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Intra-day Electricity Demand and Temperature

James McCullocha and Katja Ignatievab 

abstract

The objective of this paper is to explain the relationship between high frequency 
electricity demand, intra-day temperature variation and time. Using the Gener-
alised Additive Model (GAM) framework we link high frequency (5-minute) ag-
gregate electricity demand in Australia to the time of the day, time of the year and 
intra-day temperature. We document a strong relationship between high frequency 
electricity demand and intra-day temperature. We show a superior model fit when 
using Daylight Saving Time (DST), or clock time, instead of the standard (solar) 
time. We introduce the time weighted temperature model that captures instanta-
neous electricity demand sensitivity to temperature as a function of the human 
daily activity cycle, by assigning different temperature signal weighting based on 
the DST time. The results on DST and time weighted temperature modelling are 
novel in the literature and are important innovations in high frequency electricity 
demand forecasting.
Keywords: High Frequency, Electricity, Instantaneous Demand, Temperature, 
Generalised Additive Model (GAM)
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1. INTRODUCTION

This paper introduces a parsimonious model for modelling the relationship between high 
frequency electricity demand and intra-day temperature. Modelling frameworks developed in the 
literature for high frequency electricity data suggest to either use multi-equation modelling (Cottet 
and Smith, 2003; Cancelo et al., 2008; Soares and Medeiros, 2008) which treats each intra-day 
period as a different series, or univariate time series modelling (Darbellay and Slam, 2000; Smith, 
2000; Taylor, 2003, 2010, 2012; Kim, 2013) that treats the entire time series as a single series. A 
comprehensive overview of electricity demand forecasting models is provided in Hahn et al. (2009). 
The major drawback of the first methodology is that it is a more complex model that can require a 
large number parameters to be estimated. A univariate time series model is parsimonious and, since 
our primary goal is to elucidate the relationship between temperature and high frequency demand, 
we choose a parsimonious univariate modelling approach for demand forecasting.

We use time of the day, time of the year and outside temperature as the main driving factors 
when predicting electricity demand at 5-minute frequency. To our knowledge, none of the existing 
research papers have incorporated these three variables simultaneously for demand forecasting at 
such high frequency. Temperature variations are documented to play a crucial role when forecast-
ing electricity demand. Intuitively, during cold winter months electricity demand is expected to 
increase due to electrical heating, whereas during hot summer months the use of air conditioners 
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and coolers also leads to increased electricity consumption. A non-exhaustive list of papers that deal 
with forecasting demand using low frequency data (typically, monthly or daily) includes Pardo et 
al. (2002), Moral-Carcedo and Vicens-Otero (2005), Bessec and Fouquau (2008), Hekkenberg et al. 
(2009), Lam et al. (2009), Tung et al. (2013), Moral-Carcedo and Perez-Garca (2015). None of these 
research works incorporates time of the day as an explanatory variable. Other weather variables, 
such as sunshine hours, rainfall, wind, humidity, cloudiness etc. are shown to have a much lower im-
pact on electricity demand, see e.g. Basta and Helman (2013) and Moral-Carcedo and Perez-Garca 
(2015). Furthermore, focusing exclusively on the temperature allows us to avoid potential collinear-
ity problems when simultaneously employing several weather variables as explanatory variables in 
the regression modelling1, see e.g. Lam et al. (2009) and Moral-Carcedo and Perez-Garca (2015). 
Studies that have analysed intra-day (hourly) patterns in electricity demand based on the hour-of-the 
day and have documented the existence of this effect include Darbellay and Slam (2000), Taylor 
(2003), Mirasgedis et al. (2006), Soares and Medeiros (2008), Taylor (2010) and Kim (2013). The 
paper by Taylor (2010) also incorporates an intra-year effect.

This paper introduces a parsimonious Generalised Additive Model (GAM) forecasting 
model for high frequency intra-day (5-min) aggregate electricity demand. The parsimonious model 
allows us to focus exclusively on modelling the link between electricity demand and human activity 
cycle (modelled through the time of the day), the intra-day temperature variations and time of the 
year. High frequency data enables us to obtain interesting and novel insights into demand forecast-
ing. Using yearly and seasonal demand models, we document a strong relationship between high 
frequency electricity demand and intra-day temperature. When examining intra-day demand using 
daylight saving time (DST), i.e. clock time and standard (astronomical) time, we show that using 
the DST (clock) time provides a significant improvement to the model fit. We explain how and why 
model fit improves even further when we introduce the time weighted temperature model, which 
assigns different temperature signal weighting based on the DST time. This relates the magnitude 
of the temperature demand signal to the human daily activity cycle. The motivation behind using 
the time weighted temperature model is the observation that electricity demand attributed to tem-
perature variation away from the maximum comfort temperature (20.0 degrees Celsius2) is time 
sensitive: Electricity consumption is less sensitive to temperature variation away from the ‘comfort’ 
temperature late at night and early in the morning, which are time periods characterised by low hu-
man activity. At the same time, electricity is more sensitive to temperature variation away from the 
‘comfort’ during periods of high human activity. We observe that the minimum morning sensitivity 
is at 4:00am, the morning maximum is reached at 9:00am and the night decline begins at 18:30pm. 
Our proposed methodology, which suggests to weight temperature demand signal depending on the 
DST time (daily activity cycle) is confirmed when using cross-sectional regressions estimated at 
each (5-minute) time interval, resulting in cross-sectional daily time dependent demand.

The contributions of this paper are as follows. Firstly, our results allow us to characterise 
the high frequency relationship between electricity consumption and temperature. To our knowl-
edge, none of the papers in the existing literature model demand and temperature data at such high 
(5-minute) frequency. Secondly, we show that the sensitivity of electricity demand to temperature 
is a function of time of day. Daily times of low human activity such as 04:00am have a much lower 
demand/temperature sensitivity than a period of higher human activity as as 18:00pm. In addition, 
we demonstrate that when using DST (clock time) as an independent variable for electricity demand 
prediction, we obtain a significant improvement compared to using standard (astronomical) time. 

1. For example, temperature is expected to be correlated with sunshine hours and cloudiness.
2. This threshold is chosen empirically to provide the optimal model fit.
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We emphasise that the results on DST and time weighted temperature modelling are novel in the 
literature and are important innovations in high frequency electricity demand forecasting. Finally, 
this is the first study that predicts electricity demand in Australia using both the outside temperature 
and time of the day.

