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Size Matters: Estimation Sample Length and Electricity Price 
Forecasting Accuracy
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abstract

Short-term electricity price forecasting models are typically estimated via roll-
ing windows, i.e. by using only the most recent observations. Nonetheless, the 
literature does not provide guidelines on how to select the optimal size of such 
windows. This paper shows that determining the appropriate window prior to es-
timation dramatically improves forecasting performances. In addition, it proposes 
a simple two-step approach to choose the best performing models and window 
sizes. The value of this methodology is illustrated by analyzing hourly datasets 
from two large power markets (Nord Pool and IPEX) with a selection of eleven 
different forecasting models. Incidentally, our empirical application reveals that 
simple models, such as a simple linear regression (SLR) with only two param-
eters, can perform unexpectedly well if estimated on extremely short samples. 
Surprisingly, in the Nord Pool, such SLR is the best performing model in 13 out 
24 trading periods.
Keywords: Electricity price forecasting, Day-ahead market, Parameter 
instability, Bandwidth selection, Statistical models, Artificial neural networks.
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1. INTRODUCTION

During the past 30 years, the widespread liberalization of the energy sector has entrusted 
the electricity price formation process to the law of supply and demand. In most developed econo-
mies, electricity is now traded in high-frequency (hourly or half-hourly) wholesale markets, where 
power companies sell directly to retailers and large consumers. In this relatively new environment, 
developing effective short-term, day-ahead, Electricity Price Forecasting (EPF) tools can be of tre-
mendous value (e.g. Hong, 2015).

EPF has proven to be particularly challenging. Electricity prices are characterized by a 
level of variability that is unobserved in any other commodity or financial asset, and peculiar dy-
namics such as abrupt and short-lived spikes, heteroscedasticity, and pronounced daily, weekly and 
yearly seasonality (e.g. Weron, 2014), which follows the dynamics of demand, often referred as 
“load” in this literature. Given this background, it is not surprising the recent proliferation of EPF 
techniques, which include statistical models (e.g. linear and non-linear regressions, time series mod-
els), machine-learning algorithms (e.g. neural networks) and various hybrid methods. Despite this 
significant effort, the comprehensive review by Weron (2014) concludes that a leading, best-per-
forming methodology is yet to emerge.
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Why is EPF so difficult? Arguably, the main cause is the substantial instability that char-
acterizes the process of price formation. The physical laws governing the electric grid always re-
quire production and consumption to be perfectly balanced, making economically-sound storage 
virtually impossible. For this reason, minor changes in demand, which frequently go unnoticed, can 
sometimes have tremendous repercussions on prices, particularly when margin (i.e. the additional 
generation capacity available for production) is low. In such cases, even relatively small utilities can 
exercise a significant amount of market power, and influence prices substantially (e.g. Fabra and 
Toro, 2005; Hortaçsu and Puller, 2008; Ito and Reguant, 2016). Although margin can sometimes be 
predicted, unobservable determinants, such strategic behavior and asymmetric information, create 
an unstable price formation process that continuously evolves through time.

In forecasting, a common approach to handle time-instability is to estimate parameters 
using moving windows that include only the most recent observations: the so-called “rolling estima-
tion” method (e.g. Inoue et al., 2017). While rolling estimation is the standard approach also in EPF 
(e.g. Dudek, 2016; Nowotarski and Weron, 2016; Steinert and Ziel, 2019), perhaps surprisingly, 
there is no established strategy to guide the window-size selection process. The typical approach 
is to simply set a relatively large window (usually between 180 and 365 observations, i.e. from 6 
months to 1 year of data) a priori for all models and markets.1,2

This paper demonstrates that such stylized approach produces subpar results. Window size 
dramatically affect EPF models’ performance, and selecting the optimal rolling sample prior to es-
timation significantly reduces forecasting errors. To the best of our knowledge, there are only two 
contributions studying this issue in EPF: Hubicka et al. (2018) and Marcjasz et al. (2018a). Both 
articles explore the performance of weighting schemes constructed by averaging predictions across 
models estimated on different window sizes. The first work analyzes the performance of a regression 
model and an artificial neural network under different weighting schemes, while the second article 
focuses on regression models and explores a larger selection of weighting techniques. Both papers 
conclude that using appropriate weights improves upon selecting a single window size when aver-
aging prediction errors across all 24 trading hours of the day.

This paper develops a different and highly complementary approach. We propose a simple, 
two-step strategy to select both best performing models and window sizes. Our analysis includes a 
wide selection of models including time series, regressions and computational intelligence methods 
for a total of eleven different approaches. In addition, rather than evaluating the best performing 
model using average measures across all 24 hourly predictions within a day, we evaluate predictions 
for each hourly trading period separately. This finer analysis reveals that both optimal window size 
and best performing model change greatly across hours, with the stable off-peak hours favoring long 
windows and complex (i.e. with a large number of parameters) models, and the more volatile peak 
hours selecting short samples and relatively simple (i.e. with only a few parameters) specifications. 
We conclude that different models and window sizes should be used for different hours. Further-
more, our simple two-step strategy significantly outperforms the standard fixed rolling window 
approach in the majority of the trading periods we investigate. 

1.  For example, Misiorek et al. (2006), Weron and Misiorek (2008), Bordignon et al. (2013) use 9 months rolling win-
dows, Nowotarski et al. (2014) employs 10 months windows, Maciejowska et al. (2016), Nowotarski and Weron (2016) and 
Marcjasz et al. (2019), Steinert and Ziel (2019) use one-year windows.

2.  Another strategy for dealing with unstable environments is combining predictions from multiple models. This ap-
proach has recently found a few applications in EPF (e.g. Bordignon et al., 2013, Nowotarski et al., 2014, Mirakyan et al., 
2017). However, even when combining predictions from different models, the issue of selecting the optimal estimation win-
dow for each model still stands.
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2. DATA

We analyze the day-ahead time series of two large but very different wholesale electricity 
markets: the Nord Pool (NP) and the Italian Power Exchange (IPEX). For both markets, we consider 
hourly prices and forecasted load (published on the day-ahead by the system operator and, therefore, 
available to all market participants for price forecasting) for three years covering the period from 
January 1, 2014 to December 31, 2016. These data are accessible from the system operator websites 
(www.nordpoolspot.com and www.mercatoelettrico.org) and from the webpage of the correspond-
ing Author of this paper.3 In both the NP and the IPEX (as in most electricity markets) the clearing 
prices and quantiles for each hour of the day are generated via 24 simultaneous auctions taking place 
on the day before the delivery.

The two markets are of similar size (a peak of about 70GWh for the NP and one of 55GWh 
for the IPEX) but have very different histories, generation mixes, demand patterns and resulting 
price dynamics. The NP was inaugurated in 1991 and it is now one of the oldest liberalized power 
markets in the world, encompassing Denmark, Finland, Norway and Sweden. Its price and load 
dynamics have been subject to extensive research (e.g. Haldrup and Nielsen, 2006; Weron and Mis-
iorek, 2008; Nowotarski and Weron, 2016; Marcjasz et al., 2018a). Figure 1 presents the NP hourly 
day-ahead price and forecasted load time series.

