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Shock Propagation Across the Futures Term Structure: Evidence 
from Crude Oil Prices

Delphine H. Lautier,* Franck Raynaud,** and Michel A. Robe***

abstract

To what extent are futures prices interconnected across the maturity curve? Where 
in the term structure do price shocks originate, and which maturities do they 
reach? We propose a new approach, based on information theory, to study these 
cross-maturity linkages and the extent to which connectedness is impacted by 
market events. We introduce the concepts of backward and forward information 
flows, and propose a novel type of directed graph, to investigate the propagation 
of price shocks across the WTI term structure. Using daily data, we show that the 
mutual information shared by contracts with different maturities increases sub-
stantially starting in 2004, falls back sharply in 2011–2014, and recovers there-
after. Our findings point to a puzzling re-segmentation by maturity of the WTI 
market in 2012–2014. We document that, on average, short-dated futures emit 
more information than do backdated contracts. Importantly, however, we also 
show that significant amounts of information flow backwards along the maturity 
curve—almost always from intermediate maturities, but at times even from far-
dated contracts. These backward flows are especially strong and far-reaching amid 
the 2007–2008 oil price boom/bust.
Keywords: Mutual information, Market integration, Information entropy, Shock 
propagation, Directed graphs, Term structure, Futures, Crude oil, WTI.
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1. INTRODUCTION

Commodity futures markets fulfill the key economic functions of allowing for hedging and 
price discovery. In these markets, two important questions arise.

First, are futures prices interconnected across the maturity curve? In theory, they should be 
linked through the cost-of-carry relationship. In practice, such market integration requires cross-ma-
turity arbitrage. Büyüksahin et al. (2009), however, document that even the three largest U.S. com-
modity futures markets did not witness substantial trading activity in longer-dated derivatives until 
2003–2004 (crude oil) or later (corn and natural gas). This empirical fact suggests the possibility of 
changes in cross-maturity linkages in the past fifteen years.

Second, assuming that different-maturity futures prices are interconnected, where in the 
term structure do price shocks originate—and which other parts of the term structure do they reach? 
Is the direction of the shocks’ propagation stable over time? A conventional view takes the physical 
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market as the place where the absolute (or “flat”) price emerges as a function of the supply and 
demand for the underlying asset. In turn, the derivative market allows for relative pricing: futures 
prices derive from the spot price. Price shocks should thus spread from the underlying asset to the 
derivative instrument. Yet, amid a massive increase in far-dated commodity futures trading after 
2003, might one not expect to also observe price shocks propagating from the far end to the short 
(physical) end of the futures curve?

There is, to our knowledge, no theoretical model studying these questions in a setting where 
multiple maturities of futures contracts trade simultaneously. In this paper, we investigate market 
integration and shock propagation empirically through the prism of the theory of information.

We introduce the concepts of “forward” and “backward” information flows across the term 
structure, and we rely on net transfer entropies to construct a novel type of directed graph linking all 
the parts of the term structure. Our laboratory is the New York Mercantile Exchange’s (NYMEX) 
market for West Texas Intermediate (WTI) light sweet crude oil futures. This market provides an 
ideal setting for our analysis: among all commodity markets in 2000–2017, WTI futures boast the 
highest level of trading activity and the greatest number of far-out delivery dates.

The theory of information, first outlined in a seminal paper by Shannon (1948), studies the 
measure, storage, and quantification of information. A key concept, in this theory, is “entropy”—the 
amount of uncertainty associated to a random variable. In our paper, the information entropy ( )τH R  
of the price return R on a crude oil futures contract of maturity τ  is a quantity that captures the degree 
of uncertainty associated to τR . In other words, ( )τH R  measures how much we don’t know about that 
oil futures’ price returns.

In this setting, we use the concept of “mutual information” to investigate futures market 
integration across maturities. When two variables are interdependent (as is the case, for example, 
for two times series of futures price returns with two different maturities), the mutual information 
measure gives the amount of entropy that is reduced (i.e., the amount of uncertainty that is resolved) 
compared to the case where the two variables are independent (Shannon and Weaver (1949); Sch-
reiber (2000)). Computing the mutual information between contracts is thus analogous to assessing 
their integration or return co-movements. In contrast to other methods such as Pearson correlations, 
this probabilistic approach does not require making any assumption about the functional form of the 
relationship between the variables under consideration.

