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abstract

Heterogeneity is a theme acquiring more and more prominence in the energy eco-
nomic literature from both a modelling and policy-making perspective. We show 
that useful empirical evidence on this subject can be obtained by applying a par-
simonious multivariate cointegration analysis that makes use of the increasingly 
available time series data on energy demand. We find that there is substantial het-
erogeneity in the demand for fuels from UK firms belonging to different subsec-
tors, with price and level of production having different degrees of importance in 
the fuel choice, and with evidence of both substitutability and complementarity 
between fuels. Moreover, we show that fuel demand for the industrial sector as a 
whole is considerably more elastic than most estimates presented in the literature, 
finding which has direct relevance for policies aimed at influencing industrial fuel 
consumption through fuel switching.
Keywords: Fuel demand, Energy demand, Elasticities, Industrial subsectors, 
Industrial sector, Cointegration, Heterogeneity

https://doi.org/10.5547/01956574.41.6.pagn

1. INTRODUCTION

A considerable amount of energy is used by the industrial sector across the world, yet 
econometric studies of industrial energy demand are surprisingly scarce, as argued in Bernstein and 
Madlener (2015). Following Pesaran et al. (1998), who advocated estimation of energy demand 
functions on a set of consumers that is as homogeneous as possible, the aim of this paper is to ex-
plore the possible advantages of adopting a cointegration estimation approach at a disaggregated 
level by making use of a standard dataset, collected by most national offices for statistics across the 
world (Eurostat, 2018). 

We implement an approach introduced by Pesaran et al (1998) for a number of Asian 
countries using an annual dataset spanning 17 years, and, as far as we are aware, not implemented 
in the literature ever since, although a similar approach has been adopted in Møller (2017) discussed 
below. Our approach estimates fuel demand by taking advantage of the dynamic specifications typ-
ical of cointegration studies and the system-wide approaches, which are typical of studies based on 
the translog function. It implies modelling the demand for different fuels as shares in a cointegrat-
ing VAR system with as many cointegrating vectors as the number of fuels being modelled, each 
representing the long-run demand for a specific fuel. Our approach presents a number of important 
advantages and can be implemented by using standard software packages and readily available data-
sets. Firstly, a system approach enables us to model the simultaneous determination of demand for 
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different fossil fuels within a consistent framework. Secondly, a VAR setting allows us to exploit the 
cross-equation restrictions implied by the VECM representation, which offer a useful means to re-
duce the number of parameters to estimate. Finally, additional gains in terms of degrees of freedom 
are ensured by the fact that we model shares rather than fuel intensities (like in Møller, 2017). This 
enables us to drop one demand equation from the system as fuel shares sum up to one.

We implement this methodological innovation for a number of UK industrial subsectors 
using data for the time period between 1990 and 2014. Fuel consumption in the industrial sector as 
a whole has received considerable attention in the literature, as testified in the reviews mentioned 
below, but estimation at the subsectorial level is surprisingly scarce. Bernstein and Madlener (2015) 
is the first study that makes use of subsectorial industrial data to estimate electricity demand elastic-
ities in a cointegrating framework. This study progresses that line of enquiry by estimating demand 
for multiple fuels simultaneously, rather than for electricity on its own. By delivering this method-
ological innovation at a level of disaggregation largely unexplored in the literature, we are aiming 
to cast light on the existing lack of agreement on the magnitude of the elasticities associated with 
demand for energy fuels. 

In addition, estimating the long-run equilibrium relationship between energy consumption 
and its main determinants enables us to investigate a number of key questions related to: 1) the dy-
namic impact of price changes and the presence of scale effects on the demand for energy fuels; and 
2) the level of heterogeneity across industrial subsectors which are normally aggregated in typical 
empirical studies.1 Our main result, the emergence of substantial differences in the systematic be-
haviour of firms across subsectors, provides a note of caution to authors imposing homogeneity in 
the fuel demands across subsectors, those estimating fuel share elasticities for the industrial sector 
as a whole or focusing on energy consumption rather than fuel consumption. In addition, we find 
that price elasticities in the UK industrial sector are larger than many previous estimates in the lit-
erature, and we confirm that gas consumption is more sensitive to price variations than electricity 
consumption.

These conclusions are important not only from a modelling perspective, in a way which we 
would expect to be replicated for other countries, but also for policy-making purposes. As a matter 
of fact, the elasticities we present in this paper represent key information for policies that rely on 
price signals, e.g. the EU ETS and British policies such as the Climate Change Levy and the Carbon 
Reduction Commitment2, to achieve fuel substitution in a way which helps steering the economy 
towards decarbonisation. Such considerations arise as a direct consequence of our work with policy 
makers, given that the initial motivation for the analysis reported in this paper was the development 
of the new industrial energy demand model currently adopted by the UK government Department 
of Business, Energy and Industrial Strategy (BEIS), as part of their wider Energy Demand Model.

The structure of the paper is as follows. In Section 2 we discuss the existing literature and 
assess its main conclusions. After describing our methodological approach in Section 3, we discuss 
the data in Section 4, and in Section 5 we present our results in relation to unit root tests, cointe-
gration analysis and estimation of fuel demand equations. Our findings are discussed in Section 6, 
while Section 7 offers concluding remarks.

1.  Other approaches to produce estimates of long-run elasticities such as the Between Estimator recently advocated in 
Stern (2012) have the disadvantage of requiring panel datasets without being able to allow for coefficients to vary across units 
of analysis, in our case the industrial subsectors.

2.  The aim of the CRC Scheme is to increase energy efficiency and cut emissions in large energy users in the UK’s public 
and private sectors by mandating participants to purchase and surrender allowances for their emissions. This generates a di-
rect incentive to substitute away from CO2-intensive fuels. In the case of the CCL, the substitution effects are less clear due to 
the fact that tax rate is not explicitly based on carbon content.



Fuel Demand across UK Industrial Subsectors / 67

Open Access Article

2. LITERATURE REVIEW

Demand for fossil fuels has been a topic of interest in energy economics for considerable 
time, with perhaps the policy motivations shifting from concerns about energy security and there-
fore substitution away from oil, to climate change and therefore substitution away from CO2 inten-
sive fuels (Bardazzi et al. a 2016; Stern 2012; Åhman et al. 2016). Reflecting the policy relevance 
of this topic, the literature is large, with several published reviews which have surveyed the state of 
the work at different points in time - Bohi (1981), Bohi and Zimmerman (1984), Dahl (1993), Dahl 
(2011), Espey and Espey (2004), Stern (2012), Taylor (1975) and Taylor (1977).3 There is, however, 
little consensus about the exact magnitude of the elasticities for the demand of energy fuels (Bhat-
tacharya, 1996). As an example, the interquartile range of long-run price elasticities for electricity 
in the studies surveyed by in Dahl (2011) covers values from –0.82 to –0.10. Heterogeneity of con-
sumers modelled in applied studies, consequent aggregation bias and adopted methodologies are all 
factors which are recognized to have an impact on estimated elasticities. These are discussed in turn 
in the remainder of this section.