Figure 1: �Nord Pool hourly system prices (top) and forecasted load (bottom) for the period 
January 1, 2014–December 31, 2016. 

Notes: In the first step, we estimate the initial parameters (sample a) and select the most appropriate rolling window for 
each model (sample b). In sample (c) we compare the one-step ahead forecasting performance of the different models, each 
estimated with the rolling window length selected in sample (b). Each hour of the day is modelled separately leading to 24 
different sets of predictions in each day.

3.  As standard practice (e.g. Weron 2014, Nowotarski and Weron, 2016), we pre-process the time series by substituting 
daylight savings hours’ missing data with the arithmetic average of the neighboring values and replace the “doubled” hours 
with the arithmetic mean of the two values.

http://www.nordpoolspot.com
http://www.mercatoelettrico.org
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Load displays a strong yearly seasonality with peaks in the winter months that, however, 
are not always mirrored by high prices. In fact, the NP is characterized by a large share of hydro-
power (Norway, for example, is almost entirely reliant on this type of generation) which generates 
prices that are typically lower than in other European markets. However, significant spikes are 
present when demand is high and water storage is low (e.g. during early 2016). Figure A1 in the 
Appendix illustrates the daily seasonality. Both load and prices are characterized by two daily peaks 
(around hour 10 and hour 20), which also present the highest volatility and, therefore, are the most 
challenging for forecasting. This daily seasonality is essentially the same in both weekdays and 
weekends, while, of course, weekdays peaks are generally much higher for both load and price.

The IPEX opened in year 2004, which makes it one of the youngest power markets in 
Europe. Consumption is met with a mix of fossil fuels (about 65%), renewables (21%) and direct 
imports (14%). This mixture of relatively expensive generation and large share of imports makes the 
IPEX price rather high and subject to frequent spikes, as highlighted in Figure 2. Yearly seasonality 
is not very strong, since in Italy the main source of heating is natural gas and, therefore, there is not 
a winter demand peak. On the other hand, as show in Figure A2 in the Appendix, daily seasonality is 
quite pronounced. Such seasonality is characterized by two distinctive peaks, with the highest being 
the one in the evening, around hour 20. Volatility is highest when power plants are increasing pro-
duction in order to reach this peak. Recent analyses of IPEX prices are Bigerna and Bollino (2015), 
Grossi and Nan (2015), Gianfreda et al. (2016, 2019), Lisi and Edoli (2018).

3. METHODOLOGY

As mentioned in the previous section, the NP and IPEX generate clearing prices and quan-
tities via 24 simultaneous day-ahead auctions. This mechanism breaks down the temporal structure 
of the time series, since the information available to traders is updated every day, and not every 
hour (Huisman et al., 2007). Acknowledging this feature, it has become standard practice to model 
the prices of the 24 hours of the day as separate series. This approach is also superior from a purely 
forecasting perspective, since it recognizes that electricity generators faces very different constraints 
throughout the daily cycle (e.g. Weron, 2014). Our analysis follows this convention, generating 24 
different sets of estimates and predictions for each one of the models we analyze. We focus on day-
ahead predictions, i.e. one-step ahead, which is the most common short-term EPF exercise. Section 
3.1 presents the different forecasting models in detail, while Section 3.2 illustrates how we deter-
mine the optimal sample length for each model and evaluate forecasting performance.

3.1 Forecasting models

The literature proposes a truly extensive collection of short-term EPF techniques. Accord-
ing to the review by Weron (2014), the two most popular classes of methods are: a) statistical mod-
els, which include both time series (e.g. Conejo et al., 2005; Weron and Misiorek, 2008; Koopman 
et al., 2009) and multiple regression models (e.g. Maciejowska and Nowotarski, 2016; Nowotarski 
and Weron, 2016; Marcjasz et al., 2018a; Steinert and Ziel, 2019) and b) computational intelligence 
algorithms, in particular neural networks (e.g. Dudek, 2016; Hubicka et al., 2018; Marcjasz et al., 
2019). Rather than trying to replicate the extensive and continuously growing collection of EPF 
methods (a virtually impossible task), we consider eleven different models proposed in the literature 
and belonging to these two established classes of methods.

Our selection, summarized in Table 1, includes models with different levels of complexity, 
going from a simple linear regression with only two parameters to an artificial neural network of 
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64 coefficients. We consider the explanatory variables included in the majority of EPF studies, i.e. 
lagged price, forecasted load and dummy variables for different days of the week.4 To reduce the 
volatility and improve predictions, as recommended by Uniejewski et al. (2018), before estimating 
our models we apply the natural logarithm to the variables as a “variance stabilizing transformation”.5

As benchmark, we employ the naïve model, or the similar-day approach, introduced by 
Conejo et al. (2005). In this simple model, if the day is a Tuesday, Wednesday, Thursday or Friday, 
the price forecast is equal to the price in the previous day, while if the day is a Saturday, Sunday or 
Monday the forecast is equal to the price of the same day of the previous week. Perhaps surpris-
ingly, models that are not well designed often fail to perform better than this apparently ingenuous 
benchmark (Conejo et al., 2005).

Our first and simplest approach is a simple linear regression (SLR) of the logarithm of 
price (pt) as function of the logarithm of the forecasted load (qt): 

0 1β β ε= + +t t tp q , (1)

4.  We do not consider other potential electricity price predictors such as the price of fossil fuels or the availability of 
renewable energy sources. While these variables are certainly important determinants of the electricity supply function (e.g. 
Fezzi and Bunn, 2010), their use in short-term EPF is, so far, the exception (e.g. Gianfreda et al., 2016; 2019) rather the rule 
(Weron, 2014). The reason is that lagged electricity prices already convey the information on the state of the supply curve 
relevant for short term forecasting, making additional descriptors meaningful only in some particular situations (e.g. Carmona 
et al., 2013). In any case, our methodological approach and the guidelines derived from our analysis should be general enough 
to be applicable to models including virtually any potential electricity price predictor.

5.  We also tested our models estimated on the un-transformed variables and, in fact, their performance were (slightly) less 
satisfactory. Nevertheless, our findings remained consistent.

Figure 2: �IPEX hourly system prices (top) and forecasted load (bottom) for the period 
January 1, 2014–December 31, 2016. 

Notes: In the first step, we estimate the initial parameters (sample a) and select the most appropriate rolling window for 
each model (sample b). In sample (c) we compare the one-step ahead forecasting performance of the different models, each 
estimated with the rolling window length selected in sample (b). Each hour of the day is modelled separately leading to 24 
different sets of predictions in each day. 
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where t represents time, εt is the error component and β0, β1 are the parameters that we estimate via 
Ordinary Least Squares (OLS). Assuming an inelastic short-term demand, β1 can be interpreted 
as the price-elasticity of electricity supply. This is the only model we use that, to the best of our 
knowledge, has not found previous applications in the EPF literature. Our analysis will show that 
this neglected specification can, instead, provide impressive results by using particularly short esti-
mation windows.