The parsimonious GAM model is accurate, with a MAPE (Mean Average Predicted Error) 
next day forecast error of 3.20%.3 The best publicly available electricity demand forecast is the 
Australian Energy Market Operator (AEMO) next day forecast with a MAPE error of 2.04%. The 
AEMO forecasting model is not publicly available and it is reasonable to infer the AEMO forecast-
ing model uses multivariate prediction variables with advanced but opaque forecasting techniques 
such as Deep Neural Networks or Gradient Boosting. The parsimonious GAM model allows for a 
transparent understanding of the high frequency interaction of temperature and demand and pro-
vides a solid foundation for the development of more accurate and complex forecasting models.

The remainder of the paper is organised as follows. Section 2 describes data used in our 
analysis. GAM model specification and its variations tested in the paper are introduced in Section 3. 
An extensive empirical analysis demonstrating the quality of fit of the proposed models to the entire 
data set as well as seasonal models is presented in Section 4. Section 5 deals with the prediction 
results for the electricity demand, and Section 6 concludes the paper.

2. DATA

This section discusses and provides some preliminary analysis on the data used in this 
study, which will enable us to formulate appropriate model specifications in Section 3.

2.1 Data Description

We use instantaneous intra-day electricity demand in Megawatts (MW), available at 5 
minute frequency for the Australian state of New South Wales (NSW) and the Australian Capital 
Territory (ACT) for the year 3-February-2014 to 2-February-2015. Demand is aggregate data (i.e. 
including households, companies, industrial and public sectors) that has been downloaded from the 
Australian Energy Market Operator (AEMO) website.4 The electricity demand observations are 
merged with instantaneous temperature data over the same period and frequency. The temperature 
data was obtained from the Australian Government Bureau of Meteorology.5

We have restricted our consideration to business days only,6 which results in 250 days of 
data and each day of data has 12*24 = 288 five minute demand observations, from 00:00–00:05 until 
23:55–24:00. Thus, a total of 72,000 five-minute demand and temperature data points will be used 
for the empirical analysis.

The 5-minute temperature data is recorded in the Sydney suburb of Homebush, which is a 
suburb located close to the population centre of the Greater Sydney urban area. If we assume that 
the Homebush temperature represents the instantaneous temperature in Greater Sydney, then this 
temperature observation is valid for 61% of population of the NSW/ACT electricity demand area. 

3. The yearly model 5 forecast MAPE error, for further details refer to the section on prediction (Section 5).
4. Current and archived data are available from http://www.nemweb.com.au/REPORTS/CURRENT/ and http://www.

nemweb.com.au/REPORTS/ARCHIVE/, respectively. Python software has been used to download these forecasts.
5. Available from http://www.bom.gov.au.
6. Time dependent intra-day variation of electricity is significantly different for weekends and public holidays compared 

to business days. Since we are primarily interested in modelling the high frequency relationship between temperature and 
demand, we have restricted our consideration to business days only.
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However, it should be noted that the assumption that we can represent temperature related electric-
ity demand in the NSW/ACT demand area with a single temperature is a deliberate simplification 
to preserve the parsimonious property of our modelling. An obvious improvement to the accuracy 
of modelling electricity demand as a function of temperature would be to use multiple temperature 
(and potentially humidity) measurements from different suburban, urban and rural areas and set up 
an adequate average temperature index weighted by population.

To provide an idea of the relationship between demand and temperature data, we show in 
Figure 1 winter and summer patterns of demand (top panel) and temperature (bottom panel) over 
the five business days of a typical week. In both, summer (red line, 12-January-15 to 16-January-15) 
and winter (blue line, 14-July-14 to 18-July-14) graphs we observe a cyclical pattern in evolution 
of temperature and demand throughout the week. The winter demand graph experiences two daily 
peaks, which correspond to an increasing usage of heating during the cold morning and evening 
hours, while the demand during the day (when the outside temperatures are relatively high) drops 
to a lower level. The summer demand graph shows peak demand during the hot afternoon hours 
caused by the use of coolers and air-conditioners. The winter and summer demand patterns suggest 
presence of a so-called minimum demand ‘comfort’ temperature, such that the magnitude of the 
difference between the current temperature and the ‘comfort’ temperature is strongly correlated 
with demand. We will demonstrate in Section 3 that the value of the minimum demand ‘comfort’ 
temperature can be set equal 20°C. The magnitude of the difference between the current temperature 
and the ‘comfort’ temperature (abs[Temp – 20]) is strongly correlated with demand. For example, 
Monday, January 12, 2015 was a hot day and the corresponding demand graph shows a pronounced 
spike mid-afternoon. The double morning and evening peaks of the winter pattern are pronounced 
because temperatures are well below 20°C, with a dip in demand in the afternoon as the temperature 
rises. However, it is interesting to note that these peaks do not correspond to the minimum tem-
perature early in the morning, but correspond to lower temperatures when people are active. This is 
clearly seen by examining the winter demand pattern in the early morning. The minimum demand 
for Tuesday, July 15, 2014 at 4am is essentially the same as the minimum demand for Thursday, July 
17, 2014 at 4am, even though Tuesday 4am is considerably colder than Thursday 4am. The reason 
for this is intuitive: There are low levels of activity at 4am and the effect of the stronger tempera-
ture demand signal on Tuesday is attenuated by low personal and economic activity. Therefore, the 
temperature demand signal is time dependent. The relationship between temperature and demand 
shown in Figure 1 is our primary motivation for modelling intra-day electricity demand as a func-
tion of temperature.

2.2 Data Exploration

To get an idea about characteristics of the data, and in particular, obtain some insights on 
sensitivity of the demand with respect to temperature, we perform some preliminary analysis that 
will assist us in model development in Section 3. One advantage of using high frequency tempera-
ture and demand data is that it gives us a large amount of data: We have 250 days, and 288 5-min-
ute observations on each day, which allows us to perform cross sectional regressions using 250 
observations at each individual 5 minute data point, thus, leading to a total of 288 regressions. We 
emphasise that these cross sectional regressions are not considered to be a model (unlike models that 
will be specified in Section 3, which will be developed in order to predict demand out-of-sample), 
but are used merely as a tool to examine the data.

We fit the following linear model 288 times to each 5 minute period during the day: 
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| |0 1 2= 20.0 ,D Temp Yearα α α ε+ − + +  (2.1)

 where the dependent variable D is electricity demand in Megawatts (MW).
The independent variable | Temp – 20.0 | is the absolute value of the difference of the re-

corded temperature and 20°C. We refer to the constant temperature of 20°C as the ‘comfort’ or 
minimum demand temperature (see Section 3 for comfort temperature analysis). This result is well 
known in the literature and is basis for “degree-days” commonly used in modelling of the tempera-
ture dependence of different economic variables, such as electricity demand, as well as energy deriv-
atives. Further details on the approaches studying the impact of temperature on electricity demand 
using heating degree days (HDD) and cooling degree days (CDD) can be found, e.g., in Al-Zayer 
and Al-Ibrahim (1996), Sailor and Munoz (1997), Valor et al. (2001), Sailor (2001), Pardo et al. 
(2002); Amato et al. (2005) and Xiao et al. (2007).