The topic of heterogeneity has gained importance in energy economics, as testified by 
several contributions taking into account the impact of this factor, for example when modelling 
energy efficiency (Burnett and Madariaga, 2018), and the rebound effect (Frondel et al., 2012). As 
for estimation of energy demand, researchers have either adopted an econometric approach allowing 
for heterogeneity, e.g. through heterogeneous panel (Agnolucci, 2009) and shrinkage estimators 
(Andersen et al., 2011), or assumed a specific multilevel structure (Sharimakin et al., 2018).4 Using 
microdata is becoming a popular choice in the energy literature in order to account for heterogeneity, 
although the extent to which this is an effective strategy depends on the size of the sample in the sur-
vey. Traditional longitudinal data surveys might be helpful in dealing with heterogeneity, but only 
when a considerable number of annual observations are collected so that one is not confined to using 
traditional homogenous estimators. On the other hand, the growing availability of high-frequency 
datasets opens the possibility of adopting data-intensive approaches, such as machine-learning ap-
proaches (Barassi and Zhao, 2018), directly quantifying the heterogeneity across economic actors 
and econometric model structures.

Aggregation of parameters over micro units, which is related to heterogeneity within the 
sample is a widely explored topic in econometrics (Lee et al., 1990).5 The existence and the impor-
tance of the “aggregation bias”, defined as the deviation of the macro parameters from the average of 
the corresponding micro parameters, depend on a number of factors such as the type of aggregation, 
the functional relationship, and the extent and type of heterogeneity (Blundell and Stoker, 2005).6 
Whether or not aggregation bias is a problem is ultimately an empirical question, as the impact of 
aggregation can vary across parameters of a specific model.7 In the energy field, it is generally ac-

3.  Considering the large number of studies and the fact that this branch of the literature has been reviewed extensively 
we do not review specific interfuel substitution studies in this section but we aim to place our study within the literature by 
discussing three topics which have been identified as having a great impact on the estimates found in the literature. 

4.  Application of either approach, however, is not free from its own complications. In the case of heterogeneous panels, 
for example, one requires time series for each cross-section to be of adequate length as otherwise estimates tend to be heavily 
influenced by outliers in the sample (Baltagi and Griffin, 1997).

5.  It is important to stress that this aggregation issue is different from the one pointed out in Cleveland et al (2000) which 
refers to aggregation of fuel to compute energy demand. 

6.  Halvorsen and Larsen (2013) conclude that unless the assumptions behind perfect linear aggregation are fulfilled, ag-
gregation bias is likely when inferring aggregate market demand in the presence of heterogeneous consumers.

7.  As an example, aggregation bias was higher than 30% in the case of one parameter in the investment function estimated 
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cepted that own price elasticities are smaller (in absolute value) and income elasticities larger when 
using aggregate data (Bohi, 1981 and Bohi and Zimmermann, 1984). Stern (2012) confirms that 
the magnitude of elasticities of substitution of energy as a production input tends to decrease with 
increasing levels of data aggregation.

The impact of adopted methodologies on estimated elasticities is also widely acknowledged 
in the literature. In the case of elasticities of substitution, estimates from cross‐sectional regressions 
are generally largest, those from time‐series smallest and those from fixed effects panel models lie 
somewhere in the middle (Stern, 2012). Studies adopting a single equation approach when model-
ling the demand for a specific fuel normally estimate cross-price elasticities by inserting the price of 
at least one alternative fuel in the equation. Some arbitrariness is intrinsically part of this approach, 
especially with regard to the choice of the additional fuel price. Comparison is complicated by the 
fact that different additional fuels are chosen in different studies for different countries. In Andersen 
et al. (2011), the prices of all other fuels are taken into account when modelling demand for gas in 
the industrial sector, while in several other instances no price of any other fuel is used. This assumes 
no substitution or complementarity across fuels, an assumption in evident contrast with the rationale 
of policies introduced to steer substitution across fuels. If not satisfied, this assumption is likely to 
cause a bias in the estimated coefficients bearing in mind the correlation between price of different 
fuels. As an example of this approach see Bernstein and Madlener (2015), Bjørner, Togeby and 
Jensen (2001) and Dilaver and Hunt (2011), when studying electricity consumption in Germany, 
Denmark, Korea and Turkey respectively.

System approaches have the advantage of incorporating all relevant fuels in the estimated 
model. Traditionally, they have been implemented through locally flexible functional forms, with 
the translog specification introduced by Christensen et al. (1971) being the workhorse in energy eco-
nomics. Some recent applications include Bardazzi et al. (2016), Bjørner and Jensen (2002), Enev-
oldsen et al. (2007), Renou-Maissant (1999) and Serletis et al. (2010b). Other locally flexible func-
tions used in the literature include the Normalised Quadratic cost function (Serletis et al., 2010a), 
the linear logit model introduced by Considine and Mount (1984) and applied in Steinbuks (2012) 
and Bjørner and Jensen (2002). Models based on global flexible functional forms, such as the Fou-
rier and the Asymptotically Ideal Model (AIM) in Serletis and Shahmoradi (2008), have also been 
implemented. In several cases, for example Taheri and Stevenson (2002), industrial subsectors are 
used as units of a panel dataset, therefore imposing slope homogeneity across industrial subsectors, 
rather than exploring heterogeneity. Within a system approach, a few recent studies have employed 
cointegration analysis. Bernstein and Madlener (2015) estimated demand for electricity in 5 indus-
trial subsectors in Germany by using a cointegrating VARs on the period 1970–2007. Agnolucci et 
al. (2017) modelled the total energy demand for the 8 UK industrial subsectors, demonstrating that 
theoretically plausible results can be obtained from a dataset starting in 1990. Møller (2017), which 
is probably the contribution closest to our research, estimated a set of cointegrating VARs to analyse 
the dynamics of two fuel intensities (that is electricity and all the other fuels divided by economic 
activity) in 8 industrial subsectors.