We find substantial variations over time in the amount of mutual information shared by 
crude oil futures with different delivery dates. In general, intermediate-maturity contracts (six 
months to two years) share relatively more mutual information than other contracts do. For all con-
tracts, cross-maturity mutual information increases dramatically after 2003 (amid tight oil supply 
conditions, a dramatic growth in backdated crude oil futures trading, and the onset of commodity 
markets’ financialization) and reaches a peak at the top of the oil price boom in Summer 2008. It 
falls back sharply in 2012 (to pre-2005 levels) and drops further in 2013 and 2014 (to pre-2002 
levels). It has since recovered dramatically. Taken together, these term-structure findings point to a 
puzzling re-segmentation by maturity of the WTI market in 2012–2014.

We also investigate the propagation of price shocks across the futures term structure, rely-
ing for this purpose on the concept of “transfer entropy” (Schreiber (2000)) that allows for dynamic 
analyses and for the determination of directionality. It enables us to answer the following question: 
does a shock to the price return of a futures contract with maturity τ at time t beget a shock at time 
t + 1 to a futures contract with another maturity? Determining directions is important, as it allows 
us to ascertain whether price shocks evolve from short-term to long-term maturities or vice versa. 
Focusing on directionality relates our work to extant studies of Granger (1969) causality—but in a 
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non-parametric world. The technique can also be compared to the exploration of volatility spillovers 
(as in Adams and Glück (2015) or Jaeck and Lautier (2016)) while allowing for non-linearities—a 
crucial advantage given ample evidence that the dynamics of cross-market contagion (i.e., shock 
propagation) are non-linear.1

On average across our 2000–2017 sample period, we find that contracts with maturities 
up to 21 months emit more information entropy than do more backdated contracts—a pattern con-
sistent with the traditional view of how futures market function. A dynamic analysis, however, 
reveals that the amount of entropy emitted by other parts of the curve is non-trivial and can be high 
at times. Moreover, the directions of the entropy transfers (from near-dated to far-dated contracts or 
vice versa) is not stable over time. In particular, an analysis of information entropy flows that run 
“forward” (i.e., from near-dated to further-out maturities) vs. “backward” (i.e., from backdated to 
nearer-dated contracts) shows that the backward flows are actually higher than their forward coun-
terparts in 2008, i.e., during a 12-month period encompassing the peak of the 2007–2008 oil price 
boom and the subsequent price collapse after the Lehman crisis.

Finally, we utilize those non-parametric measures to define a metric that allows us to build 
an original type of directed graphs. The latter complement our other tests and provide a powerful 
visualization tool—as well as a means to detect anomalies—for our high-dimensional data. Indeed, 
insofar as all the futures prices that we study create a system, the latter is complex: it comprises 
many components that may interact in various ways through time. To wit, on any day in our sample, 
after discarding illiquid maturities, there remain 33 different WTI futures delivery dates: hence, we 
have 528 pairs of maturities to examine after accounting for directionality. Moreover, such linkages 
may change through time as a result of evolving market conditions or trading practices. Finally, 
chances are few that the relationships between different maturities are always linear.

A graph gives a representation of pairwise relationships within a collection of discrete enti-
ties. Each point of the graph constitutes a node (or vertex). In our analysis, a node corresponds to the 
time series of price returns on a futures contract for a given maturity over a specified period of time. 
The links (“edges”) of the graph can then be used in order to describe the relationships between 
nodes. More precisely, the graph can be weighted in order to take into account the intensities and/or 
the directions of the connections. We do both on the basis of information theory.

There are several ways to enrich the links of a graph. In the finance literature on commod-
ity markets, for example, the connections between the nodes have been tied to the correlations of 
returns (e.g., Lautier and Raynaud (2012)), variance decompositions of return volatilities (Diebold 
et al. (2018)), or the activities of futures market participants (e.g., Adamic et al. (2017)). Here, we 
rely on the theory of information in order to determine the intensities of the links and to obtain their 
directions. To our knowledge, such an application is original in both the finance and commodity 
literatures.

The use of graph theory in this context allows us to examine precisely where the informa-
tion entropy is transferred in the futures price system, and how far throughout the term structure it 
flows in practice. To that effect, we construct a reference graph that depicts the average behavior of 
the system in 2000–2017. In part, we find that this benchmark graph supports a conventional view 
of how a futures market operates—specifically, the notion that price shocks are thought to form in 
the physical market (here represented by the short maturities) and transmit to the paper market (here 
made up of further-out maturities). At the same time, however, we find that intermediate maturities 
send out substantial amounts of information entropy not only to further-dated contracts but also to 
near-dated ones. Furthermore, a dynamic analysis shows that there are sometimes major changes 

1.  See, e.g., Favero and Giavazzi (2002), Bekaert et al. (2014), Rigobon (2017), and references cited therein.



128 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

in the organization of the cross-maturities connections. The biggest such rearrangement is in Fall 
2008, with the direction of information flows “flipping” entirely (i.e., originating at the far end of 
the curve and reaching even the shortest maturities). To the best of our knowledge, while this kind 
of reverse information-flow pattern is theoretically conceivable, our analysis provides the first em-
pirical evidence of its existence.

