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Carbon Tax and Energy Intensity: Assessing the Channels of 
Impact using UK Microdata
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abstract

Prior empirical studies indicate that carbon taxes have a negative impact on energy 
intensity, yet, the literature is unable to shed much light on the channels through 
which a moderate carbon tax reduces industrial energy intensity. Using a two-
stage econometric approach, we provide the first comprehensive analysis of the 
five components of the energy intensity gain (EIG) arising from the UK climate 
change levy (CCL). First, we propose an EIG decomposition based on a stochastic 
energy cost frontier and a confidential panel of UK manufacturing plants covering 
2001–2006. In the second stage, we identify the impact of the CCL on EIG com-
ponents using an instrumental variable (IV) approach that addresses the endoge-
neity of the carbon tax rules. Factor substitution and technological progress are the 
dominant firm responses to the CCL, while energy efficiency is surprisingly the 
least responsive component. Our findings underscore the challenge arising from 
overreliance on narrow energy policy objectives such as energy efficiency im-
provements, suggesting that a broader policy approach aimed at improving overall 
firm resource allocation might be more appropriate. 
Keywords: Climate Change Levy, Stochastic frontier analysis, Energy intensity 
gain, Firm Behavior, Manufacturing
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1. INTRODUCTION

It is well established from previous studies that climate change mitigation will require 
substantial abatement of greenhouse emissions from different sectors of the economy (see Pacala 
and Socolow, 2004). However, because sectors differ in terms of their levels of energy intensity, the 
abatement effort required across different sectors would vary accordingly.1 For instance, achieving 
the much-needed global emissions reduction will require significant emissions abatement in the pro-
duction technologies of manufacturing plants. This is because manufacturing is a major contributor 
to worldwide pollution, accounting for around 20% of global greenhouse gas (GHG) emissions (See 

1.  See for instance, Levinson and Taylor (2008) and Martin, et al. (2014) for analyses and discussions on sectoral hetero-
geneity in emissions arising from differences in abatement costs and technology.
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IEA, 2010, IPCC, 2014). Similarly, it accounted for around 17% of UK GHG emissions in 2015, 
mainly dominated by carbon dioxide (CO2) emissions2 (MacCarthy et al. 2016). 

However, considering that manufacturing output is largely tradable, there are valid con-
cerns that policy instruments aimed at curbing industrial emissions could harm international com-
petitiveness, as well as result in job losses and plant closures (Martin et al., 2014). Consequently, 
the implicit challenge in designing an optimal industrial climate policy centers on the regulatory 
dilemma arising from the trade-off between the joint policy objectives of pollution abatement and 
preserving international competitiveness. This issue underscores the preference of economists for 
market-based policy instruments3 in the textbook approach for designing optimal climate change 
policies. 

The most common type of market-based policy instrument is the Pigouvian tax4 which can 
be imposed on energy units or carbon content in order to signal the social marginal cost (SMC) of 
pollution arising from its impact on climate change. While the negative relationship between carbon 
taxes and energy intensity is well-established in the literature,5 existing studies are unable to shed 
much light on the channels through which a moderate carbon tax leads to reductions in energy in-
tensity.6 As a consequence, important open questions remain about the behavioral components that 
drive or dominate firm energy intensity reductions: how do firms achieve reductions in their energy 
intensity when they are faced by a moderate carbon tax liability? How do industrial climate policies 
place binding constraints on firm behavior? Are the carbon tax-induced changes in actual firm be-
havior consistent with predicted policy outcomes?

In practice, there exists a range of responses by firms to a moderate tax on carbon. For 
instance, firms may adjust the input mix within their production technologies in response to changes 
in the relative price of energy arising from a carbon tax liability. Secondly, they might install new 
capital with lower energy-using technologies. A third alternative is that firms may pursue low carbon 
innovation efforts or knowledge through RandD investments that deliver efficiency improvements 
in existing production technologies. Furthermore, it is also possible that some firms may choose to 
exploit scale economies in order to absorb the shocks to energy costs due to the carbon tax. 

In this paper, we evaluate the components of energy intensity reductions arising from the 
UK carbon tax, using a panel of 493 manufacturing firms over the period 2001–2006. In the first 
place, the empirical evaluation of market-based climate policies on manufacturing is scarce, due 
in part to the lack of suitable microdata (Martin et al., 2014). In particular, the dearth of studies on 
the impact of UK carbon tax on the components of energy intensity reduction is even more severe, 
such that the empirical literature is unable to shed any light on the crucial policy discussions above. 
Using a two-stage econometric approach, we provide the first comprehensive analysis of the five 
components of industrial energy intensity gain (EIG) due to the UK CCL. In the first stage of our 

2.  Given that carbon dioxide is the dominant pollutant, it is unsurprisingly the focus of many climate change policy 
instruments.

3.  The general notion about the superiority of market-based instruments such as pollution taxes and emissions trading 
schemes (ETS) stems from the theoretical arguments that they are more efficient than alternative approaches such as com-
mand and control policies (see Pearce, 1991; Bovenberg and Goulder, 2002; for some discussions). More specifically, mar-
ket-based policy instruments allow for cost-effective allocations of abatement burdens among firms and they provide contin-
uous (dynamic) incentive for technological innovations for pollution abatement (Jaffe and Stavins, 1995; Williams, 2012). 

4.  In the UK, the single most important market-based instrument is the Climate Change Levy (CCL), which is a carbon 
tax imposed on industrial sectors’ carbon emissions.

5.  See for instance, Bjorner and Jensen (2002), Floros and Vlachou (2005), Martin et al. (2014)
6.  For instance, Martin et al. (2014) highlighted the importance of gaining a better understanding of how firms achieve 

reduction in energy intensity in response to the UK CCL.
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research design, we propose an energy intensity decomposition based on a stochastic energy cost 
frontier. In the second stage, we estimate the impact of the carbon tax on the EIG components using 
an instrumental variables (IV) approach that addresses the endogeneity of the UK CCL rules. 

Contrary to the much-touted idea that energy conservation through efficiency improve-
ments is the most effective energy policy approach to tackling global emissions, we find that the 
dominant firm responses to the UK CCL are factor substitution and technological progress. These 
findings signal a need for broader energy policy objectives towards improving overall resource allo-
cation, as opposed to the narrow objective of energy efficiency improvements. 

The remainder of the paper is organized as follows. In section 2, we provide a background 
and description of the UK CCL scheme. Section 3 set out our two-stage econometric methodology. 
In section 4, we describe our estimation strategy with emphasis on how we address the econometric 
issues arising from the unobserved heterogeneity and endogeneity problems within our specified 
models. Section 5 describes the data set employed, and section 6 contains the econometric results 
and study findings. Section 7 concludes.

2. BACKGROUND ON UK CLIMATE CHANGE LEVY (CCL) PACKAGE

During the last 20 years, the reduction of greenhouse emissions from manufacturing has 
become a top priority of the UK energy and climate policy agenda. In the same vein, it seems that 
reduction in industrial energy use features prominently in the policy plans towards meeting ambi-
tious carbon reduction targets. For instance, a recent paper by the Committee on Climate Change 
(CCC) stated inter alia: 

The CCC recommend the implementation of a stronger policy framework for industrial 
energy efficiency in order to meet the fifth carbon budget. 

(HM Government, 2016)7 

However, the reduction in industrial sector energy remains a source of political debate, 
especially as it mirrors the policymaker’s dilemma between low-carbon economy and industrial 
sector competitiveness or job creation.8 These considerations are at the core of the CCL package as a 
climate policy response to the joint objectives of reducing industrial GHG emissions and enhancing 
industrial competitiveness. The package, which was introduced in 2001, has two components: (i) a 
carbon tax component namely climate change levy (CCL), which is a tax per unit9 of industrial fuel10 
purchased and (ii) the Climate Change Agreement (CCA), which is an alternative scheme available 
to preserve the competitiveness of energy intensive manufacturing plants through a reduced carbon 
tax liability. 