The lack of agreement on the size of estimated elasticities related to the industrial sector is 
also influenced by changing industrial structure. If substitution possibilities vary across firms, as it 
seems plausible, studies conducted at the aggregate industrial sector level will estimate, in absence 
of any aggregation bias, the average of firms’ elasticities. Consequently, inter-country comparison 

in Sasaki (1977), but higher than 100% in the case of another parameter. Similarly, Blundell et al. (1993) find significant 
aggregation bias in the case of income elasticities but no evidence for the price elasticities related to the demand for six food 
groups.
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at the industrial level becomes problematic, as it is influenced by the composition of the industrial 
sector. In addition, as the composition of the industrial sector in any given country changes across 
time, even elasticities for the industrial sector of a specific country are prone to show instability 
across time. These arguments show the importance of estimating demand elasticities at the most 
disaggregate level for which data are available. In our study, we do so for industrial subsectors in 
the UK, by adopting an innovative system methodology which consistently takes into account cross-
price elasticities while estimating long-run equilibrium relationship.

3. METHODOLOGICAL APPROACH

Our study starts with the implementation of unit root testing based on ADF and the Zivot 
and Andrews (ZA) (1992) tests, with the latter allowing for one break in the deterministic compo-
nents at an unknown point in time. We selected the number of lags in the testing equations based on 
the modified Akaike information criterion of Ng and Perron (2001), as it is robust to the presence 
of negative MA components in the error term, and chose the deterministic terms by assessing the 
Akaike and the Bayesian information criteria in models that include an intercept only or an inter-
cept and a linear trend. Estimation of fuel demand is implemented through a Vector Autoregression 
(VAR) to model a system that describes the dynamics of fuel shares, prices and energy consumption. 
Indicating with n the number of different fuels and with d the fuel that is dropped from estimation 
and used as numeraire, our starting point is the long-term static relationship between fuel share and 
its determinants at time t

1
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sumption. The term φi is an intercept, PJt the price of fuel j and Pdt the price of fuel d used as 
numeraire, t a deterministic time trend and εit is an error term representing deviations from the 
equilibrium. This specification is similar to the one derived from a translog cost function, with the 
difference that we focus on the fuel share rather than the cost share, and we introduce the level of en-
ergy consumption to capture the scale effect, as in Pesaran et al. (1998). We include a deterministic 
time trend as a proxy for changes in the preferences for a specific fuel, technological innovation, or 
any other factor influencing the fuel shares independently of relative prices and energy consump-
tion. Choosing the logit transformation of fuel shares as dependent variable offers two advantages. 
First, under the assumption of an isoelastic functional form this transformation allows to estimate 
coefficients in each share equation that can be interpreted as elasticities of fuel consumption with 
respect to the independent variable.8 Second, the estimated system can readily be employed to gen-
erate forecasts, as done in BEIS (2017), since the resulting fuel shares are by construction bounded 
between zero and one.

Static formulations of fuel demands have several limitations as they ignore the dynamics of 
the adjustment process in inter-fuel substitution, which in particular is related to the costs of switch-
ing between fuels and the necessary modifications in the energy-consuming stock. We tackle this by 
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inserting the static model in a framework describing the dynamics towards the equilibrium, which 
is essentially the approach followed by Pesaran et al. (1998), who embed an interfuel substitution 
system similar to (1) in a cointegrating VAR. By doing so we can rigorously identify the long-run 
equilibrium demand for fuel via the Johansen procedure to estimate cointegrating vectors. While a 
time series approach has the clear advantage of offering a richer picture of the dynamics of firms’ 
behaviour, allowing to distinguish short and long run responses to shocks, there is obviously a price 
to pay in terms of degrees of freedom, compared to a panel data model of the industrial sector, if 
elasticities are similar across subsectors.

Our fuel share demand model can be succinctly written in its VECM representation as
1

0 1
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− −
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where xt is the vector of endogenous variables in the system, α is the m × k matrix of adjustment 
coefficients, β is the m × k matrix of cointegrating vectors, both having as many rows as the number 
of endogenous variables in the system and as many columns as the number of cointegrating relation-
ships, Φ0 is a m × 1 vector of deterministic terms, p is the order of the corresponding VAR in levels, 
and ut is a m × 1 vector of zero mean error terms. We stress, in particular, that such VAR framework 
provides a useful means to save an appreciable amount of degrees of freedom, given that we can 
exploit the cross-equation restrictions implied by the VECM structure. As an example, in those 
cases where we have a system of 5 equations (2 fuel shares, 2 relative prices and energy consump-
tion), with 2 cointegrating vectors, each containing 3 variables, we benefit from 6x4 = 24 overall 
cross-equation restrictions, that corresponds to almost 5 degrees of freedom saved for each equation.

Selection and estimation of the model specification are implemented in two steps. In the 
first step, we look for evidence of long-run relationships by testing for cointegration using the trace 
and the maximum eigenvalue tests of Johansen (1991). As to the deterministic terms in the cointe-
grating vector, we estimate both a model with an intercept only and one with a restricted trend, 
following Johansen (1992), as we have no strong reason to prefer one specification to the other. We 
select one lag only in our VECMs given the limited size of the available sample, but also because 
this choice turns out to be enough to remove any residual autocorrelation.

After establishing the evidence for two cointegrating relationships, in the second step we 
start by estimating models that are as general as possible, with two cointegrating vectors including 
fuel shares, relative fuel prices and energy consumption, and allowing for substitution to happen 
through cross-price elasticities and adjustment coefficients, i.e. a fuel share adjusting to the disequi-
librium in the demand for the other fuel as well as to disequilibrium in its own demand. In deter-
mining the final specification, we impose only one assumption on the long-run relationship, that is a 
negative own-price elasticity in conformity with standard economic theory, but we leave cross-price 
elasticities unrestricted as different signs might reflect complementarities as well as substitutability 
between fuels. As a consequence, if own-price elasticity is positive we simplify the model by impos-
ing a zero coefficient on the level of energy consumption within the cointegrating relationship and, 
in case the sign issue persists, also on the price of the fuel. After estimating by Maximum Likelihood 
the VECMs including the cointegrating vectors, we implement likelihood ratio tests to assess the 
statistical significance of the variables in the right-hand-side of the fuel share demand equation, their 
weak exogeneity, and the evidence for equality of cross-price elasticities in the two cointegrating 
vectors, a restriction that is incorporated in the final model if accepted. We augment the model with 
pulse dummies when substantial isolated outliers remain in the residuals, and study the residuals of 



Fuel Demand across UK Industrial Subsectors / 71

Open Access Article

the estimated VECMs to verify the absence of serial correlation, heteroscedasticity and deviations 
from the normality assumption.