Section 2 summarizes our contribution to the literature. Section 3 outlines our methodol-
ogy, which is based on mutual information and transfer entropy. Section 4 presents the data. Section 
5 summarizes our entropy findings. Section 6 is devoted to directed graphs. Section 7 concludes.

2. LITERATURE

We contribute to three literatures: on term structures and cross-maturities market segmenta-
tion, on causality, and on the use of graph theory in the context of financial and commodity markets.

Questions related to the impact of market imperfections on cross-maturities segmenta-
tion—defined as a situation in which different parts of the price term structure are disconnected 
from each other—date back to the works of Culbertson (1957) and Modigliani and Sutch (1966) re-
garding “preferred (maturity) habitats” in bond markets. Spurred by interest rate behaviors observed 
during the 2008–2011 financial crisis and the so-called Great Recession, the past ten years have seen 
a resurgence of theoretical and empirical work documenting increased bond market segmentation 
during periods of elevated market stress.2 In commodity markets, research on possible cross-matu-
rity segmentation across the futures term structure has to date remained purely empirical.3 It deals 
almost exclusively with the crude oil market, which boasts high trading volumes and (in the United 
States) contract maturities extending up to seven years. In contrast to interest rate markets, extant 
papers find evidence of market segmentation prior to 2003 but conclude that the 2008–2011 finan-
cial crisis did not bring about a re-segmentation across maturities in the crude oil space.4

Our paper adds to this prior work in several ways—by quantifying the mutual informa-
tion shared by contracts of different maturities, assessing the direction of the information entropy 
flows between maturities, and documenting how these measures evolve over time. Our analyses, 
while based on different techniques, are consistent with prior findings of increasing crude oil mar-
ket integration through 2010. However, unlike the cross-maturity integration that characterized the 
2004–2010 period, we document that different parts of the WTI term structure became much less 
integrated in 2011 and, especially, in 2012–2014. Furthermore, we find that changes in the degree 

2.  For example, D’Amico and King (2013) document the 2009 emergence of a “local supply” effect in the U.S. yield 
curve amid the Federal Reserve’s unprecedented program to purchase $300bn worth of Treasury securities. Gürkaynak and 
Wright (2012), who review this literature, conclude that “the preferred habitat approach (has) value, especially at times of 
unusual financial market turmoil” (p. 360).

3.  Theoretical work on the term structure of futures prices for commodities in general, and crude oil in particular, in-
cludes many distinguished contributions such as Schwartz (1997), Routledge et al. (2000), Casassus and Collin-Dufresne 
(2005), Casassus et al. (2018), Carlson et al. (2007), Kogan et al. (2009), Liu and Tang (2010), and Baker (2016). The 
models proposed in those papers, however, do not deal with the possibility that market frictions (e.g., limits to arbitrage or 
informational asymmetries) may prevent different parts of the futures price curve from moving in sync. A different part of the 
literature on commodity price formation analyzes the role of spot markets in revealing trader information. That body of work 
comprises theoretical work by Stein (1987) and Smith et al. (2015), as well as empirical work by Ederington et al. (2012) on 
crude oil. Those papers highlight the role of physical inventories. Instead, we investigate empirically how (and how much) 
information travels across the term structure of a large commodity futures market.

4.  Based on the informational value of futures prices, Lautier (2005) finds cross-maturity segmentation during the 1990’s 
but argues that this market segmentation weakens after 2002. Using recursive cointegration techniques and term structure 
data from 1995–2011, Büyüksahin et al. (2011) find cointegrated WTI futures prices in 2003–2011.
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of market integration are not always associated with similar changes in the respective intensities of 
the information entropy transfers that flow “forward” vs. “backward” across the term structure. In 
particular, we discover situations (most notably in 2007–2008) when backward flows actually (but 
atypically) become higher than their forward counterparts.

Finally, the present paper belongs to a growing literature that uses graph theory to investi-
gate price connections across space and/or across markets for equities (e.g., Wang (2010); Dimpfl 
and Peter (2014)) and commodities (e.g., Haigh and Bessler (2004); Haigh et al. (2004); Lautier and 
Raynaud (2012); Diebold et al. (2018)). Compared with this body of work, our article innovates 
along two main dimensions.