We then consider a number of time series approaches, including different autoregressive 
and moving average (ARMA) specifications. The general form of this class of models is the AR-
MA(i, j), which can be written as:

( ) ( )i j εΦ = Θt tB p B , (2)

where Φi(B) = 1 – ϕ1B1 – ... – ϕiBi is the autoregressive polynomial; Θj(B) = θ0 + θ1B1 + ... + θjBj is the 
moving average polynomial, B is the backward shift operator (i.e. Bk pt ≡ pt-k) and the other vari-
ables are defined as before. The parameters in Φi(B) and Θj(B) can be estimated via Maximum 
Likelihood (ML). ARMA models have been implemented in this context by Nogales et al. (2002), 
Cuaresma et al. (2004), Conejo et al. (2005), Weron and Misiorek (2008) and many others. We con-
sider ARMA(1,1) and ARMA(2,2) specifications.

Table 1: Models summary
Model Class Parameters Estimation Explanatory variables References

Naïve benchmark NA NA NA Conejo et al. (2005), Weron 
and Misiorek (2008)

SLR statistical 2 OLS Forecasted load NA
ARMA(1,1) statistical 3 ML Lagged prices and errors Cuaresma et al. (2004), Conejo 

et al. (2005), Weron and 
Misiorek (2008)

ARMA(2,2) statistical 5 ML Lagged prices and errors Cuaresma et al. (2004), Conejo 
et al. (2005), Weron and 
Misiorek (2008)

ARX(1) statistical 3 OLS Forecasted load and lagged 
prices

Misiorek et al. (2006); Weron 
and Misiorek (2008);

ARMAX(1,1) statistical 4 ML Forecasted load, lagged 
prices and random 
component

Weron and Misiorek (2008); 
Kristiansen (2012); 
Bordignon et al. (2013)

ARMAXd(1,1) statistical 7 ML Forecasted load, daily 
dummies, lagged prices 
and random component

Misiorek et al. (2006); 
Kristiansen (2012); 
Bordignon et al. (2013)

mARX1 statistical 9 OLS Forecasted load, daily 
dummies, lagged prices, 
min lagged price

Nowotarski and Weron (2016), 
Gaillard et al. (2016), 
Hubicka et al. (2018)

mARX2 statistical 14 OLS Forecasted load, daily 
dummies, lagged prices, 
min and max lagged price

Ziel and Weron (2018), 
Marcjasz et al. (2018a)

ANN(4) computational 
intelligence

25 RBA Forecasted load, daily 
dummies, lagged prices

Conejo et al. (2005); Singhal 
and Swarup (2011); Dudek 
(2016); Marcjasz et al. 
(2019)

ANN(7) computational 
intelligence

64 RBA Forecasted load, daily 
dummies, lagged prices 
squared of the forecasted 
load

Conejo et al. (2005); Singhal 
and Swarup (2011); Dudek 
(2016); Marcjasz et al. 
(2019)

Notes: OLS = Ordinary Least Squares, ML = Maximum Likelihood, RBA = Resilient Backpropagation Algorithm. NA = 
Not Available. 
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ARMA models can be augmented by including explanatory (or exogenous) variables. 
This class of specifications, referred as ARMAX, is sometimes re-written as a transfer function (e.g. 
Weron, 2014). In this study, we opt for the “regression with ARMA errors” representation, which is 
equally effective for forecasting while allowing a simpler interpretation of the parameters (Hynd-
man and Athanasopoulos, 2014). This specification can be written as:

( )[ ] ( )i 0 jβ εΦ − − = Θt t tB p B'Xβ , (3)

where tX  indicates the vector of explanatory variables including, for example, forecasted load. Most 
EPF studies (e.g. Conejo et al., 2005; Misiorek et al., 2006; Weron and Misiorek, 2008; Kristiansen, 
2012; Bordignon et al., 2013) find that these models typically outperform their ARMA counterparts. 
Here we consider three possible specifications: an ARX(1) and an ARMAX(1,1), both with loga-
rithm of forecasted load as explanatory variable, and an ARMAXd(1,1) with logarithm of forecasted 
load and three dummy variables for Saturday, Sunday and Monday (Misiorek et al., 2006).

We then consider the two regression models evaluated by Marcjasz et al. (2018a), that 
we indicate with the term mARX1 and mARX2, which stands for multi-day ARX (Nowotarski and 
Weron, 2016). The mARX1 was introduced by Misiorek et al. (2006) and further developed by Ma-
ciejowska and Nowotarski (2016), Nowotarski and Weron (2016), Gaillard et al. (2016), Hubicka 
et al. (2018), among others. It is essentially an ARX with 9 parameters and a rich set of explanatory 
variables:

3
0 1 1 2 2 7 7 3 , 1 1 1
φ φ φ φ φ β ε− − − − =

= + + + + + + +∑t t t t min t t i i ti
p p p p p q d D , (4)

where pmin,t–1 is the minimum of the 24 hourly prices in the previous day and D1,…,D3 are respec-
tively dummy variables for Monday, Saturday and Sunday. These three variables capture the fact 
that Saturdays and Sundays are characterized by lower demand and that Monday is the day after the 
weekend and, therefore, the one in which demand and price raise the quickest. The parameters ϕ1, ϕ2 
and ϕ7 create the link with the historical prices and ϕ3 with the overall supply function of the previ-
ous day. The second regression model (mARX2), was introduced by Ziel and Weron (2018), and it is 
our most complex statistical approach. It expands upon the mARX1 to include up to 14 parameters:

1 1 2 2 7 7 3 , 1 4 , 1 5 24, 1 1φ φ φ φ φ φ β− − − − − −= + + + + + + +t t t t min t max t h t tp p p p p p p q 7

1
 ε

=
+∑ i i ti

d D , (5)

where pmax,t–1 is maximum of the 24 hourly prices in the previous day, 24, 1−h tp  is the price for the last 
hour of the previous day (important to predict the early morning hours) and the daily dummies are 
now expanded to one for each day of the week.