4. DATA

Our dataset includes four sets of fuel prices and fuel consumptions, observed at an annual 
frequency between 1990 and 2014 for the eight industrial subsectors in the UK, which are listed 
in Table A1 of the Supplementary Information. It is worth clarifying that fuel consumption data 
include fuels purchased by the firms for their own consumption so that, as example, electricity 
auto-generated by the firms is not included as no electricity is purchased on the energy market. 
The level of energy consumption, which is computed as the sum of fuel consumption from data in 
BEIS (2016a), takes into account fuels used for the production of heat. Fuel prices were obtained by 
converting prices indices from BEIS (2016b), which incorporate all relevant taxes, into price levels 
by using information on the 2000 average fuel price. We then added the price of the EU ETS allow-
ances based on the carbon intensity of oil, coal and natural gas, and the share of each sector covered 
by the EU ETS to compute a time series for each fuel price.

In all eight subsectors, there tends to be a fuel share that has been very small in size and 
rather constant across time, as shown in Figure A1 in the Supplemental Information .9 We decide to 
exclude such fuel share from the model since its inclusion does not add information that is relevant 
to fuel substitution and may instead bias estimation. As a consequence, coal was dropped in the 
majority of the subsectors, namely CHE, ENV, FBT, PPP and TEX, while oil was dropped in MIN, 
NFM and OTH. A key to the acronyms of the industrial subsectors modelled in this study can be 
found in Table A1 of the Supplementary Information. Levels of consumption of the four fuels in the 
subsectors modelled in this study and the resulting total energy consumption can be seen in Figure 
A1 and Figure A2 in the Supplementary Information, respectively. Figure A3 displays the log of the 
relative fuel prices that are used in the modelling. In the figure, one can notice the difference be-
tween the time plots for the prices in NFM, MIN and OTH, which are built using coal as numeraire, 
and those for all the other subsectors, where oil is used as numeraire. 

5. ESTIMATION RESULTS

5.1 Results from Unit Root Tests

Our unit root testing procedure points at the variables used in the modelling, i.e. fuel shares, 
relative fuel prices and energy consumption in UK industrial subsectors, being integrated of order 
1 – I(1)—with some series characterized by structural breaks. More precisely, electricity shares 
appear to be I(1) in all but two subsectors—NFM and OTH—see Table A2a in the Supplementary 
Information. One can however conclude that electricity shares in these two subsectors are I(1) after 
allowing for the presence of one break in trend through the application of a ZA test—see Table A2d. 
Evidence of integration of order 1 in the gas shares is more problematic—with this variable appear-
ing to be I(2) in four subsectors—see Table A2b—but again one can conclude that the gas share in 
these four subsectors is I(1) based on results from a ZA test—see Table A2d. Also in the case of oil 

9.  Two exceptions to this empirical regularity can be found. In the case of OTH there is a considerable break in the share 
of oil as one can see in Figure A1 in the Supplemental Information and as a consequence this fuel rather than coal is dropped. 
In the case of PPP the size of coal and oil share are comparable, with coal being slightly larger. On the other hand, variation in 
the oil share is much larger than in the coal share therefore making coal a better candidate for being dropped in the analysis. 
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and coal shares, the ZA tests suggests integration of order 1 in the two cases where the series appear 
to be I(2) based on ADF tests—see Table A2c and Table A2d. Similar results are obtained in the 
case of the other three variables, i.e. relative price of electricity and gas, and energy consumption, as 
one can see in Table A3 and Table A4 in the Supplemental Information . The outcome from the unit 
root tests implies that we can proceed to test for the existence of cointegration among the variables 
used in our study.

5.2 Results from Cointegration Analysis

Cointegration analysis points overall at the existence of two cointegrating vectors among 
our variables (see Table A5 in the Supplementary Information).10 In the case of NFM, both the trace 
and the maximum eigenvalue statistics suggest one cointegrating vector. Agnolucci et al. (2017) 
report that cointegration evidence in the NFM subsector differ from the results for the other sub-
sectors, a finding they attributed to the fact that, there is complete overlap between the definition of 
this sector in the energy (DUKES) and in the ONS dataset from which economic data are extracted, 
contrary to all the other subsectors. Given the robust and consistent evidence we obtained from the 
other seven subsectors, we take the indication of one cointegrating vector in NFM as a spurious find-
ing, and we estimate a VECM with two cointegrating vectors in all the eight industrial subsectors. 

The results from applying the Johansen approach to the estimation of cointegrating rela-
tionships are displayed in Table 1. First of all, we stress how estimates for the NFM subsector are 
fairly similar to those for the other subsectors, with the exception of the coefficient on the gas price 
in the gas demand equation, therefore leading us to believe that it was reasonable to impose two 
cointegrating vectors in this subsector.Statistical significance of the long-run coefficients is assessed 
by running Likelihood Ratio tests (see Table 2). We observe that estimates for the own-price elastic-
ities (for both electricity and gas) are highly significant in all but the TEX subsector. Price elasticity 
is always lower for electricity than for gas, with the exception of NFM and OTH.11 Cross-price elas-
ticities are not statistically significant in two subsectors, ENV and OTH. Energy consumption and a 
linear deterministic trend are always statistically significant. When considered jointly, all variables 
in the two cointegrating vectors are always highly statistically significant, providing in this way a 
strong confirmation of the validity of our empirical model of the long-run fuel share demand. All 
the variables in the system appear endogenous based on weak exogeneity tests for prices and energy 
consumption implemented through Likelihood Ratio tests. We reject such hypothesis at 5% signifi-
cance level in all but the NFM subsector (Table 2).

Table 3 displays the outcome from implementing standard diagnostic tests on the VECMs 
used to produce the cointegrating vectors in Table 1. Results confirm the overall validity of the se-
lected models across subsectors. Residual autocorrelation, as measured by the LM test, is evident 

10.  More precisely, the maximum eigenvalue test suggests two cointegrating vectors in seven of the eight subsectors, 
while in four subsectors, namely CHE, ENV, FBT and PPP, this finding is also supported by the trace test. The trace test in-
dicates one cointegrating vector in the MIN subsectors, and more than two cointegrating vectors in the OTH and TEX sector. 
The higher probability of size distortions of the trace test in finite samples is highlighted in Lütkepohl et al. (2001).

11.  Peculiarities of fuel demands estimated for the NFM, OTH and TEX sectors might be due specific characteristics 
of the production process, therefore confirming the importance of a subsectorial analysis. On the other hand, data for OTH 
and NFM are of lower quality compared to the others. In the case of NFM, thias is related to a not perfect match between the 
definition of this sector in the energy dataset (DUKES) and that in the ONS dataset, as mentioned above. In the case of OTH, 
this is related to the apparent break in the oil consumption series, which suggests issues in the data collection process. The lack 
of statistical significance in the electricity price elasticity in the case of TEX might be related to the very small size of textile 
firms compared to the typical size of firms in other sectors.
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only in the case of the TEX subsector, although only at the 5% significance level. Heteroscedasticity 
is never detected by the White test, while deviation from normality emerges only in the MIN sub-
sector, probably due to remaining outliers not explicitly taken into account by the included pulse 
dummies.

