginal effects are provided for all variables; for the constant, the coefficient is given.  b In GWh.  c In m/s.
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MW of installed capacity and an additional GWh of generated electricity in the DSO subregions for 
the four quartiles.

Table 3: Marginal costs of renewables per quartile
Variables Unit 1st Q. 2nd Q. 3rd Q. 4th Q.

Wind energy [€/MW] 18 302 2,939 28,277
Wind energy [€/MWh] 0.005 0.10 0.80 8.10

The costs only apply for regions that experienced RES curtailment in the three consecutive 
years from 2015–2017.

6. CONCLUSIONS

In this paper, we analyze the negative effects of introducing renewables into an inflexible 
electricity system. More specifically, we investigate the grid-related costs of temporarily reducing 
the output of renewables in order to prevent the overstress of the electricity infrastructure—the so-
called RES curtailment costs. The paper aims to quantify the regionally varying impact of different 
renewable energy technologies on RES curtailment costs in Germany. To this end, we partition the 
regions of four German DSOs into smaller subregions based on the transformer stations on the high-
to-medium voltage level. Subsequently, we allocate all power plants and the electricity demand to 
these DSO subregions.

In order to derive the regionally varying impacts of renewables on RES curtailment, we 
apply a spatial econometric model. More specifically, we use a two-step Heckit sample selection 
model that corrects bias from non-randomly selected samples. The first part of the model is the 
selection equation and is based on a probit estimator. The corresponding binary dependent variable 
is zero if no RES curtailment occurred in the respective DSO subregion in 2015–2017 and unity 
otherwise. The second part is the outcome equation. This part captures cross-sectional dependencies 
by introducing spatial lags of the explanatory variables and correlated common effects (CCE). The 
dependent variable is the yearly RES curtailment cost in the considered DSO subregion. Whereas 
the first part considers all DSO subregions, the second part only considers those subregions that 
experienced RES curtailment between 2015 and 2017. We apply the two-step Heckit sample selec-
tion model once for the installed capacity of the power plants (in MW) and once for the generated 
electricity (in GWh).

The results of the probit model show that all renewable energy technologies, except hy-
droelectric power plants, have a significant impact on the occurrence of RES curtailment in a DSO 
region. By contrast, additional load in the DSO subregions decreases the need for RES curtailment 
measures. Both outcome equations show that only wind energy systems significantly increase RES 
curtailment costs in the respective DSO subregion. An additional MW of capacity of wind energy 
raises the yearly RES curtailment costs by 0.7%. This amounts to costs in the most affected subre-
gions (i.e. the highest quartile) of up to approximately 28,250 €/MW. An additional GWh of gen-
erated electricity by wind turbines increases RES curtailment costs by 0.2% in the respective DSO 
subregion. This accounts for 8.10 €/MWh. The quantitative results of our analysis are perfectly in 
line with the qualitative findings of Agricola et al. (2012), Büchner et al. (2014), and Ecofys and 
Fraunhofer IWES (2017), and with the report of BNetzA (2017c). An important extension of our 
study, compared to the above-mentioned studies, is that we can actually quantify the effect of renew-
ables on regional RES curtailment costs.
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The political implication of our study is that the German legislation should incentivize 
a welfare-enhancing deployment of renewables. A welfare-enhancing deployment implies that all 
costs associated with the electricity generation and transmission are internalized. Regionally dif-
fering price signals might be such a policy regime contributing to achieving a welfare-enhancing 
deployment of renewables. Such locational price signals would target grid-related costs caused by 
congestions in the transmission and distribution grid. Possible political instruments related to our 
findings are grid connection charges and grid usage charges (Eicke et al., 2019). The former com-
prise single payments to the SO for connecting the power plant. These payments are levied per unit 
of installed capacity. The latter are fees for using the transmission and distribution grid. Such fees 
are charged per unit of generated electricity. Different mechanisms, which are not applied in Ger-
many but in other countries, are locational marginal pricing and market splitting (Eicke et al., 2019). 
Both instruments consider the available transmission capacity between the different zones or nodes, 
respectively. Alternatively, legislation could allow SOs to restrict the installation of wind turbines in 
certain regions. This would improve the market power of SOs and enable bargaining between SOs 
and wind turbine operators. A further possibility would be to incentivize the installation of flexibility 
options, such as, for example, energy storage systems, electric vehicles, or power-to-heat and pow-
er-to-gas applications in regions with a high amount of RES curtailment.