First, at the technical level, we utilize another type of graph based on the theory of infor-
mation. Building on mutual information and entropy transfers, our graph-based analyses allow us to 
study all the cross-maturity connections in the WTI futures market, within a non-parametric setting. 
Our methodological choice allows us also to deal with possible non-linearities and with the sheer 
size of the system we consider (528 daily pairs of futures maturities after accounting for direction-
ality).

Second, while the spatial dimension of market integration has been analyzed in depth else-
where for equities and currencies as well as for commodities, the time dimension has not. Most 
papers investigate the relationship between spot and futures prices5 and simply abstract from term 
structure issues. A few papers do look at price integration across maturities (Lautier and Raynaud 
(2012); Büyüksahin et al. (2011)), but no prior study investigates the information entropy emitted 
(or received) by commodity futures of different maturities or the direction of the resulting informa-
tion flows across a commodity term structure. Our paper does. We document for the first time that, 
while on average more information entropy flows forward than backwards, the backward flows are 
far from trivial, the intermediate maturities play an important informational role (sending entropy 
forward and backward), and the information entropy flows across the WTI term structure change 
not only in magnitude but also in direction during the “great oil price boom/bust” of 2007–2008.

3. METHODOLOGY

This Section presents several concepts for two series of futures price returns corresponding 
to a pair of contract maturities, which Section 5 will generalize in order to study the interdependence 
and directionality of price movements for multiple futures contracts. Throughout the paper, we rely 
on the theory of information based on the notions of entropy proposed by Shannon (1948). Section 
3.1 presents the concept of “mutual information” (Shannon and Weaver (1949)) that quantifies the 
dependency between two random variables—which we use as a proxy for market integration. Un-
like correlations, the mutual information measure captures non-linear relationships between vari-
ables; however, it does not allow for studying the propagation of information. For that purpose, 
Section 3.2 introduces the Schreiber (2000) transfer entropy measure.

5.  In that context, a key empirical question is whether price discovery takes place on the futures or the spot market 
(Garbade and Silber (1983)). While early studies tend to rely on Granger causality to provide an answer, a number of papers 
apply other techniques in an attempt to tease out causality when the relationship between prices might be non-linear—see, 
e.g., Silvapulle and Moosa (1999), Switzer and El-Khoury (2010), Alzahrani et al. (2014) and references cited in those pa-
pers. Kawamoto and Hamori (2011) do look at WTI futures contracts with maturities up to nine months, but their focus is on 
market efficiency and unbiasedness—not on information flows.
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3.1 Mutual information

In what follows, we consider a time series of price returns for a given futures maturity τ 
as a discrete random variable τR  with an empirical probability distribution ( )τp R . We start from the 
interdependence of a pair of futures contracts. This measure of their interdependence, also called 
“mutual information,” relies on the use of several quantities: the “information entropy” of one vari-
able, as well as the conditional and joint entropies of two variables. These different measures are 
linked to each other.

A first step is to consider the “information entropy” ( )τH R  of the futures price return for 
a given maturity τ . This quantity captures the degree of uncertainty associated to the variable τR . 
In other words, it measures how much we don’t know about that price return. ( )τH R  is maximized 
when all the possible realizations of τR  are equally likely.

Formally, following Shannon (1948), the information entropy ( )τH R  associated to the fu-
tures prices’ returns for a given maturity τ  is defined as: 

( ) ( ) log ( )τ τ τ≡ −∑
r

H R p r p r  (1)

where ∑ r
 is the sum over all the possible values of τR  and log denotes the base 2 logarithm. Note 

that this quantity increases with the number of possible values for the random variable; for a binary 
random variable, its value ranges between 0 and 1—a fact that we shall exploit for the empirical 
analysis in Section 5.

Next, consider the case of two maturities 1τ  and 2τ , and the interdependency between 
1τ

R  
and 

2τ
R . Let 

1 2
( , )τ τp r r  denote the joint probability distribution of the two variables. What remains 

unknown of 
1τ

R  if the values of 
2τ

R  are known is captured by the notion of “conditional entropy,” i.e., 
the entropy of 

1τ
R  conditionally on 

2τ
R : 

2
1 2 1 2

, 1 21 2

( )
( | ) ( , ) log

( , )
τ

τ τ τ τ
τ ττ τ

≡ − ∑
r r

p r
H R R p r r

p r r
   (2)

Using the conditional probability distribution of the two variables 
1 2

( | )τ τp r r , Equation (2) becomes: 

1 2 1 2 1 2
,

1 2

( | ) = ( , ) log ( | )τ τ τ τ τ τ

τ τ

− ∑
r r

H R R p r r p r r  (3)