Table 1a: Long-run elasticities from the cointegrating vectors of the VECMs for electricity
CHE ENV FBT MIN NFM OTH PPP TEX

Electricity Price –0.22 –0.74 –0.49 –0.44 –1.39 –1.90 –0.61 –0.22
Gas Price –0.47 –0.08 –0.52 1.12 –0.13 1.14 –1.17
Energy –0.69 0.45   –0.84   –1.56 –1.50 –0.62
Trend       –0.01 0.04     –0.03
Constant 4.40 –2.95 –0.55 5.94 1.94 15.75 11.29 2.63

A key to the acronyms of the industrial subsectors can be seen in Table A1 in the Supplemental Information.

Table 1b: Long-run elasticities from the cointegrating vectors of the VECMs for gas
CHE ENV FBT MIN NFM OTH PPP TEX

Electricity Price –0.47 –0.08 0.48 1.12 0.14 0.32 –1.17
Gas Price –1.37 –0.71 –0.67 –1.68 –0.62 –1.31 –1.61 –2.40
Energy 2.12 1.16   1.87   0.38 1.82 1.52
Trend       0.05 0.00     –0.06
Constant –16.62 –9.22 –0.08 –14.10 –2.68 –3.13 –13.82 –8.76

A key to the acronyms of the industrial subsectors can be seen in Table A1 in the Supplemental Information.

Table 2: Likelihood Ratio tests for significance of the coefficients in the cointegrating vectors
  CHE ENV FBT MIN

Own-price electricity 4.80(*) 7.86(**) 7.88(*) 8.41(**)

Own-price gas 32.32(**) 12.25(**) 5.58(*) 5.26(*)

Cross-price 9.05(**) 0.08 13.30(**)

Energy 52.57(**) 13.03(**) 16.60(**)

Trend     9.80(**)

All 57.97(**) 34.28(**) 9.55(**) 56.42(**)

Exogeneity 37.23(**) 26.62(**) 17.72(**) 32.51(**)

  NFM OTH  PPP  TEX 

Own-price electricity 7.05(**) 21.85(**) 9.31(**) 0.52
Own-price gas 22.69(**) 16.84(**) 13.37(**) 10.64(**)
Cross-price 5.30(**) 1.63 16.65(**) 17.03(**)
Energy 44.76(**) 13.23(**) 9.00(**)
Trend 22.39(**) 8.14(**)
All 38.58(**) 82.00(**) 40.47(**) 50.91(**)
Exogeneity 4.84 38.92(**) 21.53(**) 34.73(**)

Significance level of 5% and 1% is indicated respectively by (*) and (**). A key to the acronyms of the industrial subsectors 
can be seen in in Table A1 in the Supplemental Information.

Table 3: p-values of diagnostic tests for the VECMs used to estimate the cointegrating vectors
CHE ENV FBT MIN NFM OTH PPP TEX

Serial Correlation 0.14 0.94 0.24 0.29 0.79 0.72 0.13 0.05
Heteroscedasticity 0.49 0.55 0.69 0.36 0.86 0.56 0.47 0.63
Normality 0.96 0.84 0.68 0.00 0.96 0.87 0.89 0.79

A key to the acronyms of the industrial subsectors can be seen in in Table A1 in the Supplemental Information.
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6. DISCUSSION

The estimated values of the cointegrating vectors and the related testing enable us to draw 
several insights into the features of the UK industrial fuel consumption. First of all, Likelihood 
Ratio tests in Table 2 indicate that the impact of fuel consumption determinants is consistently sta-
tistically significant across industrial subsectors. This result is a clear improvement on the statistical 
significance of energy demand models found in Agnolucci et al. (2017), Bernstein and Madlener 
(2015) and Møller (2017), all of which estimate cointegrating relationships at a similar level of 
disaggregation to the one in this paper. If we consider the work of Møller (2017), which is the study 
closest to ours in terms of methodology and focus of the enquiry, we notice that his estimates of 
own-price elasticity are non-statistically significant in 5 of 16 instances, whereas in our study this 
occurs only in one instance, electricity price in the TEX sector. Møller (2017) confirms that it is 
more challenging to deliver statistically significant cross-price than own-price elasticities, some-
thing we also observe in our study. Cross-price elasticities are not statistically significant in 8 out of 
the 16 cases estimated in Møller (2017). In our case, we are unable to deliver statistically significant 
coefficients in two subsectors, ENV and OTH.

As for the direction of the dynamic adjustment, we can exclude that prices and energy 
consumption are weakly exogenous in all the industrial subsectors, with the exception of NFM. This 
means that all variables contribute to the correction of past disequilibria in the two cointegrating 
relationships. This is at odds with results in Møller (2017), who found weak exogeneity of most of 
the variables in his model. Three reasons might explain the opposite conclusions. First of all, we 
adopt a different testing procedure: we assess the weak exogeneity of all variables but electricity and 
gas shares through a single test, whereas Møller (2017) tests the weak exogeneity of each variable 
separately, a strategy which may suffer from low power when the model contains many variables.12 
Secondly, the Likelihood Ratio test may be influenced by our inclusion of total energy consumption 
in each subsector among the variables in the cointegrating VARs. Thirdly, it is also possible that 
our results are driven by the fact that the relative price of electricity and gas includes, from 2005 
onwards, the EU ETS carbon price, which is likely to respond to disequilibria in the demand for 
electricity and gas in industrial subsectors, due to the limited coverage of the EU ETS. Regardless 
of the reasons causing our results, our findings justify the adoption of a system approach to cointe-
gration, rather than implementing a single-equation ECM.