While the CCL is a straightforward tax on energy and carbon content, CCAs11 entail ne-
gotiated energy (or energy intensity) reduction targets between manufacturing firms and the UK 

7.  For instance, in like manner, the CCL package was projected as the main source of carbon savings (6.6 million tonnes 
carbon (MtC) towards an overall reduction goal of 20.8 MtC by 2010) under the UK Climate Change Programme (HM 
Government, 2006).

8.  These sentiments are echoed by Hansford, et al. (2004) who argue that the CCL would raise production cost and limit 
international competitiveness, with little potential to achieve the UK’s ambitious carbon reduction targets.

9.  Usually per kilowatt hour (kWh) equivalent
10.  The fuels taxed under the scheme are electricity, natural gas, coal and non-transport liquefied petroleum gas (LPG). 

Other low carbon fuels (e.g. electricity generated from renewable energy sources or from combined heat and power) are 
exempted from the carbon tax. 

11.  See http://www.cclevy.com/

http://www.cclevy.com/
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Environment Agency,12 in exchange for up to 80% discount on the CCL liability.13 The negotiated 
CCAs are undertaken at two levels. Firstly, ‘umbrella agreements’ on sector-wide energy use or 
CO2 emissions targets are agreed between sector/trade associations and the environmental agency. 
Secondly, at the micro level, plant-level ‘underlying agreements’ are negotiated between firms and 
the environmental agency for specific energy reduction targets by the plant. 

One critical feature of the CCL package, which raises vital questions in our research de-
sign, is the self-selection of firms encountered in typical voluntary emissions abatement schemes 
such as the CCA. Effectively, plants under the CCL scheme are liable to pay the full carbon tax rates, 
whereas CCA plants receive discounted tax liabilities in exchange for binding energy reduction or 
efficiency targets. One the one hand, these targets (if stringent) could influence firm opt-out deci-
sions from the CCA. On the other hand, a further compounding feature of the CCA’s design is the 
non-eligibility of some plants for CCA participation. CCA eligibility is based on polluting activities 
regulated under the Pollution Prevention and Control (PPC) act of 1999, such that a manufacturing 
firm is eligible if at least one of its installation is engaged in a PPC activity (e.g. a blast furnace). 
This implies that, albeit CCA participation is voluntary, not every plant is eligible. This results in a 
selection endogeneity into the CCA scheme, with the implication that non-eligible plants incur the 
full CCL tax liability by default. In short, the design of the CCL-CCA package design embodies 
non-random selection14 of plants into one of the schemes.15

Turning now to the CCL component, one of its important features worth mentioning is the 
non-uniformity of tax rates across fuels. For instance, Martin et al. (2014) demonstrated that the 
carbon tax rates per unit of energy varied significantly across fuel types, ranging from 6% on coal 
to 10% on electricity; and approximately 17% on natural gas. These tax rates indicate, for instance, 
that the carbon contained in gas is on average taxed at more than twice the rate as the equivalent 
carbon content of coal. The variation in tax rates across fuel types is a second source of endogeneity 
concern since the effective or overall carbon tax rates per unit of total energy consumed is dependent 
on firm fuel mix. In this case, coal reliant firm pay lower carbon tax rates whereas the converse is the 
case for firms with relatively high levels of electricity or gas consumption. 

3. LITERATURE REVIEW 

There is a substantial body of literature on the impact of carbon taxes in general.16 How-
ever, there is a dearth of studies on the impacts of carbon taxes on industrial sectors despite their 
widespread adoption across advanced economies. In terms of the UK literature, a small body of 

12.  Department for Environment, Food, and Rural Affairs (DEFRA)
13.  See De Muizon and Glachant (2004) for a detailed description of the agreements and the nature of the commitments 

under the CCA scheme.
14.  This non-random self-selection feature of the CCL/CCA scheme is central to the potential endogeneity of the carbon 

tax variable within an empirical assessment or policy evaluation, such as the one undertaken here. We address this endoge-
neity issue in greater detail in Section 4. 

15.  See De Muizon and Glachant (2004), Martin et al. (2014) for some discussion on CCA eligibility rules. For instance, 
Martin et al. (2014), provides strong empirical evidence that CCA plants are, on average, larger older and highly energy 
intensive than CCL plants. These larger dirtier plants are (by default) likely to join the CCA scheme in order to receive sub-
stantial tax discount savings since they hitherto use large amounts of energy. A converse argument can be made for smaller 
plants who are likely to have lower fixed costs and levels of energy consumption and are likely to choose to pay the full tax 
rate on modest energy use rather than join the CCA scheme. 

16.  See for instance, Aldy and Stavins (2012) for a survey on the experience and literature pertaining to carbon taxes in 
developed countries.
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literature on the CCL17 exists, although the micro-econometric evaluation of its impact on industrial 
sectors is sparse. Agnolucci, et al. (2004) and Ekins and Etheridge (2006) provide empirical evi-
dence on “announcement effect” and “awareness effect” of the CCL. Barker et al. (2007) simulate 
the impact of CCAs on sectoral output, employment, and energy demand. More recently, Martin 
et al. (2014) conducted a microeconometric analysis of the impact of the CCL/CCA on a range of 
outcome variables such as energy intensity, plant exit and employment. Four main challenges exist 
with the existing studies. 

First, most of the studies are based on aggregate, regional and sectoral data which make it 
impossible to obtain insight on the microeconomic impacts of the CCL package. This is a crucial 
limitation, given that carbon tax impacts are likely to vary across firms. Secondly, sectoral time 
series studies suffer from the impossibility of disentangling the impact of the CCL from other ag-
gregate policy shocks. Thirdly, simulation studies are susceptible to the challenges arising from 
their assumptions about key analytical variables. Because they tend to use simulated trajectories 
of energy intensity as counterfactual baselines upon which carbon tax effects are estimated, their 
estimated results can be sensitive to the baseline assumptions. Fourthly, although the more recent 
micro-econometric evaluation by Martin et al. (2014) mostly alleviates18 the above three issues 
above, one major challenge persists. The available literature has been unable to shed light on the 
channels through which manufacturing plants reduce their energy intensity in response to the CCL. 

While the empirical evidence from the sparse body of literature (e.g. Bjorner and Jensen, 
2002; Floros and Vlachou, 2005; Martin et al., 2014) demonstrates the significant impact of carbon 
taxes on industrial energy use and pollution, we know little about how firms achieved the substantial 
reductions in energy intensity. Unbundling these firm responses to a moderate carbon tax is impor-
tant for at least two reasons. First, it allows for a comprehensive policy evaluation that presents a 
more complete picture of the energy intensity adjustments within production technologies, which 
might be impossible in a typical impact study. Secondly, because most market based environmental 
policy instruments are usually geared towards stimulating energy efficiency, this study allows us to 
assess the implicit assumption or widely held notion that climate policy instruments lower energy 
intensity19 through energy efficiency improvement.20 

A recently emerging strand of the literature (e.g. Filippini and Hunt, 2011, 2012; Saunders, 
2013) highlights that energy intensity embodies a range of behavioral, economic and technological 
components, such that it might be misleading to treat EIG and energy efficiency improvements 
as equivalents. As these studies demonstrate, if energy efficiency is a small component of overall 
energy intensity reduction, it raises great potential for policy failure in cases where huge public 
investments are directed towards stimulating efficiency improvements in the face of other dominant 
components. Therefore, gaps in knowledge about firm responses to climate policy instruments can 

17.  See Varma (2003) and Fullerton, et al. (2008) for a detailed background and discussions on the CCL. 
18.  Since their analysis is based on a micro-econometric assessment of the CCL for a panel of UK manufacturing plants, 

it is devoid of the potentially arbitrary baseline assumptions required in simulation studies, while also exploiting the response 
of firm performance variables to the CCL both over time and across plants, which is impossible to achieve in a sectoral study. 

19.  Conventionally, falling energy intensity (represented by the ratio of energy to output: e/y) is often treated as an indi-
cator of energy efficiency improvement by engineers and energy policy makers.