Another interesting quantity is the “joint information entropy” 
1 2

( , )τ τH R R . It quantifies the 
amount of information revealed by evaluating 

1τ
R  and 

2τ
R  simultaneously. This symmetric measure 

is related to the conditional entropy described by equations (2) and (3) as follows: 

1 2 1 2 2 2 1 1 2 1
( , ) ( | ) ( ) = ( | ) ( ) ( , )τ τ τ τ τ τ τ τ τ τ≡ + + ≡H R R H R R H R H R R H R H R R  (4)

On the basis of these definitions, it is now possible to define the “mutual information” 

2 1
( , )τ τM R R . This quantity measures the amount of information obtained about one variable through 

the other. The mutual information 
2 1

( , )τ τM R R  gives the amount of uncertainty that is reduced when 
two variables are interdependent, compared to the case where the two variables are independent: 

1 2 1 2 1 2 2 1 2 1
( , ) ( , ) ( | ) ( | ) = ( , )τ τ τ τ τ τ τ τ τ τ≡ − −M R R H R R H R R H R R M R R  (5)

The mutual information is thus a symmetric quantity. Equations (1), (2), and (5) together yield: 
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1 2
1 2 1 2

, 1 21 2

( , )
( , ) = ( , ) log

( ) ( )
τ τ

τ τ τ τ
τ ττ τ

∑
r r

p r r
M R R p r r

p r p r
 (6)

In this article, we use mutual information as a measure of the integration of the crude oil 
futures market in the maturity dimension. This quantity indeed includes what would have been 
obtained with synchronous correlations between pairs of futures prices’ returns, due to the common 
history of the returns and/or to common shocks. Compared with correlations, however, this probabi-
listic approach does not rely on any assumption regarding the behavior of futures returns.

3.2 Transfer entropy

To analyze the propagation of shocks along the futures term structure, we need to account 
for time lags and directions. We aim to answer the question: does a shock to the return of a given 
maturity τ2 at time t – 1 induce a shock at time t to another maturity τ1? Directions allow us to assess 
whether price shocks evolve from short-dated to long-dated contracts, or vice versa. This idea is 
closely linked to Granger causality, but in a non-parametric world. It is also related to volatility 
spillovers, except for the fact that it allows for non-linear interdependencies between variables.

Starting from the information entropy, a natural way to proceed is to rely on the notion of 
“transfer entropy” motivated and derived by Schreiber (2000). This measure quantifies how much 
information entropy (or uncertainty) is transported between dates t – 1 and t from one variable to 
another (in our case, from one futures maturity to another). It relies on transition probabilities rather 
than on static probabilities.

Relying on the definition of conditional entropy described by Equation (3), and introducing 
time into the analysis, allows for defining a new quantity: the “entropy rate” h. Two kinds of rates 
can be distinguished, according to the type of dependence under consideration. First, the entropy 
rate 

1
( )τth R  quantifies the uncertainty on the next value of 

1τ
R  if only the previous state of 

1τ
R  matters: 

1 1 1

1 1 1 2 1 1
( ) = ( , , ) log ( | )τ τ τ τ τ τ

− − −−∑ t t t t t
th R p r r r p r r  (7)

Second, the entropy rate 
1 2

( | )τ τth R R  quantifies the uncertainty on the next value of 
1τ

R  if the previous 
states of 

1τ
R  and 

2τ
R  both have an influence: 

1 1 1 1

1 2 1 1 2 1 1 2
( | ) = ( , , ) log ( | , )τ τ τ τ τ τ τ τ

− − − −−∑ t t t t t t
th R R p r r r p r r r  (8)

With these dynamic measures defined, it is possible to introduce directions into the analy-
sis. The “transfer entropy” T  from 

2τ
R  to 

1τ
R  is the difference between the two rates: 

1 1
1 1 1 1 2

, 11 1 2 1 1 22 1
1 1

( | , )
= ( ) ( | ) = ( , , ) log

( | )
τ τ τ

τ τ τ τ τ ττ τ
τ τ

− −

− −
→ −− ∑

t t t
t t t

t R R t t t t

p r r r
T h R h R R p r r r

p r r
 (9)

This transfer entropy measure is equivalent to Granger causality in the case of a linear de-
pendency between two Gaussian random variables—see Barnett et al. (2009). Compared to Granger 
causality, however, transfer entropy presents the major advantages of being model-free and of hold-
ing in the case of non-linearity.

Equipped with the above definitions, we can provide an insightful analysis of the propaga-
tion of price shocks along the term structure, for all maturity pairs and all directions. As needed, in 
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Section 5, we extend these pairwise concepts to the case of multiple maturities. Then, in Section 6, 
we utilize these concepts in the framework of graph theory.