In the past, the German legislator has introduced several mechanisms to incentivize a fur-
ther regional distribution of renewables (BMWi, 2017; BNetzA, 2017b; BMWi, 2019). The first 
mechanism, which was introduced in 2000, addresses the siting of wind turbines (EEG 2000, Art. 7). 
This mechanism penalizes locations with high wind speed and gives extra support to locations with 
low wind speed—the so-called Reference Yield Model. However, this mechanism does not explicitly 
consider grid constraints and has not prevented the accumulation of wind turbines in northern and 
eastern Germany so far. The second mechanism, which was introduced in 2018, penalizes renew-
ables that are connected to the distribution grid and are located in regions where renewable energy 
infeed exceeds demand—the so-called Distribution System Component (GemAV 2018, Art. 10). 
However, the considered regions refer to administrative instead of grid-related regions. This might 
lead to penalizing regions without grid overstress. Finally, the German legislator defined a so-called 
Network Development Area. This mechanism is a quantity cap for wind energy systems for the 
most grid-constrained regions in Germany (EEG 2017, Art. 36c). The Network Development Area 
covers the complete northern part of Germany. Thus, it does not distinguish between regions with 
and without RES curtailment. So far, these mechanisms have not significantly reduced the need for 
RES curtailment. A regionally varying price signal for renewables that incorporates grid overstress 
and that defines the regions based on grid-related characteristics might mitigate the need for RES 
curtailment measures.

Future studies would benefit from more detailed and publicly available data on RES cur-
tailment costs, the grid infrastructure, and on characteristics of renewables, such as e.g. the rotor 
diameter and hub height of wind turbines. Furthermore, having information on the capacity, loca-
tion, and age of the substations and cables would enhance the model results. Further developments 
in open and free-of-charge data platforms might mitigate this problem in the future.

Future research could apply similar econometric methodologies to analyze grid-related in-
tegration costs in different countries worldwide. This would enable a comparison of different policy 
regimes and their ability to reduce grid-related integration costs. Furthermore, an investigation of 
RES curtailment costs in Germany for the following years would reveal the effect of the recently 
introduced measures.
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APPENDIX

Interpolation of wind speeds between different hub heights

10= ( )
10

S
hub

z
V V  (A.1)

50 10( ) ( )
=

(50) (10)

ln V ln V
S

ln ln

−
−

 (A.2)

where hubV  is the wind speed at hub height, 10V  and 50V  are the wind speeds at 10 m and 50 m, respec-
tively, z is the wind turbine hub height, and S is the shear coefficient, which measures the vertical 
change in wind speeds.

Table A.1: Data sources and content
Source Content Download

Renewable power plant recorda Installed capacity, voltage level, type, and 
postcode of the renewable generator 

www.netztransparenz.de

Open Power System Data Location of the renewable generator www.open-power-system-data.org
Engelhorn and Müsgens (2018) Hub height, rotor diameter, turbine model, and 

power curves of wind turbines
MERRA 2b Hourly wind speed at 10 m and 50 m. Diffuse 

and direct irradiance, and surface incoming 
shortwave flux 

https://gmao.gsfc.nasa.gov

List of remuneration tariffs Remuneration for different renewable energy 
technologies based on commissioning year and 
capacities 

www.netztransparenz.de

Power plant recordc Installed capacity, voltage level, type, and 
postcode of power plant 

www.bundesnetzagentur.de

Open Street Map Boundary map of German municipalities https://wambachers-osm.website
destatisd Population on LAU level (municipality level) in 