Regarding computational intelligence models, we consider two different Artificial Neural 
Networks (ANNs). ANNs are becoming a very popular forecasting tool. They are data-driven, in the 
sense that they require little assumptions and yet are able to capture functional relationships that are 
unknown a priori or hard to describe. In addition, they can approximate any continuous non-linear 
function to any desired accuracy (Zhang et al., 1998). This flexibility comes at a cost: ANNs include 
many parameters and, therefore, require large and stable samples for their estimation. Here we con-
sider two different feed-forward ANNs with a single hidden layer. This established ANN structure 
has found several applications in EPF (e.g. Conejo et al, 2005; Singhal and Swarup, 2011; Dudek, 
2016; Marcjasz et al., 2019). ANNs can be viewed as high-dimensional nonlinear regression mod-
els. In particular, a feedforward ANN with k explanatory variables (inputs) tX , and with one hidden 
layer of q neurons can be represented as:

( ) 0
1 1

     α φ α
= =

  
= + +     

∑ ∑ 

q p

t h h jh j
h j

ANN f w w xX  (6)
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Where ( ).φ  is the activation function, ( )0 .f  is typically chosen as the identity function (and 
we do so in our specification) and ,  , α hk hw w , αh are the unknown parameters to be estimated. For 
both networks, we impose the common assumption that the number of neurons in the hidden layer is 
equal to number of input variables plus one (e.g. Dudek, 2016). The ANNs literature often refers to 
this latter parameter as the “bias” and in (5) is represented by α and αh. Its role is analogous to that 
of the intercept in linear models. As activation function, we use the hyperbolic tangent (Zhang et al., 
1998). In the first and less complex neural network, which we indicate with ANN(4), we include in 

tX  four input variables: the electricity price of the previous day, the forecasted load and two dummy 
variables for Saturday and Sunday. This ANN has 25 parameters, which is almost two times the pa-
rameters of the most complex statistical model, the mARX2. In the second and more complex neu-
ral network, ANN(7), we also include a Monday dummy variable (to mirror the ARX and mARX 
specifications), the square product of forecasted load (as in Dudek, 2016) and the price at lag two. 
This generates 64 parameters. In both ANNs, we standardize all the variables before estimation. We 
carry out estimation via the resilient backpropagation algorithm, which is characterized by a faster 
learning rate than the standard backpropagation (Riedmiller and Braun, 1993).

3.2 Window-size selection approach and forecasting evaluation

In order to clearly illustrate how rolling-window size selection affects EPF performance, 
we follow a deliberately simple approach. It consists in two steps designed to compare forecasting 
performance both across models and across window sizes, and thereby select the best performing 
specification for each hour. We compare this strategy with the standard approach of using a fixed 
sample size selected a priori.

In the first step of our approach, we identify, for each model and each hour, which window 
size (λ) provides the best performance. We estimate the initial values of the parameters using the 
data in year 2014 (or part of, depending on the value of λ) and we compare one-step ahead forecasts 
during year 2015. Therefore, in this initial step, we use data in samples (a) and (b) in Figure 1 and 
2. In order to determine λ* (the optimal window size for each model and hour) we compare rolling 
windows of size k, k + 1, k + 2, ..., 100, 150, 200, ..., 350 with k = number of model parameters, which 
corresponds to the minimum number of observations necessary for estimation. This means that our 
rolling windows vary from 2 days to almost one year. We also test the performance of using a recur-
sive window, i.e. a window that includes all available previous observations. While the size of each 
rolling window is constant, the size of the recursive window increases by one with each passing day. 
For example, the recursive window for t = 1 (i.e. for 1/1/2015) includes 365 observations, for t = 2 
includes 366 observations, and so forth, up to 730 observations for t = 366 (i.e. 31/12/2015), the last 
day in sample (b).

In the second step, we estimate each model using its specific λ* and evaluate their forecast-
ing accuracy. We compare results across models and against the standard approach of estimating all 
models using the same sample length, which in this literature is typically picked between 6 months 
and 1 year of data (here we use λ = 300). To make sure this is a fair comparison, we evaluate fore-
casting performances on a data range that is different to the one used to identify λ*, i.e. we use the 
data in year 2016, corresponding to sample (c) in Figure 1 and 2. 

In both steps, as a measure of accuracy during each hour we use the commonly applied 
Mean Absolute Error (MAE):

, ,1
ˆ1MAE

=
= −∑T

h t h t ht
p p

T
, 
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where the “hat” sign indicates the one-step ahead forecast, T is the total number of forecasting steps 
and h indicates the hourly trading period. Results remain consistent using alternative measures of 
forecasting power, such as the root mean squared error, and we do not report them in order to pre-
serve space (the summary of results obtained using the root mean squared error is reported in Table 
A3 in the Appendix).

4. RESULTS

4.1 Nord Pool

We start by exploring in detail how models perform in the highest peak period (hour 10) 
and, in particular, how forecasting accuracy varies with λ. Figure 3 compares MAEs for values 
ranging from k to 100 for three models: SLR, ARMA(1,1) and mARX1 (Figure A3 in the Appendix 
displays the same comparison for all the remaining models). Performances vary considerably, par-
ticularly for the two regression models. Interestingly, these two models exhibit contrasting behav-
iors. On one hand, the accuracy of the mARX1 steadily improves with sample size, reaching a MAE 
of €3.25 with one of the highest values of λ. On the other hand, the SLR achieves impressive results 
with small λs (the best MAE is €3.21 for λ = 6) but, after that, steadily deteriorates, reaching a MAE 
above €4.5 for the largest sample sizes.

Figure 3: Forecasting performance at different estimation sample lengths (Nord Pool, hour 10)

Notes: Forecasting performance measured via the Mean Absolute Error (MAE). All values refer to hour 10 (peak), Nord 
Pool price for year 2015. SLR = simple linear regression (SLR), ARMA(1,1) = autoregressive moving average, mARX1 = 
mARX1 regression (Marcjasz et al., 2018a). The dot identifies the best MAE for each model. 

These reversed dynamics can be explained by the different structures of the two models. 
The mARX1 is relatively complex: it includes 9 parameters in order to capture all the main features 
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of electricity price dynamics, such as different types of seasonality and the relationship with the 
overall daily supply function. Because of its complexity, it also requires large windows for precise 
estimation. On the other hand, the SLR is extremely simple and can quickly adapt to changes in 
market conditions without the need of modelling them explicitly. For this reason, it performs well 
with small λs. Employing large samples and, therefore, implicitly assuming a slower evolution of 
the parameters over time, nullifies such advantages and deteriorates its forecasting ability. Inter-
estingly, the ARMA(1,1) is somewhat in a middle ground: it is not complex enough to capture the 
main features of price dynamics, but also not simple enough to be estimated precisely on very small 
samples. Therefore, its performance varies less significantly with λ, and remains inferior to the other 
two models for most window sizes.

In order to explore further the importance of sample length and provide a first compari-
son with the standard approach of using a fixed sample size, Table 2 reports MAEs for all models, 
again focusing on peak hour 10. The first column follows the established approach and estimates all 
models using rolling windows of 300 observations. Perhaps surprisingly, but in line with previous 
findings (Conejo et al., 2005), most models do not outperform the naïve benchmark. Only the five 
most complex models pass this apparently simple test: the two ARMAX, the two mARX, and the 
ANN(7). The mARX2 is the best model, with a MAE of €2.87. For comparison, the SLR has a MAE 
of €6.03, which is almost two times the one of the naïve benchmark, making it the worst overall 
model.

Table 2: �Forecasting performance for hour 10, Nord Pool price in year 
2015 (window b)

Fixed λ=300 λ = λ*

Model MAE λ MAE λ*

Naïve 3.64 3.64
SLR 6.03 300 3.21 6
ARMA(1,1) 4.41 300 4.34 22
ARMA(2,2) 4.38 300 4.23 rec
ARX(1) 4.21 300 3.32 23
ARMAX(1,1) 3.17 300 3.05 24
ARMAXd(1,1) 3.21 300 3.10 rec
mARX1 3.38 300 3.25 95
mARX2 2.87 300 2.79 rec
ANN(4) 3.94 300 3.84 75
ANN(7) 3.60 300 3.43 rec

Notes: “rec” stands for recursive estimation, i.e. augmenting the estimation sample with one 
additional observation each day. MAE of best performing models highlighted and in bold. 
Models’ descriptions reported in Table 1.