4. DATA

We obtain, from Datastream, the daily settlement prices for all NYMEX WTI light sweet 
crude oil futures contracts between January 2000 and January 2017. We roll futures based on 
prompt-contract expiration dates and construct 33 time series of futures prices. The first 28 are 
for the 28 nearest-dated contract maturities (i.e., contracts with 1 to 28 months until expiration). 
The other five time series correspond, respectively, to contract maturities of 30, 36, 48, 60, and 72 
months.

Our empirical analyses use daily returns, computed as: ( )( )= ln ( ) ln /τ τ τ− − ∆ ∆r F t F t t t, 
where ( )τF t  is the price of the futures contract with maturity τ  on day t and ∆t is the time interval, 
measured in calendar days, between consecutive sample days (i.e., between business days).

Figure 1 depicts the evolution of WTI futures prices and price returns in our sample period. 
For readability, we focus on the nearby, one-year out, and two-year out futures. The right-hand side 
panel of Figure 1 shows that return volatility is lower for the two longer-dated contracts than for 
the nearby contract, an empirical reality consistent with the Samuelson (1965) hypothesis that price 
volatility should increase as a futures contract’s maturity nears.6

Obvious in the left-hand side panel of Figure 1 are the oil price boom of 2004–2008 (peak-
ing in mid-July 2008) and the consequent bust in Fall 2008. Equally notable, and especially relevant 
to the present study, are the differences between the price paths of nearby vs. longer-dated contracts 
prior to 2004 and again in 2012–2014. We know from prior research (Lautier (2005); Büyüksahin 

6.  We obtain the same volatility ranking when we use the preponderance of the open interest (rather than calendar dates) 
to determine futures roll days.

Figure 1: WTI Crude Oil Futures Prices and Daily Returns, 2000–2017

Figure 1 depicts the evolution of the daily prices levels of (left-hand side panel)—and the rates of return on fully collateralized 
positions in (right-hand side panel)—the nearby, one-year-out, and two-year-out West Texas Intermediate (WTI) light sweet 
crude oil futures in our sample period, i.e., from January 2000 to January 2017. We use the NYMEX end-of-day settlement 
prices in both panels (Source: Datastream). Futures roll dates are calendar-based. 
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et al. (2011)) that the one-year ( two-year) futures prices did not move in sync with the nearby price 
prior to 2003 (2004) but started doing so soon thereafter. Figure 1 confirms and extends those prior 
findings by showing that: i) starting in late 2012, a “disconnect” reappears between short-dated and 
further-dated WTI futures; ii) this disconnect, however, disappears after 2014.

5. EMPIRICAL RESULTS: ENTROPY MEASURES

Section 5.1 presents empirical evidence on the mutual information shared by crude oil 
futures with different maturities and on the evolution of this mutual information over time. Section 
5.2 then introduces directionality and examines information entropy flows across the term structure 
of prices. Section 5.3 relates some of our findings to the Samuelson (1965) effect.

5.1 Mutual Information: A Proxy for Market Integration

Changes in the WTI futures market during the period under consideration can be charac-
terized through the lens of mutual information. Recall from Section 3.1 that the mutual information 
measure quantifies how much we know about the return 

1τ
R  given that the return 

2τ
R  is known. In 

other words, this quantity captures the synchronous moves in prices. In what follows, we distinguish 
between the mutual information shared by all the futures contracts under consideration vs. the mu-
tual information attached to one specific maturity.

5.1.1 Mutual information shared by all maturities

On the basis of Equation (6), which def﻿ines the mutual information 
1 2

( , )τ τtM R R  for a pair 
of WTI futures maturities 1τ  and 2τ , we define the average mutual information shared at date t by all 
N  futures prices’ returns, N

tM , as follows: 

, >< ( , ) >τ τ≡N
t t i j ii j

M M R R  (10)

where: a) N is the total number of maturities each day in the sample; b) the ( , )τ τt i j
M R R  are the 

elements of the ( )×N N  matrix of mutual information computed on day t using daily returns for 
the prior year;7 c) , ><>i j i denotes the averaging operator over the relevant contract maturities  
( = 1,2,...,i N ; < ≤i j N).