The independent variable Year is the scaled time of the year with values in the interval 
[0,1), where 0 corresponds to the first data record of electricity demand for the 5 minute standard 
time period 3-February-2014 00:00–00:05 (DST 3-February-2014 01:00–01:05) and ((365*288)–
1) / (365*288) = 0.999990487 corresponds to the final electricity demand record for the standard 
time period 2-February-2015 23:55–24:00 (DST 3-February-2015 00:55–01:00).

Figure 1:  Top panel: Summer demand (red line 12-Jan-15 to 16-Jan-15) and winter demand 
(blue line: 14-Jul-14 to 18-Jul-14). Bottom panel: Temperature in summer (red line) 
and winter (blue line). 

Notes: The ‘comfort’ (black line) in the temperature graph is 20°C. The graph shows that the temperature demand signal is 
time dependent.
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Figure 2:  This graph displays 288 time indexed coefficients for the exogenous time dependent 
demand αt

0, ∈ [1,...,288] (left panel), time demand sensitivity to temperature 
αt

1, ∈ [1,...,288] (middle panel) and cross sectional change in yearly demand 
αt

2, ∈ [1,...,288] (right panel), obtained using cross sectional regression in Equation 
(2.1). 

 
Notes: All coefficients αt

0 and αt
1 are highly significant. In the right panel the coefficients marked with a blue cross are not 

significant at the 99% confidence level. The y-axis is (inverted) decline in demand in MW for the year.

Fitting cross sectional regressions from Equation (2.1) to the data gives us a 288 point 
vector of time indexed coefficients 0α , 1α  and 2α . Here, 0 , [1, ,288]t tα ∈   are the exogenous daily 
demand cycle coefficients. If temperature corresponds to ‘comfort’ or minimum demand tempera-
ture of 20°C, and Year = 0, which corresponds to the first data record of electricity demand, then the 
dependent demand D will correspond to exactly 0

tα . The empirical time indexed demand sensitivity 
to temperature is given by coefficients 1, [1, ,288]t tα ∈  , and 2 , [1, ,288]t tα ∈   are coefficients for 
the cross sectional change in yearly demand. Figure 2 summarises coefficient estimates 0

tα , 1
tα  and 

2
tα  in the left, middle and right panel, respectively. Each of the 288 fitted coefficients 0

tα  (left panel) 
is highly significant with a median t-statistic of 130 and a median standard error of 59. The cross 
sectional empirical time demand sensitivity to temperature coefficients 1, [1, ,288]t tα ∈   (middle 
panel) represent the time variation in demand due to temperature in MW per degree. They are 
highly significant with a median t-statistic of 15.1 and a median standard error of 8.0. The y-axis 
represents additional demand in MW generated by each degree variation from the ‘comfort’ tem-
perature (| Temp – 20.0 |). The pattern of the cross-sectional empirical time demand sensitivity to 
temperature is intuitive and relates to the daily activity cycle: The minimum morning sensitivity is 
at 4:00am, the morning maximum is reached at 9:00am and the night decline begins at 18:30pm. 
We observe that electricity demand due to temperature variation away from the maximum comfort 
temperature (20°C) is time sensitive. For example, if the temperature at 4am is 12°C which is 8°C 
colder than the minimum demand comfort temperature, the increase in demand (the coefficient 1α  in 
MW per degree) will be relatively small because of low human activity at 4am. Conversely, if it is 
12°C at 9am (again 8 = | 20 – 12 |), temperature related increase in demand (the coefficient 1α  in MW 
per degree) will be much greater because of the higher levels of human activity at 9am. Thus, elec-
tricity consumption is less sensitive to temperature variation away from the ‘comfort’ temperature 
late at night and early in the morning. The result on time sensitivity of demand due to temperature is 
a major result in this paper, which will be confirmed using models in Section 3 and empirical results 
in Section 4. To our knowledge, this result does not appear in the literature. Finally, a 288 point 
vector of year coefficients from the cross sectional regressions 2 , [1, ,288]t tα ∈   (right panel) shows 
the decrease in electricity demand across the year as a function of time (the coefficient 2α  in MW 
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per year). One observes that the yearly decline in demand has been concentrated during the daylight 
hours (demand replacement with solar power), and in particular, the greatest demand falls have 
been in the morning and afternoon peak periods. This may also indicate that peak demand pricing 
is causing time insensitive electricity consumers to shift demand to non-peak periods. This is sup-
ported by the explanation for the decline in electricity demand, proposed by the Australian Energy 
Market Operator (AEMO, 2014), which is related to “energy efficiency savings in response to high 
electricity prices over recent years”. The fact that the decline in demand is concentrated in the peak 
demand periods and not spread more uniformly across the day has very important implications for 
models that we will introduce in Section 3.

3. MODEL SPECIFICATION

The objective of our analysis is to develop a comprehensive high frequency modelling 
framework to link electricity demand to the outside temperature that can be used for out-of-sample 
prediction of demand. For these purposes we introduce the Generalised Additive Model (GAM), see 
e.g. Hastie and Tibshirani (1990), Wood (2006). Specifically, at each point in time t, t = 1,...,N with N 
being the total number of observations, we link the demand to the temperature in the following way: 

| |0 1 2= ( ) 20.0 ,t t t t tD s Time Temp Yearβ β β ε+ + − + +Model 1 :  (3.1)

 where tD  is demand and tTemp  is temperature. tTime  is a number in the interval [0,1) where 0 is the 
time recorded for the electricity demand in the 5 minute period 00:00–00:05, 1 / (12*24) = 0.0034722 
is the time recorded in the period 00:05–00:10 and ((12*24) 1) / (12*24) = 0.9965278−  is the time 
recorded for the 5 minute period 23:55–00:00. There are two time fields for each demand record in 
the data; standard (astronomical) time and the DST.7 During the period when DST is active, the DST 
field is advanced by 1 hour or 0.041667 =1 / 24. For example, for the 5 minute time period on the 3rd 
of February 2014 (DST is active) where the standard time is recorded as 00:00–00:05 ( = 0.0tTime ), 
the DST time is recorded as 01:00–01:05 ( = 0.041667tTime ). The instantaneous electricity demand 
( tD ) recorded for this 5 minute period was 7135.67 megawatt/hour. Outside of the period where DST 
is active, the DST and standard time fields are equivalent.