In the third column, we allow λ to vary and compare models using their optimal window 
size. Not surprisingly, all models improve significantly. The best performing one is still the mARX2, 
its MAE improving to €2.79. This result is achieved using a continuously expanding, recursive 
window. The most improved model is the SLR which, as already mentioned, with λ* = 6 reaches a 
MAE of €3.21. This is quite impressive for a linear regression with just two parameters: the SLR 
is now the third-best model, performing better than much more complex approaches such as the 
two neural networks and the mARX1. Indeed, the two ANNs do not seem to forecast particularly 
well, with the best of the two doing only marginally better than the naïve model. Finally, the worst 
specifications are the two ARMAs, both of them failing to outperform the benchmark for any λ. 
Altogether, allowing sample size to vary has two main impacts: a) improve forecasting performance 
and b) significantly change model ranking. 
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We now move to the second step of our comparison. For each hour and each model, we use 
the λ* selected in the previous step to evaluate forecasting performance on the last year of our data, 
i.e. year 2016. In Table 3, we focus on three of the models estimated via OLS (SLR, ARX(1) and 
mARX2) and compare them with the naïve benchmark. We report estimates for all trading hours 
using λ* and λ = 300. Several findings emerge.

Table 3: Forecasting performance for all hours, Nord Pool price in year 2016 (window c)
SLR ARX(1) mARX2

hour Naïve λ = 300 λ = λ* λ = 300 λ = λ* λ = 300 λ = λ*

1 1.69 5.55 1.45 (6) 1.53 1.45 (33) 1.29 1.17 (rec)
2 1.74 5.69 1.50 (6) 1.63 1.36 (rec) 1.01 1.08 (56)
3 1.89 5.89 1.68 (11) 1.89 1.51 (rec) 1.23 1.34 (58)
4 2.03 6.07 1.71 (6) 2.07 1.61 (rec) 1.42 1.53 (57)
5 2.05 6.22 1.66 (6) 2.16 1.68 (rec) 1.59 1.55 (59)
6 1.84 6.47 1.53 (6) 2.20 1.71 (rec) 1.63 1.42 (57)
7 1.84 6.62 1.49 (6) 2.56 1.69 (19) 1.64 1.64 (300)
8 2.31 6.74 1.81 (6) 3.32 1.96 (14) 1.88 2.37 (rec)
9 3.84 7.28 2.87 (6) 5.11 3.22 (14) 3.29 3.20 (rec)
10 4.06 7.62 3.19 (6) 5.41 3.67 (23) 3.83 3.41 (rec)
11 3.74 7.25 2.93 (6) 4.75 3.32 (23) 3.43 2.99 (rec)
12 3.03 6.50 2.31 (6) 3.66 2.63 (23) 2.69 2.40 (rec)
13 2.56 6.29 1.95 (6) 3.03 2.26 (23) 2.26 2.07 (rec)
14 2.35 6.30 1.80 (6) 2.78 2.09 (14) 2.04 1.96 (rec)
15 2.36 6.22 1.79 (6) 2.81 2.10 (14) 2.01 1.95 (rec)
16 2.35 6.25 1.76 (6) 2.68 2.09 (23) 1.96 1.92 (rec)
17 2.62 6.62 1.93 (6) 2.89 2.28 (23) 2.40 2.24 (rec)
18 3.46 7.69 2.49 (6) 3.55 2.97 (23) 3.17 2.91 (rec)
19 4.32 8.14 3.07 (7) 4.29 3.60 (23) 4.01 3.61 (rec)
20 3.70 7.13 2.77 (7) 3.76 3.16 (25) 3.38 3.10 (rec)
21 2.26 5.96 1.75 (6) 2.09 1.88 (28) 1.82 1.79 (rec)
22 1.71 5.60 1.39 (6) 1.47 1.43 (31) 1.36 1.31 (rec)
23 1.49 5.33 1.23 (6) 1.15 1.19 (100) 1.16 1.10 (rec)
24 1.47 5.26 1.28 (5) 1.10 1.01 (rec) 1.15 1.07 (rec)

Notes: MAE for the naïve model and the four models estimated via OLS. Best sample length (λ∗) selected prior to estima-
tion using 2015 data (window b) reported in parenthesis next to each MAE. Highlighted and bold is the best MAE for each 
hour. 

First, in line with the literature, peak forecasting is significantly harder than baseload fore-
casting, with the MAEs of all models significantly increasing during the peak. Second, the models 
estimated using λ* (estimated in the previous step, i.e. on year 2015 data) consistently outperform the 
models estimated using the standard fixed rolling-window approach. This is true for all models and 
all hours, leaving little doubt on the advantages provided by an appropriate window size selection 
in EPF. Third, comparing across models, there is a clear and consistent increase in λ∗ when moving 
from the SLR, to the ARX(1) and finally to the mARX2. This feature supports our previous findings 
showing how simple models perform better with short estimation windows, while complex models 
require larger samples. Fourth, simpler models forecast better during peak hours, while more com-
plex models are better suited for the off-peak. More specifically, the SLR estimated on extremely 
small samples (six or seven observations) is the best performing model for all hours between 7am 
to 9pm, while the mARX2 is the preferred model for the evening and early morning hours. Fifth, 
comparing within models but across hours, we notice how the off-peak seem to favor larger samples, 
while peak hours select smaller ones. This is particularly evident in the ARX(1) column, which re-
ports peak hours’ λ∗ between 14 and 25 observations, while most off-peak hours select a much larger 
λ∗ and even recursive samples.
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The last two points can be explained by the higher volatility and instability of peak hours. 
In such unstable circumstances, simple models have an edge over complex ones, since they can be 
estimated precisely on extremely small samples and, therefore, can quickly adapt to changing con-
ditions. On the other hand, the stable dynamics of the off-peak favor more complex specifications. 
The optimal windows size λ* changes accordingly, both across-models and within the same model.

Finally, perhaps surprisingly, in a few trading periods (hours 2, 3 and 4) the mARX2 per-
forms better with λ = 300 then with λ = λ*. These differences are small, but indicate that the optimal 
window size selected in one year is not necessarily also the optimal one for the following year. This 
result does not undermine the importance of selecting the appropriate sample length but, on the 
other hand, should stimulate the development of more advanced window size selection approaches.

Table 4: Model forecasting ranking, Nord Pool price in year 2016 (window c)
Number of trading hours in which the model is ranked:

Model 1st 2nd 3rd 4th or more MAE

SLR 13 2 9 1.97
ARMA(1,1) 1 23 2.58
ARMA(2,2) 24 2.41
ARX(1) 2 22 2.16
ARMAX(1,1) 2 10 7 5 2.01
ARMAXd(1,1) 5 6 6 7 2.03
mARX1 1 23 2.18
mARX2 2 6 2 14 2.09
ANN(4) 2 22 2.47
ANN(7) 1 2 21 2.33

Notes: All models estimated using the best sample length (λ∗) selected using 2015 data (window b). 
MAE indicates the average MAE across all hours.