20.  This implicit assumption is well established in the academic literature (see Linares and Labandeira, 2010; Gilling-
ham, et al., 2009 for reviews and discussions). Similarly, policymakers and practitioners appear to also anchor most policy 
objectives on reducing energy intensity through improved energy efficiency. For instance, the UK CCL package aims to en-
hance the efficiency of energy use in the industrial sectors and this objective is echoed by the Committee on Climate Change 
(CCC) recommendation for the “implementation of a stronger policy framework for industrial energy efficiency in order to 
meet the fifth carbon budget”. (see HM Government, 2016). 
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be costly. In cases of misdirected policy objectives, it becomes crucial to ask if policy instruments 
are better directed towards stimulating other dominant responses?21 

4. METHODOLOGY 

In this paper, our aim is to evaluate the channels of impact of the UK carbon tax on man-
ufacturing firms’ behavior. This objective poses two critical challenges. The first challenge relates 
to the question of how to unbundle EIG into its components. The second challenge pertains to the 
endogeneity of the carbon tax variable within our empirical setting. To address these challenges, we 
adopt a two-stage research design. Firstly, we obtained estimates of the EIG via a decomposition of 
productive performance using SFA22 in Stage 1. Secondly, in Stage 2, we explore the relationship 
between these components and the CCL. Although we are not aware of an empirical study which 
decomposes the energy cost function as done in this study, the use of productivity decomposition 
from SFA as part of multi-stage econometric techniques has been explored by previous studies.23

4.1 Stage One: Unbundling EIG

In the first stage of our research design, we employ a productivity approach based on 
the stochastic frontier analysis (SFA). Consider a representative firm with a production24 tech-
nology which can be represented by a production function ( )⋅F  in which an input vector25 
( ) ( )1, , , ,′ = … Ke x x ex  is used to make output y. Energy input is symbolized by e and its market price 
relative to the numeraire is pe, so we write the energy input dual cost function or short run energy 
cost function at time t where t also represents the state of technology as follows.

( ) ( ){ }* , , , min : , ,= = =′ ′e
e e ee

p e c p y t p e y F e tx x  [1]

The expression in [1] is increasing and concave in pe, homogeneous of degree +1 in pe and increas-
ing in y. The ( )1, ,… Kx x  are treated as quasi-fixed inputs. It is embedded in the standard stochastic 
frontier analysis with the multiplicative error terms 0>u  representing the one-sided asymmetric 
inefficiency and v representing the two-sided zero mean idiosyncratic error, capturing measurement, 
sampling and specification error. Actual cost on energy by the cross-section observation 1,= …i I  at 
time 1, ,= …t T  is:

( ) ( ) ( ), , ,′= = +e e
it e e it itit itC p e c p y t exp u vx  [2]

21.  Even if we made a strong behavioral assumption that energy efficiency improvement has a proportional impact on 
energy intensity, another strand of the literature (e.g. Saunders, 2013; Adetutu et al., 2016) highlights second-round behav-
ioral failures in which the impact of energy efficiency improvement on reducing energy intensity might be partially or en-
tirely offset through the so called “rebound effect”. These second-round effects provide further motivation for an assessment 
of other behavioral responses to climate policy instruments.

22.  Examples of SFA studies applied to energy and emissions include Boyd (2008)
23.  For instance, previous studies such as Adetutu et al (2015, 2016) employ a two-stage econometric approach to in-

vestigating issues relating to pollution and energy rebound effects using productivity measures from a first stage SFA. Some 
other studies in the banking literature (e.g. Cipollini and Fiordelisi, 2012; Duygun et al., 2015) also employ first stage SFA 
measures as part of a broad range of multi-stage analysis. 

24.  We study this issue using the production-theoretical decomposition analysis (PDA) technique. Within a production 
theory framework, PDA examines CO2 emission changes from the perspective of productive efficiency. See Wang, et al. 
(2018) for an application.

25.  Throughout this paper we denote the input vector as ′x .
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Subsequently, we make use of the log derivative of this expression to measure the rate of change 
over time, using the general notation: 

( )( )log log / 1/ /∆ ≈ ≡ ≡ z d z dt z dz dt z  [3]

By suppressing the observational subscripts for the moment to minimize notation and assuming the 
time derivative of the idiosyncratic error is zero, we obtain: 

( )/ε ε ε′= + = + + + +ε

  

e
e p e yC p e p y du dtxx t  [4]

The functions: , , ,ε ε εεp y tx  are respectively the cost elasticity (i.e.log cost derivatives) functions 
for the price of energy, the output produced, the quasi-fixed inputs used and the passage of time or 
changes in technology. By rearranging this expression, we obtain an exact relationship between the 
conventional energy intensity indicator and the concept of economic energy efficiency embodied in 
the production technology: 

( ) ( ) ( )1 1 /ε ε ε′− = − + − − − −ε   p e yy e p y du dtxx t  [5]

The left-hand side of the expression in [5] is the rate of improvement in the energy intensity, i.e. 
the rate at which the chosen measure of economic activity increases faster than the rate of energy 
consumption, which we designated earlier as the energy-intensity-gain (EIG). It is also a measure 
of factor (energy) productivity change. The first term on the right-hand side represents allocative 
efficiency change (AEC). We see immediately that it is equivalent to the failure of the homogeneity 
assumption. Failure of the homogeneity postulate when this energy price elasticity of the energy 
cost function differs from one reflects allocative inefficiency. The second term is the scale efficiency 
change with respect to the chosen measure of economic activity, (SEC). The third represents the 
impact of exogenous other input change, (OIC). The fourth term is the rate of technological change 
(TC) and the final term is the rate of economic efficiency change (EEFC). Therefore, we can sum-
marize the arguments of our method as:

= + + + +EIG AEC SEC OIC TC EEFC  [6]

4.1.1 Model Specification and Estimation

We propose the estimation of the energy cost function in [2] above with two major consid-
erations in mind: homogeneity and the functional form of our model. As we stated above, using She-
phard’s lemma (Shephard, 1953), the homogeneity property in this case of an energy cost function 
corresponds to the assumption of allocative efficiency. Therefore, a test of the homogeneity property 
and a test of allocative efficiency amount to the same thing and both correspond to testing whether 
the energy price elasticity of the energy cost function differs from one in value. Using vector nota-
tion for the logs of inputs, i.e. ( )1ln , , ln=′ … Kx xlx , we have the translog function:

ln ln ln ln ln lnC p p p y pit
e

eit eit y eit it� � � � � � � �� � � �� � � �
0 1 11

21

2
��x eeit it

it it y it it ity y y

� �� �
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lx lx l

�
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2
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The elasticities are critical for the energy intensity decomposition and in this translog case the elas-
ticity functions are given by the linear-in-log functions:

1 11

1

1 2

1
0

ln
0

ln

0 0

ε α α α
ε β α β

ε δ δ

 
′    

    ′    =
    
    ′       

α
β

ε γ µα β Γ
µ

p y
eit
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it

it
t

p
y

t

xx

x

x x x lx
 [8]

4.1.2 Stage 1: EIG Decomposition 

The primary aim of the first stage of our research design is the decomposition in [6], which 
is dependent on the elasticity function estimates in eqn. [8], and from the sample, we can use Torn-
qvist indices to obtain the EIG components as follows:

( ) ( ) ( ) [ ]1 1
11 1 1 ln ln
2

ε ε ε − −
 = − ≈ − + − − p e pit pit eit eitAEC p p p  [9a]

( ) ( ) ( ) [ ]1 1
11 1 1 ln ln
2

ε ε ε − −
 = − ≈ − + − − y yit yit it itSEC y y y  [9b]

( ) ( ) ( ) [ ]( )1 1
1 1

1 ln ln
2

ε ε ε − −
= =

= − ≈ − + −  ∑ ∑

K K

k k kit kit kit kit
k k

OIC x x x  [9c]

( )1
1
2

ε ε ε −= − ≈ − +t it itTC  [9d]

( )1/ ln / −= − ≈ it itEEFC du dt CE CE  [9e]