It is assumed that the temperature independent electricity demand ( )ts Time  is a daily pe-
riodic cyclic empirical function of tTime  over the sample period. We use GAM regression to de-
termine the periodic function ( )s ⋅  of tTime . This periodic function is a cyclic cubic spline. A cyclic 
cubic spline function is a piecewise cubic function continuous up to second derivatives at the knots. 
At the endpoints of each daily cycle, the function values and derivatives up to the second order are 
equal, which creates a smoothed periodic function.8 We notice that the function ( )s ⋅  can be specified 
with a smoothing parameter (number of spline knots), or the number of degrees of freedom (df , the 
number of spline knots – 2), which is assumed to be larger than one (with =1df  corresponding to 
a linear fit). The df  parameter is chosen in such a way that it leads to the best goodness-of-fit mea-
sured by the Akaike Information Criterion (AIC), and we find that =10df  is optimal. The GAM 
in Equation (3.1) has a linear predictor that is specified in terms of a sum of smooth functions of 

7. It is intuitive (and will be shown below) that personal and economic activity is linked to daylight saving time (DST), 
i.e. clock time rather than the actual (standard) time. The standard time is astronomical time. Daylight saving time (+1 hour) 
in Sydney commences at 2am on the first Sunday in October and the change from daylight saving (–1 hour) to standard time 
is 3am on the first Sunday in April. In our sample period (from February 3, 2014 to February 2, 2015) daylight saving ends on 
April 6, 2014 (clocks turned back from 3am to 2am) and starts on October 5, 2014 (clocks turned forward from 2 am to 3 am).

8. R function s(Time, bs = “cc”) is used.



168 / The Energy Journal

All rights reserved. Copyright © 2020 by the IAEE.

predictor variables (Wood, 2006). This technique is particularly suited to modelling intra-day actual 
electricity demand as a function of the time dependent electricity demand due to daily personal and 
economic activity.

The temperature dependent electricity demand in Equation (3.1), | Temp – 20.0 |, is the ab-
solute value of the difference of the recorded temperature and the ‘comfort’ or minimum demand 
temperature 20°C. The value of 20°C is determined empirically as as follows: We fit Model 1 in 
Equation (3.1) using different temperatures ranging from 17°C to 23°C. These temperatures are used 
as minimum demand temperatures minTemp  in the temperature dependent term of the demand regres-
sion, β1 | Tempt – Tempmin |, i.e., ={17,18,19,20,21,22,23}minTemp . The objective is to analyse which 
minimum demand temperature results in a better fit. The regression results (DST is used as the time 
index) for the temperature dependent demand term β1 | Tempt – Tempmin | are reported in Table 1. The 
results show that 20°C is the marginally optimal constant for the minimum demand temperature 
since the regression temperature dependent coefficient β1 | Tempt – 20 | has a slightly higher t-statistic 
and the regression has a slightly higher 2

adjR .9 This result will be confirmed graphically in Section 
4 when fitting the demand as a function of temperature. We note, however, that the difference be-
tween 20°C and 19°C or 21°C is very small, which implies that temperature dependent demand is a 
non-linear function of the difference between the minimum demand temperature and the measured 
temperature, with small differences producing little or no change in temperature dependent demand. 
This possibility has been examined in empirical Section 4.3 where we fitted Model 3 (Equation 
(3.3)) that captures the relationship between the temperature and demand via a non-linear function 
modelled by non-periodic splines.

Table 1:  Estimation results for regression in Equation (3.1) (Model 1) with different minimum 
demand temperatures.

β1 Estimate β1 Std.error β1 t-value R2
adj

β1 | Temp – 17 | 95.2*** 0.58 163.9 0.795
β1 | Temp – 18 | 108.4*** 0.54 202.4 0.820
β1 | Temp – 19 | 112.0*** 0.49 226.2 0.835
β1 | Temp – 20 | 108.1*** 0.47 229.3 0.837
β1 | Temp – 21 | 99.3*** 0.46 215.5 0.829
β1 | Temp – 22 | 89.4*** 0.46 194.9 0.816
β1 | Temp – 23 | 79.4*** 0.46 172.7 0.801

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

The third term Yeart in Equation (3.1) is a linear long term drift in average electricity de-
mand, as introduced in Section 2.2.

The GAM regression models assume the residual term tε  to be Gaussian with zero mean.10 
We also introduce extensions of Model 1, which will be shown to enhance the quality of fit provided 
by Model 1 (refer to Section 4). Model 2, that incorporates a weighted temperature demand signal, 
is given by the following equation: 

| |0 1 2= ( ) ( ( )* 20.0 )t t t t t tD s DST w DST Temp Yearβ β β ε+ + − + +Model 2 :  (3.2)

9. Note that this minimum demand temperature is slightly higher than the 18°C used as the reference minimum demand 
temperature in energy derivatives. For a description of the over-the-counter (OTC) weather derivatives traded on the Chicago 
Board of Trade (CBOT), refer to Alaton et al. (2002).

10. For the residual term, using the R GAM regression software, one can select any distribution from the exponential 
family of distributions.
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This model is a time weighted temperature demand model. The difference between Model 
1 and Model 2 is the term w(DSTt)*| Tempt – 20.0 |, where the function w(∙) is a piecewise continuous 
sinusoidal function of DST that returns values between 0 and 1. As can be readily seen from the 
formulation above, this function weights the temperature demand signal where 1 represents the ‘full’ 
temperature signal (| Tempt – 20.0 |) and 0 completely attenuates the temperature signal. It is intuitive 
and reasonable that the demand sensitivity to the temperature signal | Temp – 20.0 | depends on the 
human and economic activity. This daily activity cycle can be readily determined by examining the 
sample daily electricity demand cycle with the temperature demand component removed. In other 
words, w(DSTt) has approximately the same shape as s(DSTt) and, therefore, like s(DSTt), is driven 
by the daily activity cycle. The cross sectional regressions performed in Section 2.2 clearly show the 
sensitivity to the daily exogenous demand cycle.

The third model uses non-periodic splines to model the non-linear relationship between 
temperature and demand: 

0 2= ( ) ( ) .t t t t tD s DST h Temp Yearβ β ε+ + + +Model 3 :  (3.3)

This model can be referred to as the nonlinear temperature dependent demand model. Here, 
in addition to the cyclic spline function of time s(DSTt) (that will be present in all models), we in-
corporate a non-periodic (non-cyclic) spline function of temperature h(Tempt) instead of using the 
function from Model 1 (second term on the right hand side of Equation (3.2)).