Table 4 summarizes the performance of all models estimated with λ* across all hours (the 
MAEs for all models and hours are reported in Table A1 in the Appendix). Surprisingly, the best 
overall model is the SLR, which has not only the lowest average MAE but it is also the best fore-
casting model for more than half of the hours of the day. The ARMAX(1,1) and ARMAXd(1,1) are 
second and third, achieving comparable results to the SLR but with considerably larger optimal 
samples. On the other side of the spectrum, the ARMAs present the largest MAEs, confirming the 
importance of including forecasted load as explanatory variable when modelling price.

4.2 IPEX

We replicate the NP analysis on the IPEX market. To preserve space, we present directly 
the results of the second step, i.e. comparing models using λ* (again, selected using year 2015 data) 
and λ = 300 using one-step ahead forecasts for year 2016 (the performance of all models for different 
λs in hour 10 are reported in Figure A4 in the Appendix). As for the Nordic market, Table 5 focuses 
on the SLR, ARX(1), mARX2 and the naïve benchmark. Results are in line with those observed on 
the NP, with the SLR estimated on short windows outperforming the other two specifications during 
most peak hours, and the mARX2 providing the best forecasts during the off-peak. As before, the 
most complex specification selects larger estimation samples, including recursive windows. Again, 
for the mARX2 the optimal λ* is sometimes outperformed by the fixed λ = 300.

As with the NP, we summarize the performance of all models estimated with λ* across all 
hours. Results are presented in Table 6 (the full set of results with the MAEs for all models and hours 
is in Table A2 in the Appendix). The last column shows how IPEX prices are considerably harder to 
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forecast then NP ones, with the average MAEs being much higher than the ones of the Nordic mar-
ket. This feature has to be expected, given the higher volatility of the Italian price, which is evident 
even from a quick comparison of Figure 1 and 2. In this market the best model is the mARX2, which 
provides the best results for 10 out of 24 trading periods. The ARMAX(1,1) and ARMAXd(1,1) are, 
again, second and third. The SLR does not repeat the impressive performance accomplished on the 
Nord Pool, but still provides reasonable forecasts, being among the first three models for seven of 
the 24 hours. 

Table 6: Model forecasting ranking, IPEX price in year 2016 (window c)
Number of trading hours in which the model is ranked:

Model 1st 2nd 3rd 4th or more MAE

SLR 2 1 4 17 4.23
ARMA(1,1) 24 5.33
ARMA(2,2) 2 3 19 4.94
ARX(1) 1 23 4.48
ARMAX(1,1) 7 6 3 8 4.08
ARMAXd(1,1) 4 6 7 7 4.09
mARX1 1 2 4 17 4.28
mARX2 10 6 3 5 4.06
ANN(4) 24 5.47
ANN(7) 24 4.79

Notes: All models estimated using the best sample length (λ∗) selected using 2015 data (window b). 
MAE indicates the average MAE across all hours.

Table 5: Forecasting performance for all hours, IPEX price in year 2016 (window c)
SLR ARX(1) mARX2

hour Naïve λ = 300 λ = λ* λ = 300 λ = λ* λ = 300 λ = λ*

1 4.13 8.13 3.77 (7) 3.89 3.91 (rec) 2.61 2.65 (350)
2 4.07 7.75 3.56 (7) 3.90 3.85 (350) 2.63 2.62 (350)
3 3.91 7.56 3.33 (7) 3.65 3.63 (350) 2.52 2.53 (350)
4 3.95 7.21 3.33 (7) 3.64 3.66 (350) 2.65 2.69 (350)
5 3.94 6.99 3.42 (13) 3.75 3.27 (32) 2.80 2.82 (350)
6 3.65 7.35 3.31 (8) 3.76 3.24 (32) 2.76 2.74 (350)
7 3.71 8.81 3.39 (7) 4.99 3.81 (35) 3.11 3.03 (350)
8 4.47 10.62 3.82 (7) 6.67 4.38 (21) 4.07 4.17 (250)
9 5.69 11.74 5.00 (7) 8.01 5.42 (10) 4.79 4.86 (250)
10 5.67 11.47 4.08 (7) 7.29 5.20 (11) 4.77 4.86 (250)
11 5.28 11.23 4.40 (7) 6.40 4.57 (25) 4.48 4.54 (250)
12 5.07 10.80 4.42 (9) 6.17 4.55 (42) 4.28 4.31 (250)
13 4.46 10.12 3.98 (11) 5.39 5.32 (350) 3.80 3.85 (250)
14 4.51 10.16 4.03 (7) 6.25 4.22 (29) 4.02 4.12 (250)
15 5.21 10.71 4.61 (7) 7.13 4.79 (29) 4.54 4.37 (350)
16 4.93 11.16 4.35 (7) 6.95 4.56 (19) 4.42 4.37 (350)
17 5.16 11.88 4.51 (7) 6.75 4.89 (11) 4.68 4.58 (250)
18 5.09 13.84 4.85 (7) 6.05 4.91 (10) 4.85 4.88 (350)
19 6.00 13.41 5.65 (8) 6.38 5.65 (22) 5.48 5.34 (rec)
20 6.44 12.98 5.92 (8) 6.41 6.49 (250) 5.67 5.49 (rec)
21 6.48 11.18 5.83 (7) 6.30 6.16 (350) 5.66 5.61 (350)
22 5.17 9.79 4.77 (7) 4.89 4.67 (21) 4.42 4.42 (300)
23 3.90 8.92 3.53 (8) 3.66 3.46 (22) 3.24 3.20 (350)
24 3.16 8.44 2.86 (8) 3.01 2.98 (350) 2.73 2.68 (350)

Notes: MAE for the naïve model and the four models estimated via OLS. Best sample length (λ∗) selected prior to estima-
tion using 2015 data (window b) reported in parenthesis next to each MAE. Highlighted and bold is the best MAE for each 
hour. 
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4.3 The benefits of selecting the appropriate window size

Table 7 provides an overall summary of the improvements delivered by the two-steps win-
dow size selection method over the standard fixed-window approach. It presents the best models and 
MAEs for each hour of the day in the two markets according to the two strategies. In 39 hours out 
of 48, the two-steps method provides lower MAEs. Focusing on the Nord Pool, columns two to five 
show that our approach outperforms the benchmark in all but three off-peak hours. The best models 
are SLRs with very small samples for the peak hours and more complex models (mainly ARMAX 
and mARX2) with large, typically recursive samples for the off-peak. Interestingly, this means that a 
fixed estimation window of 300 observations is certainly too long for the peak, but also too short for 
the off-peak, when the best samples are typically recursive. This difference of optimal window size 
(and models) between on-peak and off-peak can explain why Marcjasz et al. (2018a) and Hubicka 
et al. (2018) find that using a weighted average of different windows performs better than both long 
and short windows in terms of overall daily average MAE. Our results suggest that varying λ (or 
weights) across hours should produce even better results.