4.1.3 Stage Two: Estimating CCL Impact Channels

Having obtained the EIG components in stage 1 above, we then focus on evaluating the 
impact of the CCL on each of the unbundled components, which we express in a vector of response 
variables, itQ : 

( , , , ,=it it it it it itAEC SEC OIC TC EEFCQ )  [10]

We seek to estimate the changes in the elements of itQ  as a function of the carbon tax:

1 1 θ= + + + ξ +π ϑit it it i t itCCL PETQ   [11]

where 1 5, , …π π  are 5 1×  vectors of regression parameters that capture the relationships between itQ  
and itCCL . 1 5, , …ϑ ϑ  are 5 1×  vectors of regression parameters that capture the impact of energy prices 
(excluding the CCL tax). θi is a 5 1×  vector of fixed firm effects to account for heterogeneity in the 
EIG components between firms, ξt is a vector of time fixed effects to control for certain unobserved 
time trends that affect the EIG components, over and above the effect the carbon tax. it  is a vector 
of idiosyncratic error terms.
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4.2 Estimation Issues

The classic econometric problem in the estimation of [11] is the potential endogeneity of 
the carbon tax variable itCCL . In the first place, we think of θi as capturing fixed unobserved het-
erogeneity, which might include persistent factors that are approximately fixed over the time frame 
where we observe a plant in our data sample. Because the CCL tax liability is largely driven by 
time-invariant factors such as plant size,26 in practice the CCA/CCL participation will be non-ran-
dom, so that θi is potentially correlated with itCCL . 

Secondly, while the theoretical construction of our model in [11] intuitively leads us to 
expect that firm EIG components are driven by the carbon tax, an issue that is allied to the selection 
endogeneity discussed above is the potential for reverse-causality. Plants with improvements in 
their EIG components (this could be due to RandD activities which may further improve produc-
tivity performance in the near future) may choose not to enter into a CCA because the potential tax 
savings to be generated over the remaining lifetime of their installed technology are lower than the 
fixed cost commitment required under the CCA. In this case, some plant may choose to pay the full 
CCL tax rates rather than join a CCA. Hence, EIG performance may also influence firm participa-
tion choices, and by extension, the carbon tax liabilities that they incur. Therefore it  is potentially 
correlated with itCCL .

Thirdly, it  includes other random shocks which may explain the variations in a firm’s tax 
rate. For instance, as we highlighted previously, the carbon contained in gas and electricity is taxed 
at almost twice the rate as carbon contained in coal. Given this situation, the effective carbon tax 
rates would clearly vary according to the fuel mix across plants: specifically, firms with greater 
electricity and gas shares invariably pay higher CCL tax rates. This further confounds the non-ran-
dom selection issues documented above, since variation in the tax rates emanate from the omitted 
firm-level differences in the fuel mix. Consequently, itCCL  is potentially correlated with the fuel mix 
distribution embedded in it  . 

Given the fundamental issues discussed above, estimating [11] under the assumption of 
orthogonality of the regressors is not likely to produce consistent estimates of 1π . Hence, estimating 
the model parameters of [11] by ordinary least squares (OLS) method will produce biased estimate 
of 1π  since θi and it  are important factors in explaining itQ . To address this endogeneity problem and 
to estimate 1π  consistently, we adopt an instrumental variables (IV) approach. 

4.2.1  Instrumental Variables (IV) Approach

One of the main aims of this paper is to assess the relationship between the UK carbon 
tax and the EIG components using microdata. However, a common problem when estimating this 
type of relationship is the lack or limited availability of conventional instrumental variables (IV) 
for the carbon tax. Even when such instruments exist, there can be doubts on whether they satisfy 
the exclusion restriction. To overcome these challenges, we adopt an identification strategy where 
we identify the impact of the carbon tax using firm age as an instrument, augmented by an internal 
instrument constructed following Lewbel (2012). 

Our identifying assumption is that older plants are more likely to belong to larger firms 
who sign up to a CCA with a view to enjoying the tax savings available through the allied tax 

26.  As we discussed in Section 2 large older energy-intensive plants under the PPC act are likely to sign-up or self-select 
into the CCA discount scheme, meaning that they incur lower carbon tax liabilities. Therefore, plants paying higher CCL tax 
rates are likely to be smaller plants that may not be incentivized to join the CCA, but rather choose to pay the full tax rates. 
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discount (see Martin et al, 2014, p. 4). Hence, firm age and carbon taxes should be negatively 
correlated.27 Besides meeting the relevance/correlation criterion, a strong case can be made for the 
exogeneity of the firm age variable, especially given that almost all of the firms in the data sample 
(491 out of 493), were established before the beginning of the sample period in 2001 (which is also 
the beginning of the CCL package). 

In order to be able to test the overidentifying restriction, we include a second instrument, 
which we derived using the observable heteroskedasticity procedure proposed by Lewbel (2012). 
Baum et al. (2012) demonstrate that this approach is useful when no external instruments are avail-
able; or, alternatively, it can be used to supplement external instruments in order to test over iden-
tifying restriction; which in our case would be impossible, due to the exactly identified model with 
the firm age variable only. Secondly, the approach is also relevant in cases where limited external 
instruments are supplemented to improve the efficiency of the IV regression. 

Specifically, in a single equation context, the first stage regression may be employed to 
provide the components for Lewbel’s propositions, by generating instruments from the residuals of 
the first stage regression, multiplied by the mean-adjusted values of each of the included exogenous 
variables: 

( )= − ⋅j jZ X X    [12]

Where  is the vector of residuals from the first-stage regression of the endogenous tax variable on 
the exogenous regressors and the vector of constants. Millimet and Roy (2016) provide a relevant 
empirical example of the Lewbel procedure in their analysis of the pollution haven hypothesis in the 
presence of endogenous environmental regulation, using state-level US data.

5. DATA

Our model estimations and analysis are based on a unique dataset, which we constructed 
from the most comprehensive restricted-use business microdata on UK manufacturing firms. Par-
ticularly, our data construction required collection and matching of information across two different 
confidential firm-level datasets held by the Office for National Statistics (ONS), which we obtained 
through the secure access program offered by the UK Data Service. These two surveys are the Quar-
terly Fuels Inquiry (QFI) SN: 6898 and the Annual Respondents Database (ARD) SN: 6644. The 
QFI is a quarterly survey of over 1000 UK manufacturing plants, containing information on energy 
consumption, expenditures and CCL payments. The ARD on the other hand is an annual production 
survey spanning 10,000 UK manufacturing plants. 

Our sample period covers the years since the UK CCL/CCA package was introduced up to 
2006. Our data set ends in 2006 for two main reasons. First, roughly around 800 plants have con-
sistent QFI data across all the periods since the introduction of the CCL in 2001 up to around 2006. 
Consistent quarterly data are required to derive annual data, which are then matched with the ARD 
data. Second, our matching scheme indicates a drastic fall in the number of plants with consistent 
data after 2006, with the number of plants with continuous data falling from around 500 plants 
to under 200 plants after 2006. Further, when matched with the ARD, the number of plants with 
consistent data shrinks considerably to around 100 plants. This is not surprising given the random 
sampling in the ARD, which means that we do not have ARD data for all QFI plants. 

27.  We confirm this negative correlation in the first stage regression presented in Table A3 in the appendix
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Table 1: Summary Statistics
Variables Mean SD

Energy cost (£) 111785.1 722326.1
Energy consumption (toe) 96972.41 362312.5
Output (£ ‘000) 27376.37 60176.94
Capital stock (£ ‘000) 3644.323 13311.69
Labour (employee headcount) 487.338 737.39
Energy price (£) 0.859 0.909
Climate change levy (CCL) (£ per unit of energy) 0.549 0.892
Firm age (years) 24.48 7.51
Observations 2307 2307

The ARD contains core production function variables such as capital stock, K, number 
of employees (our measure of labour, L) and value added, which we employed as our measure of 
output Y. Other core variables in this study are energy consumption (e) which is measured in kilo-
watt-hour (kWh) equivalent, and energy price (p) which is the price per kilowatt-hour equivalent (£/
kWh). Both variables are used to compute the total energy cost ( )= ×e

it e itC p e . Another key variable 
in our analysis is the CCL, given by a unit tax measure which we derived as the ratio of total CCL 
payments (£) to total energy consumed (kWh). All the variables expressed in monetary values are 
deflated using the producer price indices, normalised to 2001=100. Table 1 displays the descriptive 
statistics28 on the variables in our data sample, which contains information for 493 firms and 2307 
observations. 