Figure 2 depicts the dynamic behavior of N
tM  in 2000–2017 and establishes the statistical 

significance of our results. To assess significance, we start by generating a counterfactual dataset by 
“shuffling” (using permutations of) the time index of the original dataset (Marschinski and Kantz 
(2002)). The resulting “shuffled” time series of futures returns have the same mean and variance as 
the original ones, but temporal relationships are removed. Next, we compute the mutual informa-
tion associated to the shuffled data. Figure 2 shows that, in contrast to the mutual information N

tM  
associated with the original price series (plotted in black), the counterfactual mutual information 

7.  To obtain mutual information measures, we need to compute the joint and conditional entropies in Equation (5). We 
proceed as follows. For any futures price return Rτ, we retain two possible states: either a positive or a negative value. In the 
case of a positive value, the number +1 is assigned to the observation; otherwise –1 is retained. We then empirically deter-
mine the probabilities p(1) and p(–1) associated to each maturity on a specific window of time. As we are interested in pairs of 
futures prices returns, for any pair there are four possible states: (1,1), (1,–1), (–1,1) and (–1,–1). When computing entropies, 
we therefore need a window that is long enough to have sufficiently many observations for each state. We set the window 
length at a year or 250 trading days (the results are qualitatively similar if we use 2-year rolling windows). Note finally that, 
as each element of the mutual information matrix analyzes a pair of variables and as we compute the conditional values on 
the basis of two states (a positive and a negative one), the highest possible value for the mutual information is 1: the results 
are normalized by the base 2 logarithm. 
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(plotted in medium grey, based on the shuffled series) is always close to 0 and does not display any 
systematic pattern over time. Finally, we establish that the actual and shuffled mutual information 
series are statistically significantly different using a Welch’s t-test. It is an adaptation of the Student’s 
t-test that is more reliable when the two samples under consideration do not have the same variance. 
The associated p-values, denoted by pW in Figure 2, give the probability that the null hypothesis 
cannot be rejected. As these probabilities are very low, the results can be considered as significant.

Figure 2 establishes two important empirical facts. First, the mutual information shared by 
all maturities starts to rise sharply in 2004 and takes very high values from mid-2004 through most 
of 2010: N

tM  generally fluctuates between 0.7 and 0.75, vs. a theoretical maximum of 1 (see foot-
note 7). These high values are evidence of synchronization in the prices changes across maturities.8 
Insofar as an increase in Mt

N can be interpreted in terms of greater integration of the futures market 

8.  In this sense, the mutual information can be compared with the co-movements captured by a Principal Component 
Analysis (PCA). More precisely, an analysis of the returns of commodity prices shows that the first factor extracted through 
the PCA represents parallel moves in the term structure. It can thus be associated to the co-movement in prices (see, e.g., Cor-
tazar and Schwartz (1994)). In our 2000–2017 dataset, the first factor of the PCA explains more than 95% of the variability 

Figure 2: Average Mutual Information Mt
N Shared Daily by All Maturities, 2001–2017

Figure 2 plots in black the evolution over time of the average mutual information N
tM  shared at date t by all WTI futures 

contract maturities, from 2001 to 2017 (in our sample, N = 33 contracts each day). Daily values are first computed for each 
maturity using a one-year rolling window and then are averaged over all contract maturities. The scale is from 0 (no mutual 
information) to 1 (all futures price-return series are perfectly synchronized). The shuffled data (plotted as the medium-grey 
line toward the bottom of the graph) are counterfactual data created in order to perform statistical significance tests. To assess 
the significance of our results, we use a Welch’s t-test. The associated results are depicted by the box within Figure 2. The 
p-values associated to the test are denoted by pW. They give the probability that we cannot reject the null hypothesis that the 
average mutual information is the same, in the sample period, for the actual and shuffled data. 
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for crude oil during that period, this first result complements and extends to many more maturities 
a key finding of Büyüksahin et al. (2011), based on 1983–2010 data, that the nearby, one-year out, 
and two-year out WTI futures prices are statistically significantly cointegrated starting in mid-2004.

Second, Figure 2 shows that Mt
N starts to decrease sharply after December 2010, before 

falling even more precipitously in 2013–2014 (reaching its 2000–2017 minimum of 0.39 in June 
2014). This finding is novel. It provides formal support for our interpretation of the price patterns 
depicted by Figure 1 and discussed in Section 4: in 2013 and 2014, different parts of the term struc-
ture of WTI futures prices became (temporarily) much less integrated.