The fourth model uses non-periodic splines to model the non-linear relationship (interac-
tion) between time weighted temperature and demand: 

0 2= ( ) ( * ( )) .t t t t t tD s DST h Temp w DST Yearβ β ε+ + + +Model 4 :  (3.4)

The fifth model applies non-periodic splines to model the non-linear relationship of long-
term change in demand as a function of the Year using the fitted spline term k(Yeart): 

0= ( ) ( * ( )) ( ) .t t t t t tD s DST h Temp w DST k Yearβ ε+ + + +Model 5 :  (3.5)

Models 1 through 5 use the entire data (one year) for the estimation, thus, they all have the 
Yeart term included in the model. An implicit assumption of these models is that exogenous time de-
pendent demand s(DST) is stationary across the year. However, when examining the cross sectional 
regression in Section 2.2, it was shown that the term s(DSTt) is not stationary across the year. Thus, 
the evolution of exogenous time dependent demand s(DST) may be better captured by the seasonal 
demand model, which caters for non-stationarity of the exogenous time dependent demand by fitting 
regressions over shorter periods. Thus, we fit the following regressions for each calendar month: 

| |0 1= ( ) ( ( )* 20.0 ) .t t t t tD s DST w DST Tempβ β ε+ + − +Model 6 :  (3.6)

The seasonal demand Model 6 in Equation (3.6) is a simple two-term version of Model 2 
in which the yearly regression term (β2 Yeart) has been removed. This seasonal model, which will 
be fitted for each calendar month, is expected to better capture demand fluctuations compared to the 
yearly demand models (Models 1 to 5).

4. EMPIRICAL ANALYSIS

In this section we perform empirical analysis using the demand and temperature data de-
scribed in Section 2 and models introduced in Section 3. Each of the following sub-sections 4.1 
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through 4.6 will discuss the results obtained from fitting data using Models 1 through 6, respec-
tively, comparing the fit of each model to the previously obtained results.

4.1 Model 1

Model 1 is a time dependent demand model (Equation (3.1)), which is indexed by DST or 
standard (astronomical) time. The results from the model fit obtained using DST and standard time 
are tabulated in panels A and B of Table 2, respectively.

Table 2:  Model 1 using DST and standard time: Estimation results for regression in Eq. (2) 
(Model 1) where Time variable is given by the DST (panel A) and standard time 
(panel B).

Estimate Std.error t-value F test (p-value) R2
adj

Panel A: Model 1 with daylight saving time 

Intercept 7795.2*** 4.08 1908.55 0.837
s(DSTime) 35513(0.000)
| Temp – 20 | 108.146*** 0.5134 211.29
Year –319.01*** 6.00 –53.15

Panel B: Model 1 with standard time 

Intercept 7804.9*** 4.39 1776.69 0.811
s(Time) 29693(0.000)
| Temp – 20 | 106.05*** 0.51 209.36
Year –318.8*** 6.46 –49.37

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

From both panels we observe that all terms are highly statistically significant.11 In partic-
ular, both regressions show a long-term decline in electricity demand (the term Year in the regres-
sion), with daily demand falling 319 Megawatts over a one year period (–3.5%). This decline in 
electricity demand is in line with the media release from the Australian Energy Market Operator 
(AEMO) (2014).12 The temperature regression term (| Tempt – 20 |) shows the expected positive rela-
tionship to electricity demand. In Section 3 we have discussed the choice of the ‘comfort’ tempera-
ture using regressions with different ‘comfort’ temperatures, and have demonstrated that 20°C is the 
optimal constant for the minimum demand temperature. We notice that using DST (panel A) rather 
than standard time (panel B) as the independent variable gives an improvement of fit compared to 
using standard time, which is reflected in the higher 2

adjR  and larger value of the F-statistic. This 
result is intuitive as the daily personal and economic demand cycle depends on clock (DST) time 
rather than standard time.

4.2 Model 2

In this section we report the results from fitting Model 2 (Equation (3.2)), which is a 
time weighted temperature demand model. Here, temperature is time weighted using a constant 
piecewise continuous smooth function of DST, w(DSTt). The results are reported in Table 3. We 
observe that Model 2 produces a superior fit compared to Model 1 (Table 2), which is evident 

11. In this and the following tables we use the autocorrelation-robust standard errors.
12. “The 2014 NEFR [National Electricity Forecasting Report] shows reduced residential and commercial consumption 

in most NEM regions due to strong growth in rooftop photovoltaic (PV) system installations and ongoing energy efficiency 
savings in response to high electricity prices over recent years.”
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from the higher value for R2
adj and more significant temperature term (higher value for the t-stat for  

 w(DSTt)*| Temp – 20 |.

Table 3: Model 2 using time weighted temperature: Estimation results for regression in Eq. (3) (Model 2). 

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 7772.4*** 3.7 2100.91 0.862
s(DSTime) 28250(0.000)
w(DSTt)*| Temp – 20 | 216.5*** 0.7884 274.57
Year –360.55*** 5.52 –65.28

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

4.3 Model 3

To examine the possibility that the relationship between temperature difference and de-
mand is non-linear, we fit Model 3 (Equation (3.3)) where the relationship between the temperature 
and demand is modelled by non-periodic splines. The results of this regression are reported in Table 
4. We observe that the term h(Temp) is highly significant, so is the s(DSTime) term. However, 2

adjR  
from Model 3 is marginally lower compared to Model 2, which is due to the fact that we do not time 
weight the temperature signal in Model 3 using function ( )w ⋅ .

Table 4: Model 3 using nonlinear temperature: Estimation results for regression in Eq. (3.3) (Model 3). 

 Estimate  Std.error  t-value  F test (p-value) R2
adj

Intercept  8323.4***  3.4  2435.38   0.841
s(DSTime)     30722 (0.000)  
h(Temp)     7987 (0.000) 
Year  –338.4***  6.0  –56.17 

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.

4.4 Model 4

In this subsection we present the results for the time weighted temperature model (Model 
4) in Equation (3.4). Table 5 reports estimation results. The results from the t-tests indicate that both 
variables, temperature and year are highly statistically significant, and the value of the F-statistic for 
the weighted term h(Temp*w(DST)) is larger compared to the F-statistic for the unweighted term 
h(Temp) from Model 3 (Table 4). We also observe the largest (compared to Models 1 through 3) 
value for the 2

adjR  corresponding to 0.869, which again points towards a superior fit for the weighted 
temperature model.

Table 5:  Model 4 using time weighted nonlinear temperature: Estimation results for 
regression in Eq. (3.4) (Model 4). 