6. EMPIRICAL RESULTS

6.1 Parameter Estimates from Stage 1 Energy Cost Function 

One key issue in the analysis of regulatory instruments such as the carbon tax is how to 
address the presence of time-invariant effects arising from inter-firm heterogeneity or variation in 
performance across firms, which do not change over time. There is a consensus in the productivity 
measurement literature that productive efficiency of a firm embodies two critical components: a 
persistent and a transient part (Filippini and Greene, 2016) and failure to capture the persistence 
effect results in unobserved heterogeneity bias (Filippini and Hunt, 2015). Hence, we propose a 
specification for the energy cost function that allows for error components that distinguish between 
latent heterogeneity, idiosyncratic error and inefficiency. In the context of panel data, models that 
allow for these three critical elements are proposed by Greene (2005a and 2005b) who extended 
the SFA model by adding a fixed effect in the model in order to obtain time-varying inefficiency, 
time-invariant (firm) fixed effects and an idiosyncratic error. We estimate a translog29 energy cost 
function following Greene’s true fixed effects model (TFE) by MLE:

( )ln , , ,α= + + +′e
it i e it ititC TL p y t u vx   [13]

where ( ), , ,′e itTL p y tx  is the translog approximation to the energy cost function containing energy 
price, output, other inputs and the technology parameter, respectively. itu  is the inefficiency com-
ponent of the disturbance error; itv  captures the traditional idiosyncratic error term which contains 

28.  See Table A1 in the appendix for a summary of the variables employed, along with their definitions and sources.
29.  As part of our preliminary analysis, we test for the appropriate functional form by comparing the Cobb-Douglas for-

mulation with the Translog form. The resulting LR test (df=20) is 331.7 rejects the Cobb-Douglas restriction at the 1% level. 
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sampling error, measurement error and specification error. The TFE cost function in [13] uses firm 
dummy variables αi in the MLE model to capture latent heterogeneity or time-invariant (firm) fixed 
effects.30 

In addition to addressing the issue of heterogeneity or persistence across sampled firms, we 
also deal with the problem of heteroscedasticity in SFA models, a very important issue for applied 
parametric efficiency research. Studies such as Reifschneider and Stevenson (1991) and Battese 
and Coelli (1995) demonstrated how SFA models can address this issue of heteroscedasticity in 
the composed errors by proposing frontier models where the specific parameters of the inefficiency 
density function for itu  are modelled as functions of time-varying exogenous variables (i.e. condi-
tional heteroscedasticity). There are two broad approaches to introducing exogenous variables into 
the inefficiency term. 

Under the first approach, which follows the proposal by Battese and Coelli (1995), observ-
able characteristics of the firm are introduced into the location of the distribution of inefficiency so 
that itu  is assumed to follow the truncated normal distribution with a mean µit specific to each obser-
vation ( )2~  ,µ σ+

it it itu  . Here the mean of the inefficiency term is modelled as a function of observ-
able firm-specific factors itF :  µ ′=it itFϕ . Under the second approach, the observable firm-specific 
effects are introduced into the inefficiency term by scaling its distribution (i.e. the assumption of 
constant variance of the truncated normal distribution is relaxed). In this case the variance is a func-
tion of the firm-specific variables31 and it permits heteroscedasticity in  itu  such that 2~ (0,σ+

itit uu  )  
where ( )2 expσ ′=

itu itFγ .
In this study, the latter is adopted for a range of reasons. First, the scaling property of this 

approach is desirable when evaluating the impact of firm-specific effect on inefficiency. Alvarez et 
al. (2006) provide a detailed technical explanation of the practical advantages and the desirability 
of the scaling property. Notably, they show that the property implies that changes in the firm-spe-
cific factors affect/determine the scale and not the shape of the distribution of iu , unlike under the 
previous approach where the F’s enter the mean efficiency and alter the shape of its distribution.32 
Secondly, scaling offers an intuitive economic interpretation in that itu  is taken as a firm’s (random) 
base level of efficiency which captures its natural abilities, so that the extent to which these natural 
abilities or skills are exploited depends on the operating environment which is captured by exoge-
nous influences,  itF . Thirdly, and more importantly, the scaling property allows for a straightforward 
interpretation of the parameter γ . 

Scaling functions, such as the exponential function yield coefficients that are derivatives of 
the log of inefficiency w.r.t the exogenous variables: ( ) ln /γ = ∂ ∂it itu F  for ( ) * exp ,  = ⋅it it itu F uγ . This 
is a highly desirable property, as it permits the interpretation of the coefficients as the quantitative 
effects of changes in exogenous variables on inefficiency. This is not the case with the Battese and 
Coelli (1995) specification which has no quantitative interpretation in terms of the magnitude of the 
parameters of itF . Given the foregoing, we introduce heteroscedasticity into the TFE model using 

30.  In our preliminary analysis, we estimated Eq. (13) using classical fixed effects and random effects models. The Haus-
man specification test yields a test statistic 2 159.7χ =  which confirmed the presence of the unobserved heterogeneity bias, 
and by extension the need for controlling for fixed effects.

31.  The impact of exogenous variables on the variance of inefficiency is particularly crucial since the variance parame-
ters of the model are the key devices in the estimation of inefficiencies.

32.  Under the heteroscedastic model where ( ) ( ) *, ,= ⋅it it it itu F h F uγ γ  changes in itF  change the scale but not the shape of 
the distribution of inefficiency, itu . As Alvarez et al. (2006) demonstrate, because the shape of the inefficiency is determined 
by the basic random distribution * itu , which does not depend on itF  , whereas the scaling function ( ),ith F γ  determines the 
scale of the estimates.
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the Normal-Exponential stochastic energy cost frontier model so that the composed error terms can 
be expressed as:

( )~ 0,1itv   [14]

( )~ σit uitu   [15]

( )0.5 2 1σ = + ×  uit itexp Fu  [16]

where the inefficiency error scale parameter is now a function of a constant term and an exogenous 
covariate ( itFu ), which in our case is an RandD variable. 

The coefficients of the fitted heteroscedastic TFE-UHET model, along with other alterna-
tive specifications are presented in table 2. This model (last column of table 2) yields sensible coef-
ficients that have the right signs and are all statistically significant at the sample mean, so that it is 
taken as our preferred model33 upon which our subsequent analyses are based. Given that our data 
are expressed as deviations from the overall sample mean, the first order terms are also the cost func-
tion elasticities at the sample mean. The estimation results show that the elasticity of cost with re-
spect to output and each of the input prices are positive. The output elasticity is 1.005, lending some 
support to the homogeneity postulate. We test the homogeneity postulate restriction (i.e. 1ε =p ), 
and we are unable to reject this restriction at conventional levels of significance given chi2(1) =0.20 
(prob = 0.6572). By confirming the homogeneity assumption, we can conclude that, since the only 
cost measure in our model is energy cost, then the share of energy and the price elasticity are exactly 
one in value. We proceed to retrieving the EIG components from our preferred model. 

6.2 Energy Intensity Decomposition Results

Our next exercise pertains to the unbundling of energy intensity components described 
in equations 9a–9e using the matrix Eq. [8] and estimates from the model in Table 2, which we 
estimated with a high degree of precision and statistical significance. We present the decomposition 
results (at the sample mean) in table 3. The numerical impacts are expressed as percentage contribu-
tions to the rate of annual EIG change. 