Table 7: �Forecasting performance for the best models in each hour, Nord Pool and IPEX 
price in year 2016 (window c)

Nord Pool IPEX

λ = λ* λ = 300 λ = λ* λ = 300

hour Model (λ*) MAE Model MAE Model (λ*) MAE Model MAE

1 mARX2 (rec) 1.17 mARX2 1.29 mARX2 (350) 2.65 mARX2 2.61
2 mARX2 (56) 1.08 mARX2 1.01 mARX2 (350) 2.62 mARX2 2.63
3 ARMAXd11 (rec) 1.33 mARX2 1.23 mARX2 (350) 2.53 mARX2 2.52
4 ANN4 (rec) 1.45 mARX2 1.42 mARX2 (350) 2.69 mARX2 2.65
5 ANN4 (rec) 1.44 mARX2 1.59 mARX2 (350) 2.82 mARX2 2.80
6 ARMAXd11 (rec) 1.39 ARMAX11 1.58 mARX2 (350) 2.74 mARX2 2.76
7 ARMAXd11 (rec) 1.43 ARMAX11 1.59 mARX2 (350) 3.03 mARX2 3.11
8 SLR (6) 1.81 mARX2 1.88 SLR (7) 3.82 ARMAXd11 4.01
9 SLR (6) 2.87 mARX2 3.29 ARMAX11 (250) 4.86 mARX2 4.79
10 SLR (6) 3.19 mARX2 3.83 SLR (7) 4.80 mARX2 4.77
11 SLR (6) 2.93 mARX2 3.43 ARMAX11 (86) 4.36 mARX2 4.48
12 SLR (6) 2.31 mARX2 2.69 ARMAX11 (86) 4.14 mARX2 4.28
13 SLR (6) 1.95 ARMAX11 2.21 ARMAX11 (250) 3.82 ARMAX11 3.78
14 SLR (6) 1.80 ARMAX11 2.04 ARMAXd11 (79) 3.69 ARMAXd11 3.86
15 SLR (6) 1.79 ARMAX11 1.98 ARMAXd11 (79) 4.37 ARMAX11 4.45
16 SLR (6) 1.76 ARMAX11 1.89 ARMAXd11 (96) 4.23 mARX2 4.42
17 SLR (6) 1.93 ARMAX11 2.20 ARMAX11 (30) 4.26 ARMAX11 4.66
18 SLR (6) 2.49 ARMAX11 2.99 ARMAXd11 (200) 4.51 ARMAX11 4.62
19 SLR (7) 3.07 ARMAX11 3.71 ARMAX11 (300) 5.32 ARMAX11 5.32
20 SLR (7) 2.77 ARMAX11 3.22 ARMAX11 (200) 5.43 ARMAX11 5.48
21 ARMAX11 (rec) 1.66 ARMAX11 1.74 mARX2 (350) 5.61 mARX2 5.66
22 ARMAXd11 (rec) 1.20 ARMAX11 1.26 mARX2 (300) 4.42 mARX2 4.42
23 ARMAXd11 (rec) 1.03 ARMAX11 1.06 mARX2 (350) 3.20 ARMA22 3.23
24 ARMAX11 (rec) 0.97 ARMAX11 1.02 mARX1 (350) 2.64 ARMA22 2.68

Notes: best models and sample lengths (in parenthesis next to each model name) for each hour chosen by running one-step 
head forecasts in year 2015 (window b). MAEs calculated on the data in year 2016 (window c). Highlighted and bold is the 
best MAE for each hour and market.

The situation in the IPEX, reported in columns six to nine, appears to be less diverse across 
approaches, with both methods selecting mostly ARMAX and mARX2 models. However, the two-
step method selects again smaller windows during the peak and larger samples for the off-peak. This 
apparently small change allows our approach to outperform the standard practice in 18 out of 24 
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hours. However, for 6 hours the fixed λ works better. We do not interpret this as a sign that selecting 
the optimal window length is unimportant but, rather, that selection methods can be significantly 
improved, for example by allowing the size of the window to vary with each passing day and not 
simply employing the optimal window of the previous year.

Figure 4: Diebold-Mariano tests: best model with λ = λ* vs. best model with λ = 300 

Notes: Best models (and sample λ∗) for each hour chosen by running one-step head forecasts in year 2015 (window b). Die-
bold- Mariano tests calculated on the data in year 2016 (window c). The best models for each hour are reported in Table 7.

Nevertheless, even our simple two-step approach provides a significant improvement in 
forecasting accuracy. Figure 4 reports Diebold-Mariano (1995) tests comparing, in each hour and 
market, the best specifications according to the two-step and the standard methods.6 The improve-
ment delivered by the two-step approach is significant at the 5% level for 18 hours and at the 10% 
level for an additional 3 hours, for a total of about 45% of all trading periods. Most of these signifi-
cant values are in the Nord Pool dataset. On the other hand, in the hours in which the fixed-window 
approach performs better, MAEs are never significantly different from the ones produced by the 
two-step method. Overall, these results reveal how selecting the appropriate rolling window size for 
each trading hour is a very promising and relatively simple strategy to improve forecasting models 
for electricity prices.

5. CONCLUDING REMARKS

This analysis investigated the performance of eleven different EPF models (including both 
statistical methods and computational intelligence techniques) on two large European power mar-
kets, the NP and the IPEX. We compared the common approach of implementing all models on a 
rolling window whose size is fixed a priori against a novel and simple two-step method that selects 
the appropriate window size for each model and trading period prior to estimation.

6.  We do not compare models but forecasts, i.e. we ask whether the difference in forecasting performance we observe in 
year 2016 is significant or not. In such context, the Diebold-Mariano (1995) test is the appropriate approach, as illustrated by 
Diebold (2014). We implement the modified test by Harvey et al. (1997). For model comparison see, for example, Hansen 
and Timmerman (2015).
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Our results leave little doubt on the advantages provided by selecting suitable rolling win-
dow sizes. Considering both markets, the two-steps method outperforms the standard approach in 
39 trading periods out of 48. In 21 of such periods, the difference is significant according to Die-
bold-Mariano (1995) tests. Perhaps surprisingly, using a fixed window provides better forecasts in 
9 hours, but none of those differences is significant at any standard level. Nevertheless, this result 
implies that there is likely to be significant room for improvement in algorithms of window size 
selection, and that our two-steps approach is just a “first step” in the right direction. Further research 
should investigate the design of methods allowing window size to vary with each new observation 
and more advanced selection algorithms (e.g. Pesaran and Timmerman, 2007; Inoue et al., 2017). 
Another promising approach is combining our two-step strategy with the weighted average of mod-
els estimated with different rolling windows recently developed by Hubicka et al. (2018) and Marc-
jasz et al. (2018a).