We observe that there are substantial differences across subsectors in the value of the long-
run price elasticities. From a methodological point of view, our findings add to the existing evidence 
of the importance of heterogeneity in energy economics, as discussed in the literature review, and 
therefore against pooling across subsectors, or conducting modelling of the industrial sector as a 
whole. Our results confirm finding in the literature pointing at gas consumption typically being 
more price-elastic than electricity; see for example coefficients estimated by Bardazzi et al. (2016), 
Renou-Maissant (1999), Serletis et al. (2010a), Suh (2016) and Steinbuks (2012), displayed in Table 
4a and Table 4b. From a modelling perspective, we observe that about half of electricity own-price 
elasticities falls in the fairly narrow range of (–0.67, –0.74), with values estimated for CHE and TEX 
being considerably smaller (–0.22) and the value in NFM and OTH considerably higher in absolute 
value, –1.39 and –1.9, respectively. Also in the case of gas, half of the own-price elasticities falls 

12.  Møller (2017) implements 32 tests, i.e. 2 variables tested for each of the 2 cointegrating relationships in each of the 
8 sectors. He finds statistical significance only in 3 of 32 coefficients estimates, so that his maintained assumption of weak 
exogeneity is largely accepted. Testing the weak exogeneity of individual variables is useful to distinguish the role of different 
variables in the equilibrium adjustment.
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in a fairly narrow range, that is (–1.68, –1.31). Elasticities in ENV, FBT and NFM are considerably 
smaller, ranging between –0.78 and –0.62, while consumption in TEX is considerably more elas-
tic, –2.40. Leaving aside those cross-price elasticities that happen to be nonstatistically significant, 
namely in ENV and OTH, there is no clear prevalence between fuel complementarity and substi-
tution across sectors, mirroring results obtained by Enevoldsen et al. (2007), Serletis et al. (2010b) 
and Pindyck (1979). This result point at the importance of subsectorial analysis, as the patterns of 
substitution and complementarity differ across subsectors.

Overall, our results indicate that electricity and gas consumption tends to be more 
price-elastic than established by previous studies focused on the UK. In the case of electricity, the 
average of our estimates weighted by the level of fuel consumption of each subsector is –0.82, i.e. 
fairly similar to the value in Ros (2015) and Taheri Stevenson (2002) obtained by using panel data 
for the US industrial sector. Previous estimates for the UK are somehwat smaller, up to a maximum 
of –0.56 (Pyndick, 1999). Steinbuks (2012) estimates a price elasticity of –1.11 for electricity con-
sumed in industrial heating processes, although electricity is rarely used for this purpose. Bernstein 
and Madlener (2015), who use a similar approach to our study, find that price elasticity in the 
German industrial subsectors falls between –0.52 and –0.30 when statistically different from zero. 
However, Burke and Abayasekara (2018) report a value of –1.34 for electricity price elasticity in 
the USA industrial sector, more than 50% higher than our weighted average, by implementing an 
estimator focused on the long-run impact of the driving factors.

The weighted average of our gas price elasticities, i.e. –1.22, is comparable to the value 
in Burke and Yang (2016) for the industrial sector in a panel of countries, the estimate in Hyland 
and Haller (2018) for Ireland, and falls in between the two estimates provided by Serletis and Shah-
moradi (2008) for the US industrial sector. Steinbuks (2012) estimates an own-price elasticity of 
–0.94 for gas consumption used for heating processes in the UK, which represents the great major-
ity of gas consumed in this sector (90% of total gas consumption based on 2007 data presented in 
Steinbuks, 2012). Pyndick (1979) estimated a value of –1.44. The fact that we tend to obtain a some-
what more elastic demand for both electricity and gas have two possible explanations. First, this 
can simply be the consequence of using data that have a higher level of disaggregation than many 
previous studies, as pointed out by Bohi (1981), Bohi and Zimmermann (1984) and Stern (2012). 
Second, contrary to much previous work, since we adopt an econometric approach that is explicitly 
designed to disentangle the long-run relationships between variables from the short-run dynamics, 
our estimates are very likely to capture more accurately the long-run effects of price changes, which 
are expected to be larger than in the short-run, due to substantial adjustment costs.

The occasional inclusion of a significant deterministic time trends in the cointegrating 
vectors accounts for factors that are not modelled explicitly, such as efficiency improvements, tech-
nological innovation for a specific fuel, or changes in the preferences for different fuels. As can 
be seen in Table 1, time trends are present only in three subsectors, i.e. MIN, NFM and TEX. The 
level of total energy consumption, on the other hand, is present in all subsectors but FBT and NFM. 
As one can appreciate from Figure A2 in the Supplementary Information, energy consumption has 
decreased throughout the period in all industrial subsectors, with the implications that a negative 
coefficient on energy consumption implies a historical increase, other things being equal, in the 
consumption of that specific fuel. As a matter of fact, this happens in all industrial subsectors except 
ENV in the case of electricity consumption, while gas consumption is positively related to energy 
consumption in all subsectors. It is also interesting to observe that in the subsectors where both en-
ergy consumption and linear trend are included in the final model, coefficients tend to have the same 
sign, therefore pointing at the influence of these two factors historically going in opposite directions.
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7. CONCLUSIONS

This paper offers some new insights on the long-standing topic of the industrial demand 
for energy fuels. The first novelty is methodological, as we illustrate the advantages of a cointegrat-
ing approach applied on a system of fuel shares, which has been previously applied only once but 
for the industrial sector as a whole rather than the industrial subsectors modelled in the study. By 
implementing the first cointegration analysis for a set of fuels shares estimated at a disaggregated 
industrial level, we showed that plausible and robust estimates of price elasticities can be obtained 

Table 4a: �Estimates of gas own-price elasticities in the industrial sector found in the literature
Source Estimate Notes

Andersen et al. (2011) (–0.62, –0.31) Long-run, UK, industrial sub-sectors
Bardazzi et al. (2016) –0.82 Italy 
Burke and Yang (2016) (–1.09, –1.00) International
Enevoldsen et al. (2007) –0.11 Nordic countries
Harvey and Marshall (1991) –0.62 UK
Huntington (2007) (–0.29, –0.15) US
Hyland and Haller (2018) –1.16 Ireland
Pindyck (1979) –1.44 UK
Renou-Maissant (1999) –0.65 UK
Serletis et al. (2010) –0.13 UK
Serletis and Shahmoradi (2008) (–1.50, –1.01) US
Steinbuks (2012) (–0.94, –0.28) Long-run, UK, heating and all processes respectively
Suh (2016) –0.20 US
Taheri and Stevenson (2002) –0.39 US
Uri (1979) –082 UK
Uri (1982) –0.91 UK
Westoby (1984) –1.06 UK
Our weighted average –1.22 UK

Table 4b: �Estimates of electricity own-price elasticities in the industrial sector found in the 
literature