A first glance at table 3 will reveal that EIG is negative for most of the years under consid-
eration, apart from the last year in our study sample. Nonetheless, the EIG at the sample mean was 
generally rising over the sample period. Also, these results indicate that EIG have been positively 
stimulated by scale efficiency change (SEC) and other input change (OIC).34 We also find limited 
contributions from technological change (TC) and efficiency change (EEFC). One essential point 
from the estimates is that economic energy efficiency EEEF had a strong negative impact on EIG in 
the first three years of our sampling period, but this turned positive in the last two years. The EEFC 
estimates speak to two contrasting viewpoints. On the one hand, when interpreted in the context 
of the dominant energy policy approach of reducing energy intensity via efficiency improvements, 

33.  This approach is underpinned by the LR test of a homoscedastic error TFE model as a restricted form of the hetero-
scedastic formulation. The LR test statistic of 41.87 (prob=0.0000) indicates that the homoscedastic formulation is rejected 
by the data in favor of the heteroscedastic approach.

34.  There might be concerns that the input change component of the decomposition might be driven by the cost function 
formulation which does not include a material variable, due to the lack of a direct material input measure. Hence, we conduct 
a robustness test using a material input proxy: expenditure on goods for own use. The re-estimated decomposition is given in 
the appendix, and it shows that the results are quite similar. We thank an anonymous referee for making this point. 
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Table 2: Estimated translog energy cost function 
Dep. Var.: lced Pooled model TFE model TFE-UHET model
Energy Price 0.761***

(0.046)
1.183***

(0.024)
1.005***

(0.011)
Output 0.437***

(0.047)
0.051***

(0.007)
0.150***

(0.004)
Capital 0.318***

(0.025)
-0.003***

(0.009)
0.035***

(0.004)
Labour 0.022

(0.056)
0.442***

(0.008)
0.257***

(0.005)
Energy Price2 -0.005

(0.044)
-0.062***

(0.013)
-0.010***

(0.000)
Output2 0.031***

(0.003)
0.003***

(0.000)
0.010***

(0.000)
Energy price*Output -0.012

(0.018)
0.004***

(0.000)
-0.002***

(0.000)
Capital2 0.027***

(0.002)
0.001

(0.001)
0.002***

(0.000)
Labour2 0.001

(0.005)
0.036***

(0.001)
0.021***

(0.000)
Capital*labour -0.010***

(0.003)
-0.004***

(0.001)
-0.003***

(0.000)
Energy price*capital 0.007

(0.010)
-0.005**

(0.002)
-0.009***

(0.001)
Energy price*labour -0.009

(0.017)
0.003

(0.003)
0.007***

(0.000)
Output*capital -0.010***

(0.003)
-0.001***

(0.000)
-0.004***

(0.000)
Output*labour -0.008**

(0.005)
-0.011***

(0.001)
-0.008***

(0.000)
Time 0.066***

(0.018)
0.010***

(0.015)
0.009***

(0.003)
Time2 -0.013

(0.012)
-0.012***

(0.000)
-0.011***

(0.002)
Capital*time -0.008

(0.005)
0.001

(0.001)
0.0001
(0.000)

Labour*time 0.004
(0.007)

0.002***

(0.001)
0.001***

(0.000)
Parameters in the one-sided error

Constant -1.991***

(0.063)
RandD -0.351***

(0.084)
Time 0.150***

(0.028)

Variance parameters for the compound error
Sigma 2.813***

(0.198)
0.338***

(0.084)
Lambda 0.959***

(0.155)
1.919***

(0.007)
N 2307 2307 2307
***, ** and * denote statistical significance at 1%, 5% and 10%, respectively. A full description of economet-
ric model specifications is given in the appendix
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then over-reliance on energy efficiency policies might not yield the intended reductions in energy 
intensity. On the other hand, we note that the wider interpretation of this results might be mitigated 
by the limited scope of our data, which although captures some efficiency contributions to EIG, 
might not fully capture more recent efficiency improvements in industrial production technologies.

More specifically, because we find scale, other inputs and technology to be the main drivers 
of EIG, it is intuitive to think that energy intensity reductions across sampled UK manufacturing 
firms during the period under consideration appeared to have come from scale economies, high 
levels of factor substitution and shifts in the cost frontier/introduction of new technologies, respec-
tively. Overall, the variations in the estimated EIG components indicate that, rather than focus on 
narrow policy objectives, energy and climate policies might be better directed at achieving other 
objectives such as overall resource allocation and innovation efforts that improve industrial tech-
nologies.

6.3 Stage 2: Impact of CCL Taxes on EIG Components

Having identified the main components of EIG, we now turn our attention to answering 
the headline research question pertaining the impact of the CCL on each of the components from 
stage 1 of our analysis. Given the previously documented endogeneity concerns about the carbon tax 
variable, we begin our stage 2 analyses by testing if OLS estimates of Equation [11] are consistent 
or whether IV methods are required to estimate the equations. To achieve this, we implement the C 
test, an equivalent to the Durbin-Wu-Hausman (DWH) test of the endogeneity of regressors. This 
test compares IV and OLS estimates under the null hypothesis of exogeneity of our tax variable. 

 By regressing energy intensity on the tax variable, we obtain a C test statistic of 6.565 
with ( )2 1  χ =0.0104, which rejects the null hypothesis that the CCL tax variable can be treated as 
exogenous at the conventional 5% level. Hence, we explore an alternative instrumental variables ap-
proach. Although, we attempt to instrument for the carbon tax within the limits of the available data, 
we recognize that the full alleviation of the endogeneity posed by the tax variable is a challenge. 
This challenge mainly stems from the difficulty in finding instruments that are both truly exogenous 
and valid in the econometric sense (Stock et al., 2002; Davis and Kilian, 2011). Consequently, as we 
discussed previously, we rely on Lewbel’s (2012) approach. 

A first a sensible step is to check that the instruments are properly excluded from the sec-
ond-stage regression using the Hansen J-test, although the test provides little specific information 
on the individual validity of each instrument. We present the EIG regression results in table 4. For 
each of the components, we present OLS and IV estimates of the carbon tax impact on the respective 
components. The Hansen J statistics in Table 4 appear to suggest that the instruments are correctly 

Table 3: EIG decomposition and its components 
Average annual  
rate of change (%) AEC SEC OIC TC  EEFC  EIG

2002 -0.08 18.39 -0.32 -5.25 -20.63 -7.88
2003 0.19 18.88 2.42 -3.01 -35.43 -16.94
2004 0.70 16.78 -1.31 -0.77 -24.91 -9.52
2005 -0.09 -11.16 2.35 1.51 4.47 -2.84
2006 -0.09 26.59 0.81 3.71 0.36 31.38

Notes: positive contributions shaded grey; dominant positive in bold text. AEC: allocative efficiency change; 
SEC: scale efficiency change; OIC: other input change; TC: technical change; EEFC: economic energy effi-
ciency change
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excluded, and the Cragg-Donald F-test of 373.91 (versus the 10% maximal test value of 16.38), 
also suggests that the problem of weak instrumentation is mitigated within the model. Furthermore, 
the relative importance of controlling for the CCL tax endogeneity is evident as the point estimates 
from the IV regressions are quantitatively larger than the OLS estimates, which appear to be down-
ward biased. This bias plausibly reflects that the OLS model does not account for the eligibility and 
self-selection issues arising from the design of the CCL package. 

Notice that the coefficients of the CCL on allocative efficiency (AEC), scale efficiency 
(SEC) and energy efficiency (EEFC) are not statistically significant for both the OLS and IV regres-
sions. Given the dominance of scale efficiency in EIG, this finding suggests that there is no statisti-
cally significant evidence that the UK carbon tax influences firm energy intensity reduction through 
its most dominant component. However, the IV estimates of the tax impact on the “other input” and 
technological change components are positive and statistically significant at the 10% and 5%-level, 
respectively. These results potentially suggest that the UK CCL stimulated energy intensity reduc-
tion across sampled plants via two of the three dominant channels: OIC and TC. 