Comparing our results across trading periods, it is clear how peak hours typically select 
simple models and small window sizes, while off-peak hours favor more complex specifications 
and longer (often recursive) samples. A reasonable justification for this difference is the higher in-
stability characterizing the price formation process during the peak. Such instability is likely to be a 
byproduct of the characteristics of electricity supply and demand and, in particular, of the non-stor-
ability of this peculiar commodity. Since the electric grid needs always to be balanced, strategic and 
time-varying bidding behavior (e.g. Fabra and Toro, 2005, Ito and Reguant, 2016) are likely to play 
a more significant role during the peak, i.e. when margin is lower, thereby generating evolutionary 
strategic dynamics. The implication for EPF is that simple models that can quickly “adapt” to vary-
ing conditions can perform extremely well in peak hours if estimated on very small rolling windows. 
In our analysis, if we consider peak hours, SLRs estimated using samples of only six or seven obser-
vation tend to perform better than much more complex specifications, such as ANNs and advanced 
ARMAX models. This result was so far overlooked because EPF comparisons typically focuses on 
relatively large rolling samples, which implicitly favor more complex models. Another important 
result is that different trading hours require very different EPF windows, therefore, window-size 
selection mechanisms are best studied on hourly basis rather than on daily averages.

Taken together, our results clearly show that the standard practice of testing EPF models on 
fixed estimation windows produces subpar results. A straightforward and yet powerful approach to 
improve forecasting accuracy is to determine optimal sample lengths (for each trading hour) prior to 
estimation or, at least, to evaluate models using different rolling-window sizes. Given its simplicity, 
we are hopeful that this practice will establish itself as standard in electricity price forecasting. As 
a general guideline, the size of the optimal window appears to depend on two main features: a) the 
complexity of the model and b) the instability of the data generating process. These relations are 
valid in both our markets and we think there are no reasons to believe that they would not hold in 
virtually all power markets across the world.

Finally, our analysis focuses on point predictions and completely bypasses the issue of 
probabilistic (or interval) forecasting. However, probabilistic forecasting in electricity markets has 
been the subject of significant recent work (e.g. Bello et al., 2016; Dudek, 2016) and it is becoming 
a fundamental tool to understand price volatility and risk. While it is reasonable to expect that select-
ing the appropriate rolling window size will produce significant improvements also to probabilistic 
forecasts and, therefore, that our approach will benefit also this area of inquiry, we leave a formal 
investigation of this issue to further work.
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APPENDIX: ADDITIONAL TABLES AND FIGURES

In this appendix, we report some Tables and Figures that may provide additional valuable 
information to the interested reader, but that we removed from the main manuscript in order to 
preserve space.

Figure A1: Nord Pool hourly averages (bold) and standard deviations (dashed) 

Notes: standard deviation of price multiplied by three and standard deviation of load multiplied by five to preserve scale.

Figure A2: IPEX hourly averages (bold) and standard deviations (dashed) 

Notes: standard deviation of price multiplied by three and standard deviation of load multiplied by five to preserve scale.
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Figure A3: Forecasting performance at different estimation sample lengths

Notes: Forecasting performance measured via the Mean Absolute Error (MAE). All values refer to hour 10 (peak), Nord 
Pool price for year 2015. This picture represents all the models non reported in Figure 3 of the main paper.
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Figure A4: Forecasting performance at different estimation sample lengths (IPEX)

Notes: Forecasting performance measured via the Mean Absolute Error (MAE). All values refer to hour 10 (peak), IPEX 
price for year 2015. This picture includes all the models in the main paper, with the black lines representing the three mod-
els in Figure 3 and the gray lines all the additional models in Figure A3. 
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Table A3: �Forecasting performance for the best models in each hour, Nord Pool and IPEX 
price in year 2016 (window c)

Nord Pool IPEX

λ = λ* λ = 300 λ = λ* λ = 300

hour Model (λ*) RMSE Model RMSE Model (λ*) RMSE Model RMSE

1 mARX2 (rec) 2.39 mARX2 2.48 mARX2 (350) 3.57 mARX2 3.54
2 mARX2 (56) 1.49 mARX2 1.28 mARX2 (350) 3.49 mARX2 3.49
3 ARMAXd11 (rec) 1.76 mARX2 1.53 mARX2 (350) 3.29 mARX2 3.28
4 ANN4 (rec) 1.87 mARX2 1.78 mARX2 (350) 3.38 mARX2 3.36
5 ANN4 (rec) 1.89 mARX2 2.06 mARX2 (350) 3.58 mARX2 3.57
6 ARMAXd11 (rec) 1.87 ARMAX11 2.06 mARX2 (350) 3.55 mARX2 3.58
7 ARMAXd11 (rec) 1.87 ARMAX11 2.04 mARX2 (350) 4.05 mARX2 4.15
8 SLR (6) 2.66 mARX2 2.63 SLR (7) 5.51 ARMAXd11 5.66
9 SLR (6) 6.40 mARX2 7.10 ARMAX11 (250) 6.85 mARX2 6.71
10 SLR (6) 7.32 mARX2 9.08 SLR (7) 7.02 mARX2 6.86
11 SLR (6) 6.42 mARX2 7.67 ARMAX11 (86) 6.05 mARX2 6.14
12 SLR (6) 4.50 mARX2 5.05 ARMAX11 (86) 5.67 mARX2 5.74
13 SLR (6) 3.07 ARMAX11 3.46 ARMAX11 (250) 5.07 ARMAX11 5.02
14 SLR (6) 2.80 ARMAX11 3.1 ARMAXd11 (79) 4.97 ARMAXd11 5.05
15 SLR (6) 2.81 ARMAX11 3.06 ARMAXd11 (79) 6.23 ARMAX11 6.19
16 SLR (6) 2.73 ARMAX11 2.91 ARMAXd11 (96) 5.95 mARX2 6.07
17 SLR (6) 3.49 ARMAX11 4.26 ARMAX11 (30) 6.78 ARMAX11 7.05
18 SLR (6) 5.48 ARMAX11 7.62 ARMAXd11 (200) 6.98 ARMAX11 7.27
19 SLR (7) 7.06 ARMAX11 10.35 ARMAX11 (300) 8.32 ARMAX11 8.32
20 SLR (7) 5.62 ARMAX11 7.54 ARMAX11 (200) 7.91 ARMAX11 7.95
21 ARMAX11 (rec) 3.10 ARMAX11 3.03 mARX2 (350) 7.78 mARX2 7.91
22 ARMAXd11 (rec) 2.08 ARMAX11 2.05 mARX2 (300) 6.02 mARX2 6.02
23 ARMAXd11 (rec) 1.46 ARMAX11 1.46 mARX2 (350) 4.44 ARMA22 4.60
24 ARMAX11 (rec) 1.32 ARMAX11 1.36 mARX1 (350) 3.53 ARMA22 3.58

Notes: This table replicates Table 7 in the main paper using, as a measure of forecasting performance, Root Mean Squared 
Error (RMSE) instead of Mean Absolute Error (MAE). Like in Table 7, RMSE is calculated on the data in year 2016. High-
lighted and bold is the best RMSE for each hour and market.