Source Estimate Notes

Bardazzi et al. (2016) –0.46 Italy
Bernstain and Madlener (2015) (–0.52, –0.30) Long-run, industrial sub-sectors
Bjørner and Jensen (2002) (–0.13, –0.04) Denmark
Bjørner et al. (2001) –0.55 Denmark
Burke and Abayasekara (2018) –1.34 Long-run, UK
Dilaver and Hunt (2011) –0.16 Turkey
Enevoldsen et al. (2007) (–0.28, –0.10) Nordic countries
Harvey and Marshall (1991) –0.06 UK
Hyland and Haller (2018) –0.31 Ireland
Jamil and Ahmad (2011) –1.22 Long-run, Pakistan
Paul et al. (2009) –0.40 US
Pindyck (1979) –0.56 UK
Renou-Maissant (1999) –0.31 UK
Ros (2015) (–0.87, –0.52) Long-run, US
Serletis et al. (2010) –0.004 UK
Steinbuks (2012) (–1.11, –0.23) Long-run, UK, heating and all processes respectively
Suh (2016) –0.11 US
Taheri and Stevenson (2002) –0.71 US
Uri (1979) –0.22 US
Uri (1982) –0.50 UK
Westoby (1984) –0.39 UK
Our weighted average –0.82 UK
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even from relatively short time series using a parsimonious but careful application of a system 
approach. Modelling a VECM for each of the eight industrial subsectors we obtained unequivocal 
evidence for the existence of two cointegrating relationships representing demand for electricity and 
gas. Compared to previous empirical contributions, our estimates present greater statistical signif-
icance, whether we consider the whole cointegrating vectors in general or the own-price elasticity 
in particular. As for the methodology we adopt, the validity and advantages of a system approach to 
estimation is confirmed by the steady rejection of the weak exogeneity hypothesis for energy prices 
and consumption across all subsectors.

Our results can be summarised as follows. Firstly, the magnitude of the weighted average 
of electricity and gas own-price elasticity for the industrial sector as a whole, –0.82 and –1.22 
respectively, tends to be somewhat greater than the values previously estimated for the UK. This 
might be due to previous studies suffering from aggregation bias (as the consensus in the literature 
is that demand for fuels tend be less elastic when estimated at a more aggregate level), and to the 
fact that our estimation focuses on long-run fuel demand, which are expected to be more elastic 
as a result of substantial inter-fuel substitution costs in the short-term. Secondly, we obtained that 
price considerations are more important in gas than in electricity consumption, confirming previous 
understanding in the field. Thirdly, we found that demand for gas is positively related to total energy 
consumption while the opposite occurs for electricity demand, with this pattern being common to all 
subsectors, therefore showing the relevance of scale effects in the determination of fuel consump-
tion. Fourthly, and presumably our most important finding, we uncovered substantial heterogeneity 
in the magnitude of own-price and cross-price elasticity of fuel demands across the eight industrial 
subsectors. Our results reveal unequivocal heterogeneity with respect to both the sign and the mag-
nitude of price elasticities and scale effects. They provide a serious warning to those studies that 
aggregate data under the assumption of homogeneous coefficients across subsectors, like in panel 
data models. Moreover, in terms of the sign of cross-price elasticities, our work did not reveal any 
clear dominant evidence of substitutability over complementarity between fuels, in this confirming 
previous results in the literature. This last finding is likely the consequence of important differences 
in the ability of firms to respond to changes in prices, which is related to the specific characteristics 
of each subsector, and in particular to the different degree to which electricity and gas are used for 
different purposes. This type of evidence clearly suggests a careful assessment of the effectiveness 
of energy policies that aim at fostering fuel substitution but fail to account for the idiosyncratic fea-
tures of each industrial subsector.

A number of extensions of our work naturally come to mind. First of all, we would ex-
pect our methodology to be employed across countries and industrial subsectors to start building a 
large body of evidence at subsectorial level that is useful for policy-making. This exercise would 
also be helpful to cast light on the value of some estimates, and on the extent to which they reflect 
country-specific peculiarities of the production process. Secondly, it would be interesting to inves-
tigate whether the long-run fuel demand functions have changed across time, through for instance 
the cointegrating approaches described in Bierens and Martins (2010) and Giratis et al. (2014) or 
by making use of the Kalman filtering (Agnolucci 2010). While the short horizon of our dataset 
discourages such analysis, longer time series available for other countries, e.g. Germany and Den-
mark, offer a potentially fruitful avenue for research. Thirdly, like studies implemented at a more 
aggregate level, our approach does not include any explicit technological characterization, although 
our subsectorial focus partially reduces such shortcoming. For this reason, it would be interesting to 
match our results with any bottom-up evidence on specific technological process, ideally taking into 
account the value of flexibility in consuming different fuels, or the value of technological irrevers-
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ibility normally explored in the real option value approach. Finally, another potentially interesting 
extension of this work would be to estimate elasticities across industrial sectors and countries, per-
haps implementing the Between Estimator, as in Burke and Abayasekara (2018). This would imply 
having to impose homogeneity across members of the panel but would offer an alternative avenue 
to estimating long-run coefficients like those estimated in this study.
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SUPPLEMENTAL INFORMATION

Table A1: �Matching between energy consumption and economic activity 
data for the industrial subsectors assessed in our study

Sector Identifier Description DUKES energy data

SIC 2007 code
FBT Food, Beverages and Tobacco 10-12
TEX Textiles, Clothing, Leather and Footwear 13–15
PPP Pulp, Paper, Printing and Publishing 17–18
CHE Chemicals 20-21
MIN Non-Metallic Mineral products 8, 23
ENV Engineering and Vehicles 25-30
NFM Non-Ferrous Metals 24.4, (excluding 24.46), 24.53, 24.54
OTH Other industries 16, 22, 31-33, 36-39

Table A2a: Results from unit root tests for electricity share
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -2.03 0 trend  -4.17 (**) 0 constant
ENV -1.18 2 constant  -3.15 (*) 0 constant
FBT -2.29 0 trend  -4.78 (**) 0 constant
MIN  -3.63 (*) 0 trend  -4.75 (**) 0 constant
NFM -1.72 0 trend -1.40 2 constant
OTH -1.97 0 trend -1.13 2 trend
PPP -3.01 0 trend  -5.34 (**) 0 constant
TEX -2.79 0 trend  -6.16 (**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 
10% significance level, respectively.

Table A2b: Results from unit root tests for gas share
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -1.52 0 constant 0.43 3 trend
ENV -1.22 0 constant  -3.45 (*) 0 constant
FBT -1.76 0 constant -2.86 2 trend
MIN -2.28 0 constant -2.26 2 constant
NFM -1.64 0 constant -2.39 2 constant
OTH -1.49 1 trend  -2.76(+) 2 constant
PPP -1.85 3 trend  -4.64 (**) 0 constant
TEX -1.71 1 constant  -6.00 (**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 
10% significance level, respectively.