Estimate Std.error t-value F test (p-value) R2
adj

Intercept 8328.6*** 3.1 2687.42 0.869
s(DSTime) 22115(0.000)
h(Temp*w(DST)) 11754(0.000)
Year –349.0*** 5.5 –63.92

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively.
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Figure 3:  Nonlinear temperature dependent electricity demand using non-periodic splines. 

Notes: Black line shows the resulted fitted demand when using Model 3 (Equation (3.3)) with the unweighted temperature 
spline function h(Tempt). Red line shows the resulted fitted demand when using Model 4 (Equation (3.4)) with the time 
weighted spline temperature function h(Tempt*w(DSTt)). For comparison, the green line is the linear relationship of Model 
1 (Equation (3.1)).

We compare Models 3 and 4 in Figure 3: Black line shows fitted demand when using Model 
3 with the unweighted temperature spline function h(Tempt); red line corresponds to the non-linear 
temperature dependent demand function resulting from fitting Model 4 that uses a spline function 
h(Tempt*w(DSTt)). For comparison, the green line corresponds to the linear relationship of Model 
1. It is clear from this graph that the relationship is ‘U’ shaped at the minimum demand ‘comfort’ 
temperature and this explains the optimal 20°C minimum demand temperature, as discussed above. 
We notice that for both weighted (red) and unweighted (black) functions, fitted demand takes nearly 
identical values for large temperatures, and the curves deviate from each other for small tempera-
tures. The unweighted model is less sensitive to low temperatures than it is to high temperatures. 
This is intuitive and supports the time-weighted model of temperature sensitivity. A cold morning 
at 04:00am generates a much lower increase in demand compared to a cold morning at the same 
temperature at 09:00am due to the difference in human activity between these two times. 

4.5 Model 5

Now we assume that changes in demand as a function of the Year variable are non-linear. 
This is achieved, as suggested above, by fitting a non-periodic spline function. We fit Model 5 
(Equation (3.5)), which uses the spline term k(Year). The results are reported in Table 6. We observe 
that the addition of the non-linear term k(Yeart) produces an R2

adj of 0.898, which is higher than R2
adj 

obtained for Model 4 (R2
adj = 0.869). Figure 4 shows the fitted functional form of the term k(Yeart) 

(black line). This was fitted with DST set to noon (DST = 0.5) and temperature set to the optimal 
‘comfort’ temperature (no temp signal; Temp = 20°C). The red line is a linear approximation of k(-
Yeart); it shows a decline in demand across the year. This is consistent with the linear fitted decline 
in Model 4.
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Table 6: Model 5 using nonlinear yearly variation in demand. 
Estimate Std.error t-value F test (p-value) R2

adj

Intercept 8156.8*** 1.36 6000 0.898
s(DSTime) 34731(0.000)
h(Temp*w(DST)) 8971(0.000)
k(Year) 4190(0.000)

Notes: Estimation results for regression in Eq. (6) (Model 5); ***, ** and * indicate significance at 0.001, 0.01 and 0.05 
significance level, respectively.

Figure 4: Fitted spline function of yearly changes in demand.

Notes: The fitted functional form of the k(Yeart) term (black line) in Model 5 (Equation (6)), fitted using DST set to noon 
(DST = 0.5) and temperature set to the optimal ‘comfort’ temperature (no temp signal; Temp = 20°C). The red line is a linear 
approximation of k(Yeart).

4.6 Model 6

We now examine the performance of the seasonal demand model (Model 6) that is fitted 
for each calendar month.

The daily smoothed (periodic splines) electricity demand curves, s(DSTt), for different 
months of the year that result from fitting Model 6 are shown in Figure 5. It is important to notice 
that even if the DST (activity) demand cycle is homogeneous across months, the s(DSTt) term will 
change each month (as it is evident from the figure) because of the change in the daily temperature 
cycle between months. From the figure we can observe the formation of two peaks from autumn 
(April and May, not March) to winter (June–August). These peaks disappear from spring (Septem-
ber and October still have two peaks, but not November) to summer (December–February) with 
an increase of the maximum demand. Furthermore, the peak demands are larger in winter than in 
summer. It is not the purpose of our paper to disentangle that part of the daily s(DSTt) term that is 
due to intrinsic DST (activity time) and that part that is due to the daily temperature cycle. However, 
performing the regression each month has two implications: 



174 / The Energy Journal

All rights reserved. Copyright © 2020 by the IAEE.

•  Any seasonal change in the daily DST (activity time) related demand will be captured in 
the s(DSTt) term, resulting in a better fit to the data. 

•  The seasonal daily temperature variation will also be captured in the s(DSTt) term. This 
effect is obvious when we examine the empirical s(DSTt) functions in Figure 5. The win-
ter s(DSTt) functions (in June, July, August) show twin peaks of demand in the morning 
and evening when the temperature is significantly colder than the ‘comfort’ temperature 
(20°C). The daytime demand is lower as the temperature rises towards the ‘comfort’ 
temperature. Conversely, in summer (December, January, February) the peak demand 
reaches its maximum in the afternoon when temperatures are above the ‘comfort’ tem-
perature. 

Estimation results for Model 6 are summarised in Table 7. We observe that all variables 
are highly statistically significant, with R2

adj ranging between 0.803 to 0.963. It is worth noticing that 
the smallest R2

adj of 0.803 is observed for the month of December. If however, we exclude the last 
three days of the year (29, 30, 31 December), the R2

adj increases to 0.906. This result can be explained 
referring to Figure 6 that shows the actual demand (black line) and predicted demand (red line) for 
December in the top panel, and associated temperatures in the bottom panel. The period between 
Christmas and New Year (December 29, 30, 31) is a ‘defacto’ holiday period with many businesses 
closed (even though they are officially business days). Although this period is not formally a holi-

Figure 5:  Daily smoothed (periodic splines) electricity demand curves for different months resulted from Model 6, 
for different months of the year (indexed by DST).
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day, it is characterized by a very low electricity demand. An implicit assumption in the regression is 
that the DST (activity) based demand cycle is homogenous across days and that demand innovations 
are driven by temperature. However, by including the ‘defacto’ holiday period, the underlying de-
mand in the data is not homogeneous and the regression fitted using this low demand data is ‘biased’ 
downwards causing temperature driven electricity peaks earlier in the month (e.g., December 2: 
Max 34°C; December 3: Max 33°C) to be underestimated. Conversely, the regression overestimates 
temperature driven electricity peaks during the low demand ‘defacto’ holiday period (e.g., Decem-
ber 29: Max 30°C; Decembers 30: Max 34°C).

Table 7:  Model 6: Estimation results for monthly seasonal regression model in Eq. (3.6) 
(Model 6). 