 Table 4: Stage 2 regressions, impact of CCL on EIG components
 AEC SEC OIC TC EEFC

 FE FE-IV FE FE-IV FE FE-IV FE FE-IV FE FE-IV

ln(CCLit / Eit) –0.0001 –0.001 0.077 0.087 0.005* 0.055* 0.0001 0.004*** –12.452 –0.039
(0.000) (0.001) (0.062) (0.034) (0.003) (0.049) (0.000) (0.001) (10.064) (0.074)

ln(PETit / Eit) –0.003 –0.002* –0.001 0.003 0.001 0.004 0.002 0.001*** 0.004 –0.006
(0.004) (0.001) (0.001) (0.005) 0.001 (0.004) (0.003) (0.000) (0.007) (0.000)

Hansen 3.362 4.718 3.735 5.021 3.963
(0.34) (0.19) (0.29) (0.10) (0.30)

Cragg-Donald F-stat 373.91 373.91 373.91 373.91 373.91
Year FE Y Y Y Y Y Y Y Y Y Y
N 1649 1578 1649 1578 1649 1578 1649 1578 1649 1578

Notes: Robust standard errors in parentheses are clustered at the firm level. ***, ** and * denote statistical significance at 
1%, 5% and 10%, respectively. Hansen test statistic of the over-identifying restrictions is asymptotically chi-square distrib-
uted under the null of instrument validity: p-values are reported in parentheses. 

In particular, the CCL impact on the OI component is consistent with Martin et al. (2014) 
who found evidence of UK manufacturing plants substituting labor for energy in response to higher 
energy prices. This production flexibility demonstrated by the ease of factor substitution, potentially 
indicates that sampled firms were able to absorb the impact of the CCL by replacing energy with 
labor inputs. Our technology (TC) result is similar to the findings provided by Aghion et al. (2016) 
which demonstrate that manufacturing firms tend to innovate more in clean energy technologies 
when they face higher carbon tax-induced energy prices. On the other hand, the limited contribution 
of energy efficiency (EEFC) to EIG supports the results in Filippini and Hunt (2011) that changes in 
energy intensity are not necessarily equivalent to changes in energy efficiency. 

 Overall, the combined effect of the components yield negative EIG estimates for most of 
the periods before 2006. We note that the positive EIG estimate for 2006, rather than the negative 
estimates in the previous periods is more consistent with the more recent reality that manufacturing 
industries across OECD countries are rapidly ‘cleaning up’ their production technologies.35 Due to 
data limitations (i.e. because our data ends in 2006), we are unable to further capture these clean-up 
effects. However, it is more than plausible that the positive result for 2006 has continued beyond the 
sample period, given the introduction of the EU-ETS in 2005/6. 

35.  See for instance Levinson (2009) for the US and Brunel (2014) for the EU. We thank an anonymous referee whose 
comments helped to further clarify this point.
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What can we conclude from these findings? First it might be too simplistic to associate 
changes in energy intensity with improved energy efficiency. The data indicate that changes in the 
energy intensity measure arise from a wide range of factors, only one of which can be treated as 
energy efficiency improvements. Second, by identifying the different component channels of the 
changes in energy intensity including the channel of energy efficiency improvement but also allow-
ing for allocative, scale and technology change and the impact of other inputs, we have been able 
to relate each to the impact of the climate change levy, while attempting to address the endogeneity 
arising from the design of the policy instruments. Several lessons stand out. During the period un-
der consideration, energy efficiency was a less important factor in changing energy intensity than 
scale efficiency change and was rivalled in magnitude of impact by technical change and the role 
of other inputs. In our second stage modelling, we are able to relate the components of the changes 
in energy intensity to the impact of the climate change levy. Its statistically significant impacts are 
on the way that firms choose other inputs in relation to the use of energy in minimizing energy cost 
and on the role of technical progress, i.e. innovation in reducing energy cost. Our findings suggest 
that, during the period under consideration, declining energy intensity was driven by other dominant 
firm responses, such as factor substitution and technological progress, as is the case in our sample. 
These findings are underpinned by the results from regressing the log of energy intensity on the EIG 
components (see appendix).

6.4 Robustness Checks

We undertake robustness checks on our findings using two different strategies. First, we 
run sub-sample regressions to unravel the sensitivity of our results to the impact of sample heteroge-
neity. This could also provide checks on endogeneity concerns about the tax variable. Secondly, we 
re-estimate the EIG regressions using a balanced sample in order to address the potential problems 
arising from unbalanced panels where results could be driven by outliers in discontinuous data, as 
well as variation in sample composition over time, as opposed to the impact of the CCL. We now 
take these checks in turn.

6.4.1 Subset and balanced sample regressions

Heterogeneity between high-intensity and low intensity (or between big and small), as well 
as domestically owned versus foreign-owned plants might fuel concerns that our results might be 
driven by these fundamental differences. These concerns could also amplify the endogeneity prob-
lem within our models, since for instance, plant size and energy intensity levels are front and center 
in the endogeneity arising from firm selection decisions into a CCA versus paying the full CCL tax 
rates. Therefore, we verify the robustness of our results by re-estimating the IV regressions using 
sub-samples of firms that are similar in terms of their size, energy intensity and domestic-foreign 
ownership categories. The results obtained for the subset samples are reported in Table 5. 

Although the point estimates from the subset IV regressions are different in numerical 
terms, our main findings remain qualitatively intact. For instance, similar to the full sample case, 
the coefficient of the CCL on AEC remains largely statistically insignificant across all the estimated 
sub-sample regressions, apart from the sample for large firms. The balanced sample yields a neg-
ative coefficient that is statistically significant at the 10% level. The qualitative implication is that 
the carbon tax does not strongly improve the level of firm allocative efficiency embodied in an EIG.

For the scale change SEC, the lack of statistical significance remains the case across all 
the re-estimated IV regressions, with all the sub-sample coefficients remaining negative. Again, the 



160 / The Energy Journal

All rights reserved. Copyright © 2020 by the IAEE.

sub-sample SEC results are intuitively similar to the full sample results. For the OIC regressions, the 
coefficients remain positive across the board, but the estimates for the size regressions lose statis-
tical significance. However, the regressions for energy intensity and ownership criteria, along with 
the balanced sample regressions are statistically significant. For the technological change regres-
sions, the carbon tax coefficients largely retain their positive sign and statistical significance, except 
for the small-sized and low-intensity firms for which both coefficients are not significant while the 
former turns negative. 

Table 5: Impact of Log (CCL) on EIG components, subset and balanced IV regressions 
Size Energy Intensity Ownership

Small Large Low High Domestic Foreign Balanced Panel

AEC 0.001 0.001* 0.001 0.002 0.001 0.001 –0.001*
(0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.000)

Hansen 10.73 1.20 0.83 4.10 3.36 1.43 2.36
p-value 0.07 0.75 0.84 0.25 0.34 0.23 0.50
Cragg-Donald 356.32 162.66 313.33 47.86 373.91 19.46 295.68

SEC –0.010 –0.003 –0.059 –0.361 –0.005 –0.201 –0.032
(0.028) (0.052) (0.057) (0.373) (0.034) (0.279) (0.056)

Hansen 4.11 3.25 2.11 5.28 4.718 0.48 2.80
p-value 0.25 0.35 0.55 0.15 0.19 0.50 0.42
Cragg-Donald 356.32 162.66 313.33 47.96 373.91 19.46 295.68

OIC 0.032 0.014 0.005 0.044** 0.010 0.023 0.003
(0.051) (0.015) (0.022) (0.021) (0.020) (0.024) (0.004)

Hansen 2.31 1.96 1.94 2.76 3.74 0.011 7.20
p-value 0.51 0.58 0.58 0.43 0.29 0.92 0.07
Cragg-Donald 356.32 162.66 313.33 47.96 373.91 19.46 295.68

TC 0.002 0.004** 0.004*** 0.005 0.004*** 0.001 0.005***
(0.002) (0.002) (0.002) (0.004) (0.001) (0.002) (0.001)

Hansen 42.82 2.78 4.38 18.56 3.72 1.16 0.81
p-value 0.00 0.26 0.16 0.01 0.24 0.28 0.19
Cragg-Donald 356.32 162.66 313.33 47.96 373.91 19.46 295.68

EEFC 0.006 0111 0.061 –0.046 0.040 1.063 0.020
(0.021) (0.157) (0.111) (0.041) (0.074) (0.665) (0.021)

Hansen 2.03 3.26 3.55 0.38 3.70 0.26 1.48
p-value 0.56 0.35 0.31 0.94 0.29 0.61 0.68
Cragg-Donald 356.32 162.66 313.33 47.96 373.91 19.46 295.68

Year FE Y Y Y Y Y Y  Y
N 476 644 796 324 920 309 748

Notes: Robust standard errors in parentheses are clustered at the firm level. ***, ** and * denote statistical 
significance at 1%, 5% and 10%, respectively. Size: “Large” are firms with 250 employees or more and 
“Small” otherwise. Energy intensity samples are split according to the sample median. Firm ownership is 
based on codes for “ultimate owner” of the enterprise in the Inter-Departmental Business Register (IDBR), 
available from the ARD dataset.