Table A2c: Results from unit root tests for coal/oil share
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -1.34 1 trend  -6.56 (**) 0 trend
ENV -1.39 2 constant  -3.61 (*) 0 constant
FBT -1.08 0 constant -1.89 2 constant
MIN (COAL) -2.62 0 constant  -5.14 (**) 0 constant
NFM (COAL) -0.89 2 constant -2.37 2 constant
OTH (COAL) -0.16 2 trend  -6.21 (**) 0 trend
PPP -1.32 0 constant  -4.99 (**) 0 constant
TEX -2.11 0 trend  -4.15 (**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 10% 
significance level, respectively.
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Table A2d: �Results from ZA unit root tests for shares appearing to be at least I(2) based on 
ADF unit root tests

    Statistic Lags Break date Statistic Lags Break date

ELE NFM -2.27 0 2012  -7.17(**) 1 2003
OTH -4.23 2 2008  -8.21(**) 1 2006

GAS

CHE -4.48 0 1999  -10.88(**) 1 2007
FBT -3.68 4 2012  -5.53(*) 2 2010
MIN  -6.14(**) 4 2007  -6.41(**) 0 2005
NFM -3.00 0 2003  -6.16(**) 1 2003

OIL FBT -4.16 5 2012  -6.59(**) 2 2000
COAL NFM  -6.20(**) 5 2008  -7.57(**) 5 2005

Acronyms of the sectors assessed in this study can be seen in Table A1 in the appendix. Key: (**), (*) and (+) indicate 1%, 
5% and 10% significance level, respectively.

Table A3a: Results from unit root tests for relative electricity price
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -2.85 0 trend  -5.09(**) 0 constant
ENV -2.84 0 trend  -4.88(**) 0 constant
FBT -2.88 0 trend  -4.99(**) 0 constant
MIN (COAL)  -3.41(+) 0 trend  -6.67(**) 0 constant
NFM (COAL) -2.12 0 constant  -4.53(**) 0 constant
OTH (COAL) -2.22 0 constant -2.04 2 constant
PPP -2.91 0 trend  -5.16(**) 0 constant
TEX -2.85 0 trend  -4.80(**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 
10% significance level, respectively. Energy consumption in OTH is I(1) based on the ZA test—value of the statistics being 
-5.97 for the first difference of the series. Relative electricity price in OTH is I(1) based on the ZA test—value of the statis-
tics being -6.16 for the first difference of the series.

Table A3b: Results from unit root tests for relative gas price
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -1.96 2 trend  -5.50(**) 0 constant
ENV -1.97 2 trend  -5.45(**) 0 constant
FBT -1.97 2 trend  -5.49(**) 0 constant
MIN (COAL) -2.18 0 trend  -4.52(**) 0 constant
NFM (COAL) -2.12 0 trend  -5.37(**) 0 constant
OTH (COAL) -2.24 0 trend  -5.53(**) 0 constant
PPP -1.96 2 trend  -5.52(**) 0 constant
TEX -1.97 2 trend  -5.45(**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 
10% significance level, respectively.
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Table A4a: Results from unit root tests for energy consumption
  Levels Differences

  Test Statistic Lags tre/int Test Statistic Lags tre/int

CHE -1.39 0 trend  -2.85(+) 3 constant
ENV -1.71 0 trend  -3.75(*) 0 constant
FBT -2.25 0 trend  -5.39(**) 0 constant
MIN (COAL) -3.21 0 trend  -5.62(**) 0 constant
NFM (COAL) -0.21 0 trend  -6.47(**) 0 constant
OTH (COAL) -1.70 0 trend -1.94 2 constant
PPP -1.69 0 trend  -3.68(*) 0 constant
TEX -2.40 0 trend  -5.72(**) 0 constant

A key to the acronyms of the industrial subsectors can be seen in Table A1. Key: (**), (*) and (+) indicate 1%, 5% and 
10% significance level, respectively. Energy consumption in OTH is I(1) based on the ZA test – value of the statistics being 
-5.97 for the first difference of the series.

Table A5: Results from the trace and max eigenvalue cointegration tests
  Trace Max Eigenvalue

  H0 H1 λtrace p-value H0 H1 λmax p-value

CHE r = 0  r ≥ 1 102.76 0.00(**) r = 0 r = 1 52.38 0.00(**)

  r ≤ 1  r ≥ 2 50.38 0.03(*) r = 1 r = 2 26.43 0.07(*)

  r ≤ 2  r ≥ 3 23.95 0.20 r = 2 r = 3 16.19 0.21

ENV r = 0  r ≥ 1 86.28 0.00(**) r = 0 r = 1 41.20 0.01(**)

  r ≤ 1  r ≥ 2 45.08 0.09(+) r = 1 r = 2 25.03 0.10(+)

  r ≤ 2  r ≥ 3 20.05 0.42 r = 2 r = 3 14.08 0.36

FBT r = 0  r ≥ 1 64.67 0.00(**) r = 0 r = 1 31.87 0.01(**)

  r ≤ 1  r ≥ 2 32.80 0.02(**) r = 1 r = 2 21.21 0.05(*)

  r ≤ 2  r ≥ 3 11.59 0.18 r = 2 r = 3 9.61 0.24

MIN r = 0  r ≥ 1 98.85 0.01(**) r = 0 r = 1 40.28 0.03(*)

  r ≤ 1  r ≥ 2 58.56 0.13 r = 1 r = 2 31.56 0.06(+)

  r ≤ 2  r ≥ 3 27.00 0.68 r = 2 r = 3 13.55 0.76

NFM r = 0  r ≥ 1 62.88 0.06(+) r = 0 r = 1 29.58 0.10(+)

  r ≤ 1  r ≥ 2 33.29 0.32 r = 1 r = 2 19.15 0.30
  r ≤ 2  r ≥ 3 14.14 0.65 r = 2 r = 3 8.01 0.82

OTH r = 0  r ≥ 1 115.24 0.00(**) r = 0 r = 1 50.34 0.00(**)

  r ≤ 1  r ≥ 2 64.89 0.00(**) r = 1 r = 2 25.54 0.09(+)

  r ≤ 2  r ≥ 3 39.35 0.00(**) r = 2 r = 3 17.17 0.16

PPP r = 0  r ≥ 1 105.75 0.00(**) r = 0 r = 1 45.59 0.00(**)

  r ≤ 1  r ≥ 2 60.16 0.00(**) r = 1 r = 2 34.14 0.01(**)

  r ≤ 2  r ≥ 3 26.02 0.13 r = 2 r = 3 16.62 0.19

TEX r = 0  r ≥ 1 122.39 0.00(**) r = 0 r = 1 48.12 0.00(**)

  r ≤ 1  r ≥ 2 74.27 0.01(**) r = 1 r = 2 29.67 0.10(+)

  r ≤ 2  r ≥ 3 44.60 0.03(*) r = 2 r = 3 19.14 0.30

Key: (**), (*) and (+) indicate 1%, 5% and 10% significance level, respectively. A key to the acronyms of the industrial 
subsectors can be seen in Table A1.
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