Month  Coefficent Estimate Std.error t-value F test (p-value) R2
adj

February 2014  Intercept 7961.7*** 7.3 1095.7 0.928
s(DSTt) 3174(0.000)
w(DSTt)* | Tempt – 20 | 197.3*** 3.5 56.9

March 2014  Intercept 8018.1*** 5.5 1446.0 0.963
s(DSTt) 8855(0.000)
w(DSTt)* | Tempt – 20 | 46.2*** 2.7 17.0

April 2014  Intercept 7775.9*** 6.7 1167.2 0.919
s(DSTt) 5872(0.000)
w(DSTt)* | Tempt – 20 | 27.5*** 3.2 8.5

May 2014  Intercept 7792.0*** 6.9 1134.5 0.952
s(DSTt) 12085(0.000)
w(DSTt)* | Tempt – 20 | 109.0*** 2.6 41.6

June 2014  Intercept 8031.1*** 12.6 637.3 0.939
s(DSTt) 6574(0.000)
w(DSTt)* | Tempt – 20 | 129.3*** 3.5 37.3

July 2014  Intercept 8223.1*** 11.7 700.7 0.941
s(DSTt) 6683(0.000)
w(DSTt)* | Tempt – 20 | 147.9*** 2.5 58.3

August 2014  Intercept 7956.1*** 13.1 607.5 0.932
s(DSTt) 3964(0.000)
w(DSTt)* | Tempt – 20 | 184.2*** 2.9 62.9

September 2014  Intercept 7496.7*** 8.2 914.7 0.870
s(DSTt) 3179(0.000)
w(DSTt)* | Tempt – 20 | 139.6*** 2.6 53.4

October 2014  Intercept 7363.4*** 4.8 1529.4 0.934
s(DSTt) 6765(0.000)
w(DSTt)* | Tempt – 20 | 126.9*** 1.7 76.4

November 2014  Intercept 7509.0*** 6.3 1192.6 0.900
s(DSTt) 2848(0.000)
w(DSTt)* | Tempt – 20 | 233.0*** 2.4 95.2

December 2014  Intercept 7615.2*** 10.8 703.7 0.803
s(DSTt) 1108(0.000)
w(DSTt)* | Tempt – 20 | 139.3*** 4.1 34.1

December 2014  Intercept 7585.7*** 8.0 948.0 0.906
December 29,30,31 s(DSTt) 1839(0.000)
excluded w(DSTt)* | Tempt – 20 | 231.0*** 3.3 70.3

January 2015  Intercept 7498.6*** 8.3 898.1 0.930
s(DSTt) 1862(0.000)
w(DSTt)* | Tempt – 20 | 279.8*** 2.9 97.9

Notes: ***, ** and * indicate significance at 0.001, 0.01 and 0.05 significance level, respectively. 
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Figure 6:  Top panel: actual (black line) and predicted (red line) demand for December 2014; bottom panel: the 
associated temperatures.

5. PREDICTING ELECTRICITY DEMAND

This section deals with electricity demand prediction using Model 5 (Equation (3.5)), 
which has been identified as the best performing model for modelling yearly data (i.e. when mod-
elling the entire sample), as well as aggregated monthly prediction using Model 6. We will fit the 
following three models:

1.  ‘Oracle’ model, which specifies the input parameter temperature Tempt as the actual 
temperature, i.e., it assumes that the actual temperature is known. This is the benchmark 
model as it contains all the information about the temperature variable. 

2   ‘Zero’ model, which uses calculated temperatures based on long-term seasonal tem-
perature variations and a physics based model of intra-day temperatures. The model of 
intra-day temperatures of the ‘zero’ model is based on the physics of daytime solar ra-
diation (sinusoidual) and night-time cooling (exponential decline) using a model devel-
oped by Göttsche et al. (2001), with time calculations developed in Due and Beckman 
(2013). In this model the intra-day (diurnal) temperature Tday(t) between the time of the 
minimum daily temperature tmin (before sunrise) and the time of sunset tsunset is given by: 

( )= ( )sin( ( )), .
2

min
day min max min min sunset

max min

t t
T t T T T t t t

t t

π −
+ − ≤ ≤

−  
(5.1)

We also define 



Intra-day Electricity Demand and Temperature / 177

Copyright © 2020 by the IAEE.  All rights reserved.

= ( ).sunset day sunsetT T t
 

(5.2)

The intra-day (diurnal) temperature Tnight(t) between the time of sunset tsunset and the time 
of the minimum temperature tmin(nextday) on the next day is given by 

( )
( )

( )= exp log( / ) ,sunset
night sunset min nextday sunset

min nextday sunset

t t
T t T T T

t t

 −
  −   

(5.3)

( )< < .sunset min nextdayt t t

This is a ‘zero knowledge’ model and, thus, we refer to this model as the ‘Zero’ model.
3.  ‘Forecast’ model uses the publicly available next day forecast maximum and minimum 

temperatures. Specifically, 16:20 DST (‘the 6 o’clock news forecast’) Australian Bu-
reau of Meteorology forecast of next day maximum and minimum temperatures at the 
Sydney suburb of Paramatta13 and then applies Göttsche et al. (2001)’’s physics to inter-
polate intra-day temperatures for the next day.

We split the data into in-sample data (used for estimation of the model) and out-of sample 
(used for prediction) in the following way: We sample one out of ten data points randomly and use 
it as the out-of-sample dataset, the remaining (non-sampled data) is used as the in-sample dataset. 
This results in 90% of all data points used for the estimation and the remaining 10% used for the 
prediction and validation of the results. We notice that the ‘Oracle’ model assumes that all the in-
formation about the temperature variable is available, which appears unrealistic for any predictive 
model of electricity consumption, as actual temperatures are unknown at the time of prediction. On 
the other hand, the ‘Zero’ model assumes that no information about next day temperature is avail-
able, and is also unrealistic since any forecaster of next day electricity demand will have access to 
meteorological temperature forecasts. The ‘Forecast’ model is, thus, the most realistic electricity 
forecasting model.

The empirical results obtained from forecasting electricity demand using the ‘Oracle’ 
model (complete temperature information), the ‘Zero’ model (no temperature information) and the 
‘Forecast’ model (one day ahead forecast for the maximum and minimum temperatures) are pre-
sented in Table 8. Panel A corresponds to the monthly seasonal model (Model 6, Equation (3.6)) 
while panel B corresponds to the best performing yearly model (Model 5, Equation (3.5)). The 
following errors are reported in Table 8: (i) the median error, which is the median computed across 
all errors, whereby the error is defined as the difference between predicted and actual demand, 
scaled by the actual demand and expressed in percentages; (ii) the standard deviation error, which 
is the standard deviation computed across all errors defined in (i); (iii) the MAPE forecasting error, 
defined as the average of the absolute value of the errors defined in (i).