Finally, for the energy efficiency component, the CCL coefficients in the sub-sample re-
gressions are largely positive, as opposed to the negative sign on in the full sample regression. 
However, these sub-sample coefficients all lack statistical significance across the board, so that 
the implication remains that, firm energy efficiency component of EIG may not be attributed to the 
CCL. Finally, it is worth reiterating the, apart from the difference in sign for the tax impact on the 
energy efficiency component, all the balanced sample regressions are consistent with the full sample 
regressions.
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7. CONCLUDING REMARKS

In this paper, we have tried to do two things: first, to understand the components in the 
observed changes in energy intensity reduction in UK manufacturing, and, second, to investigate 
whether any or all of these components are driven by the climate change levy. It is often simplisti-
cally assumed that changes in energy intensity of economic activity are synonymous with changes 
in energy efficiency. Using a model of the dual energy cost function, we have shown that this is not 
the case, as we have derived a range of components of EIG that includes as well as energy efficiency 
change, the role of allocative, scale and technical change and the choice of other inputs in produc-
tion. We have done this by deriving a factor productivity relationship for EIG that decomposes a 
stochastic frontier analysis of the energy cost function. 

We learned that, contrary to a common perception, energy efficiency change derived from 
our specified stochastic energy cost frontier is a relatively small part of the overall changes in energy 
intensity. Following from this decomposition, we used an instrumental variable estimation to relate 
each of our components to the impact of the main policy instrument, the climate change levy. Again, 
the results are counter to the common perceptions of energy and environmental policy. The chief 
impact of the climate change levy is on the adjustment between energy and the use of other inputs 
and on the rate of technological change. Both results lead us to conclude that firm investments and 
RandD expenditure are important channels of the impact of environmental policy on reducing the 
ratio of energy usage to economic activity levels.

A strong policy implication follows from these findings. Much of the discussion of energy 
and environmental policy equates the long-term overall objective of decreasing the energy intensity 
of production—the de-carbonization agenda—with a supposed unexploited reservoir of energy effi-
ciency. Our findings cast doubt on the idea that there is a large reservoir of energy efficiency changes 
or ‘unnoticed dollar bills on the sidewalk’ waiting to be picked up if only firms and consumers made 
the effort. This notion still characterizes much of the popular debate on decarbonizing the economy. 
Our findings suggest that “massive potential gains” in energy intensity are not readily available 
without effortful policy innovation, and policy is better directed at the everyday decisions to invest 
in new technologies and to innovate in the relative use of different inputs. Rather than targeting 
hypothetical and ephemeral energy efficiency improvements, policy may be more effective if it is 
directed towards improvements in the overall allocation of resources including the incentivization 
of investment and RandD. Certainly the current policy instrument, the climate change levy, works 
most effectively in this way.

While our study constitutes the first comprehensive analysis of the channels of the carbon 
tax impact on firm energy intensity, we recognize that the findings of this study may not apply to 
firm behavior in other economies. This might be due to differences in political economy, market 
and industrial structure. Given the increasing availability of business microdata, it is hoped that 
future studies will aim to understand the dominant components of energy intensity in other country 
samples. Furthermore, other policy interventions have taken place since the CCL package was in-
troduced in 2001 (e.g. the European Union Emissions Trading Scheme (EU ETS) was introduced in 
2005), such that, as more detailed UK data become available, future research may extend or test the 
validity of our research findings in the face of these additional interventions. Similarly, we note that 
results from studies relying on data sets covering more recent years may differ in terms of the energy 
productivity performance of manufacturing industries. Finally, it would be interesting to place our 
results in the context of future research relying on alternative methods. In the long run, this would 
contribute to the evolution of a rich array of identification strategies for evaluating firm responses to 
market-based climate policy instruments. 
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APPENDIX

Table A1: Definition of Variables and Sources
Variable Definition Source

Carbon emissions Total CO2 emissions (in thousands of tonnes) QFI
Carbon tax levy CCL payment per thousand tonnes of carbon (£) QFI
Carbon tax rate Percentage of CCL payment to total energy expenditure (%) QFI
Output Gross value added at market prices (£ ‘000) ARD
Capital Net capital stock (£ ‘000) ARD
Labour Total employment, year average (head count) ARD
RandD Dummy (1 if engaged RandD activities or investment, 0 otherwise) ARD
Size Big dummy (1 if employees >250, 0 otherwise) ARD
Ownership Domestic dummy (1 if UK-owned, 0 otherwise) ARD
Export Goods and services sold to foreign clients (£ ‘000) ARD
Firm age Years since firm’s date of birth ARD

Table A2: Econometric specifications of the stochastic cost frontier
Model Specification Description

Greene (2005) TFE 2 )~ (0,σ+
it uu  Panel, time varying inefficiency estimated by MLE with 

normal-half normal errors and firm-specific intercept
2 )~ (0,σ+

it vv 

,  1α = …i i n
 

Greene (2005) TFE-UHET ~ (0,1)itv 

( )~ σit uitu   
( )0.5 2 1σ = + ×  uit itexp Fu  

Panel, time-varying inefficiency, firm-specific 
intercept and conditional heteroscedasticity in u 

Pooled model 2 )~ (0,σ+
it vv 

2 )~ (0,σ+
itit uu 

Panel, time-varying inefficiency, no firm-specific 
effect and homoscedasticity in u 

Table A3: �Instrument relevance: Relationship between 
CCL and age 

Dep var: ln(CCLit / Eit) Coefficient

Ageit –0.931**
(0.432)

Constant 3.744***
(1.423)

Cragg-Donald statistic (Stock and Yogo, 2005) 32.59

R2 0.024
N 2307
Year FE Y
Firm FE Y

Notes: ***, ** and * denote statistical significance at 1%, 5% and 
10%, respectively. Robust standard errors in parentheses. F-test of 
the joint significance of the instruments (p-value in parenthesis). 
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Table A4: EIG decomposition with material input proxy 
Average annual 
rate of change (%) AEC SEC OIC TC  EEFC  EIG

2002 –0.238 19.41 2.09 –6.91 –20.33 –5.978

2003 –0.501 19.78 –0.57 –4.22 –32.24 –17.751

2004 0.384 16.73 0.86 –1.49 –22.34 –5.856

2005 0.210 –16.15 –2.29 1.24 5.78 –6.57
2006 –0.275 27.01 2.14 3.87 1.70 34.445

Table A5: �Log of intensity on 
EIG components 

Dep var: ln(Cnit / Yit)

AEC 0.942
(1.263)

SEC –0.010**
(0.005)

OIC –0.470***
(0.158)

TC –0.947
(0.761)

EEFC –0.357
(0.682)

F-test 6.83
Prob (0.000)

R2 0.23
N 1649
Year FE Y
Firm FE Y

Notes: ***, ** and * denote statistical signifi-
cance at 1%, 5% and 10%, respectively. Robust 
standard errors in parenthesis. F-test of the joint 
significance of EIG components (p-value in 
parenthesis). 