Germany 
www.regionalstatistik.de

Statistics Authoritiese Gross value added on NUTS 3 level 
(administrative district level) in Germany 

www.statistik-bw.de/VGRdL/

a Published by the German Transmission System Operators (TSOs) and the German Federal Network Agency.
b �Modern-Era Retrospective-Analysis for Research and Applications provided by NASA. Spatial resolution of 0.625° longi-

tude and 0.5° latitude. 
c Published by the German Federal Network Agency. 
d Municipality Directory of the German Federal Office of Statistics (destatis). 
e Statistics Authorities of the German federal states. Dataset “National Accounts of the Federal States, 2016”.
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Figure A.1: �Hourly wind electricity generation in Germany provided by ENTSO-E vs. model 
outcome, 2015–2017
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Figure A.2: �Hourly PV electricity generation in Germany provided by ENTSO-E vs. model 
outcome, 2015–2017
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Figure A.3: �Average installed capacity of different power plants in the DSO subregions, 
2015–2017

�
(a) Wind power                                                       (b) Solar power

�
(c) Biomass power plants                                       (d) Hydroelectric power plants

(continued)
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Figure A.3: �Average installed capacity of different power plants in the DSO subregions, 
2015–2017 (continued)

�
(e) Conventional peak-load power plants            (f) Conventional base-load power plants

Figure A.4: �Average electricity demand in the 
DSO subregions, 2015–2017

Figure A.5: �Average wind speed in the DSO 
subregions, 2015–2017
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Table A.2: Comparison of calculated and published RES curtailment costs
DSOa  Federal States (FS)b  Area covered [%]c  Year  DSO costs [€]d  FS costs [€]e  Share [%]f 

Avacon  LS, SA, Hesse  59.7  2015  6,541,760  57,908,856  11.3 
   2016  5,718,869  31,223,962  18.3
   2017  37,465,927  180,712,239  20.7

BW  Bavaria  57.8  2015  41,105  333,345  12.3
   2016  58,891  292,782  20.1
   2017  232,192  585,290  39.7

Edis  Brandenburg, MW  71.7  2015  45,574,389  96,229,679  47.4
   2016  26,910,325  63,901,645  42.1
   2017  26,910,325  62,274,651  43.2

SHN  SH  99.4  2015  265,360,723  312,942,279  84.8 
   2016  126,665,577  273,012,271  46.4
   2017  200,474,705  351,246,341  57.1

Overall    2015  317,517,978  467,414,159  68.0
   2016  181,267,336  368,430,660  43.3
   2017  265,083,149  594,818,522  44.6

a Avacon = Avacon Netz AG, BW = Bayernwerk Netz GmbH, Edis = E.DIS Netz AG, SHN = Schleswig-Holstein Netz AG. 
b �Federal states in which the respective DSO operates. Note: LS = Lower Saxony, SA = Saxony-Anhalt, MWP = Mecklen-

burg-Western Pomerania, and SH = Schleswig-Holstein 
c Share of federal state area covered by respective DSO. 
d RES curtailment costs in the respective DSO region as calculated in this study. 
e �RES curtailment costs in the respective German federal states as published by the German Federal Network Agency 

(BNetzA, 2017d, 2018b).
f Share of calculated to published RES curtailment costs.

Table A.3: Characteristics of the considered DSO subregions
Parameter  Unit  Avacona  BWa  Edisa  SHNa 

Population  [-]  1,947,418  4,706,253  2,047,377  1,341,030 
Area of DSO region  [km2]  57,511.4  40,812  35,519  13,457 
Length of electric cables, LV  [km]  34,696.3  99,079  46,957  31,167
Length of electric cables, MV  [km]  17,508.5  46,196  26,613  17,425
Length of electric cables, HV  [km]  12,327,6  9,046  5,515  2,948
Installed capacity (transformer level), MV/LV  [MVA]  11,076.8  12,707  6,560,580  3,727
Installed capacity (transformer level), HV/MV  [MVA]  5,063.7  21,338  9,071,900  10,218

Note: LV, MV and HV stand for low-voltage, medium-voltage, and high-voltage level, respectively.
a Avacon = Avacon Netz AG, BW = Bayernwerk Netz GmbH, Edis = E.DIS Netz AG, SHN = Schleswig-Holstein Netz AG.