The Australian Energy Market Operator (AEMO) publishes electricity demand forecasts 
every 2 hours. We use the shortest AEMO forecast period (16.5 hours), published at 12:00pm DST 
the previous day for 48 half hour periods (24 hours) beginning at 04:30am the following day. Each 
demand forecast is made at the 10%, 50% (median) and 90% deciles. We compare the median 
forecasts for all business days from June 1, 2014 to May 31, 2015.14 These are tabulated below for 

13. Paramatta is the closest suburb (approx 10 kilometres) to Homebush where Australian Bureau of Meteorology fore-
casts are available. The median difference between the forecast minimum at Paramatta and the actual minimum at Homebush 
was –0.2°C (std dev. 1.4°C) and the difference between the forecast maximum at Parramatta and the actual maximum at 
Homebush was –0.1°C (std dev. 1.4°C).

14. Unfortunately, we were unable to obtain AEMO forecasting data to exactly match our February 3, 2014 to February 
2, 2015 data period.
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comparison with the models developed above.15 The AEMO forecast data can be regarded as the 
best publicly available commercial electricity demand forecasts. However, the AEMO forecasting 
model and methodology is not publicly available.

Table 8:  Out-Of-Sample Electricity demand prediction statistics. 
Panel A: Model 6 (Monthly) 

Median Error Std Dev. Error MAPE 

‘Oracle’ 0.34% 3.58% 2.72%
‘Forecast’ 0.89% 4.25% 3.12%
‘Zero’ 0.53% 4.39% 3.23%

Panel B: Model 5 (Yearly) 

Median Error Std Dev. Error MAPE

‘Oracle’ 0.09% 3.87% 2.94%
‘Forecast’ 0.53% 4.15% 3.20%
‘Zero’ 0.26% 4.15% 3.28%
AEMO 0.07% 2.67% 2.04%

Notes: Electricity demand prediction statistics for the ‘Oracle’ model (complete temperature infor-
mation), the ‘Zero’ model (no temperature information) and the ‘Forecast’ model (one day ahead 
forecast for the maximum and minimum temperatures). These are compared to Australian Energy 
Market Operator (AEMO) demand forecasts.

As expected, using ‘Oracle’ temperature data results in the best prediction statistics, lead-
ing to the smallest standard deviation and the smallest MAPE (Mean Average Predicted Error) 
forecasting error. The ‘Forecast’ (realistic) temperature data leads to the intermediate performance, 
and the ‘Zero’ (no knowledge) temperature data has the least predictive power (refer to Table 8). 
We note that the yearly Model 5 (Equation (3.5)) has good predictive power and is very similar in 
performance to Model 6 (Equation (3.6)).

The MAPE ‘Forecast’ yearly prediction error is 3.20%, 1.16% higher than the AEMO 
MAPE forecast error of 2.04%. It is reasonable to infer that in order to minimise forecast error, the 
AEMO model uses multiple weighted temperature forecasts, unlike our parsimonious single tem-
perature model. We discuss the direction of further forecast model development in the Conclusion 
(Section 6).

Finally, in Figure 7 we plot prediction errors (MAPE) as a function of time in 5 minute 
intervals, which allows us to distinguish the quality of prediction during the peak and off peak hours. 
We observe that all three forecasting models behave similarly during the times of low human activ-
ity (in the early morning hours and late evening hours), resulting in smaller percentage errors (typi-
cally, below 3%). The discrepancy between errors becomes more pronounced between 10:00am and 
21:00pm (increased human activity), where the largest errors are observed at 14:00pm and 21:00pm. 
In particular, the more realistic ‘Forecast’ model results in the largest MAPE of above 4% during the 
evening hours (between 18:00pm and 21:00pm).

6. CONCLUSION

This paper introduces a parsimonious Generalised Additive Model (GAM) to relate high 
frequency (5-minute) electricity demand in Australia to the time of the day, time of the year and 

15. These forecasts can be found on the AEMO web server at the URLs: http://www.nemweb.com.au/REPORTS/CUR-
RENT/Short_Term_PASA_Reports/ and http://www.nemweb.com.au/REPORTS/ARCHIVE/Short_Term_PASA_Reports/ 
for current and archived reports, respectively.
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outside temperature. Using yearly and seasonal demand models, we document a strong relationship 
between high frequency electricity demand and intra-day temperature. We establish a link between 
electricity demand and human activity cycle (modelled through the time of the day), and show that 
using Daylight Saving Time (DST) as an independent variable for the time indexed daily periodic 
demand consumption function provides a small but highly significant improvement of fit compared 
to using standard (astronomical) time.

The major novel result of this paper is that the temperature demand signal is time weighted. 
This relates the magnitude of the temperature demand signal to the daily activity cycle based on 
DST. This result is intuitive: A cold morning at 04:00am generates a much lower increase in demand 
compared to a cold morning with the same temperature at 09:00am due to the difference in personal 
and economic activity between the two times. Regression models performed using time weighted 
temperature demand outperform models that were not time weighted. The result is also confirmed 
when using cross-sectional regressions of the change in demand as a function of the temperature for 
all 5 minute periods across the day.

Our parsimonious GAM model is accurate with a MAPE forecasting error of 3.2% (see 
section 5 for details). This is an excellent result, given the limitation of temperature data to only 
one temperature observation at each point in time. The parsimonious GAM model, thus, provides 
a solid foundation for the development of more elaborate and accurate models for forecasting high 
frequency electricity demand.

As directions for future research, further development of the parsimonious GAM model to 
increase forecasting accuracy will depend on improved temperature and climate data. Temperature 
variations of 10°C or more between coastal and inland suburbs of Sydney are common. In addition, 
there are several substantial cities several hundred kilometres from Sydney. A more accurate model 

Figure 7:  Monthly prediction errors (MAPE) as a function of time (5 minute intervals) for 
the ‘Oracle’ model (complete temperature information), the ‘Zero’ model (no 
temperature information) and the ‘Forecast’ model (one day ahead forecast for the 
maximum and minimum temperatures). The AEMO 30 minute forecasting model is 
also shown for comparison.
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would include demand weighted temperatures from these locations, in addition to other environ-
mental variables such as wind and humidity. If the goal is to provide the most accurate demand fore-
cast, then advanced but opaque forecasting techniques such as Deep Neural Networks or Gradient 
Boosting could be utilised.
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