A natural question is what explains this temporary re-segmentation of the WTI market 
across futures delivery dates. Büyüksahin et al. (2011) attribute the WTI futures market’s cross-ma-
turity integration in 2004–2010 in large part to huge increases in far-dated futures trading and in 
calendar-spread trading by hedge funds and other financial institutions, amid what has been dubbed 
the “financialization of commodities” (Cheng and Xiong (2014)). On the one hand, as those authors’ 
dataset ends in mid-2010, their trading-related findings might seem irrelevant to the behavior of the 
mutual information after 2010. On the other hand, financialization did not end in 2010: public data 
from the U.S. Commodity Futures Trading Commission (CFTC) on weekly WTI futures trader po-
sitions show that both the WTI non-commercial open interest and calendar spread trading continued 
to increase from 2010 through 2014—suggesting that a different explanation, unrelated to the levels 
of non-commercial futures trading, may have to be found for the evolution of Mt

N in 2011–2014.9

Interestingly, the decrease of Mt
N seen in Figure 2 starts at the very end of 2010 and comes 

to a halt in late 2014. Those four years coincide almost exactly with a period of exceptionally high 
levels of the Brent-WTI price spread amid a partial geographic segmentation of the world’s crude 
oil markets—events that Büyüksahin et al. (2013) link to a temporary divergence between crude 
supply-side conditions in North America vs. in the rest of the world.10 Our findings thus point to the 
need for further research in order to assess the extent to which those physical market developments 
had implications that went beyond commodity price spreads and that reached into the amount of 
mutual information shared across the WTI term structure.

5.1.2 Mutual information for each contract maturity

Figure 3 gives more insight into the term structure developments detected in Figure 2, by 
depicting the mutual information for each individual contract maturity over the course of our sample 
period. Precisely, for each futures maturity τ i and each day of the sample period t, Figure 3 plots the 
level of mutual information that this maturity shares with all other maturities: 

,( ) = < ( , ) >τ τ τ ≠t t j j ii i j
M R M R R

This level is color-coded in Figure 3, ranging from dark grey (low) to light grey (high).
In general, Figure 3 shows that not all futures prices have the same levels of mutual infor-

mation. Strikingly, at any given time in our sample period, there is much more mutual information 
at the intermediate maturities (defined as contracts expiring in 6 to 27 months): contracts at both 

of WTI futures returns and displays a very high correlation (+0.69) with our measure of mutual information. These results 
are available from the authors upon request.

9.  Fully ruling out trading-related explanations would require disaggregated CFTC data, which are not publicly avail-
able.

10.  Fattouh (2010), Pirrong (2010), and Büyüksahin et al. (2013) also analyze a less severe episode of Brent-WTI price 
dislocation in 2008–2009 that was due largely to infrastructure constraints at the delivery point for WTI futures in Cushing, 
OK. Those infrastructure issues had been mostly ( completely) resolved by 2011 (2013–2014).
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extremities of the futures maturity curve share less mutual information with other contracts than 
the intermediate-maturity ones do. Furthermore, except for the last five months of 2008 and in 
2012–2014, the graph temperature is typically darker at the very short end of the term structure 
(plotted at the top of the graph) than at the far end of the curve (at the bottom of the same graph), 
indicating that the nearest-dated contracts usually contain the least mutual information. This finding 
is consistent with the notion that short-dated crude oil futures prices are more volatile—sending 
more information and thus sharing less mutual information.11 Overall, these results suggest that the 
WTI futures term structure consists of three main segments: from the 1st to the 3rd months, from the 
4th to the 27th months, and finally the most distant delivery dates (contracts maturing in 30 months 
and beyond).

Figure 3 also documents that, as a rule across the universe of maturities, the mutual infor-
mation i) is much higher in 2004–2011 than in 2001–2003 and (especially) than in 2012–2014, and 
ii) returns to this very high level after 2015. The middle part of the maturity curve, where the amount 
of mutual information is the highest, is also fatter in 2004–2011 than in the three years before or af-
ter. In other words, Figure 3 establishes that the market integration phenomenon observed in Figure 
2 comes principally from what happens at intermediate maturities.12

11.  See Robe and Wallen (2016) for recent evidence on the term structure of WTI implied volatilities.
12.  Figure 4 complements Figures 2 (mutual information over time, across all maturities) and 3 (mutual information 

over time for each individual maturity) by depicting the information that a specific maturity shares on average with all other 
maturities in 2000–2017. It shows that the average mutual information is a hump-shaped function of contract maturity, with 

Figure 3: �Mutual Information Shared Daily by Each Maturity with All Other Maturities, 
2001–2017

Figure 3 depicts the mutual information shared by each maturity with all other maturities over the course of our 2000–2017 
sample period. For every maturity i = 1,2,...,72 and every business day in 2001–2017, the level of mutual information that this 
maturity shares with all others is computed using daily returns for the previous 250 trading days and is displayed using a grey 
scale ranging from dark grey (very low mutual information) to light grey (very high mutual information). We chose a non-
linear color gradation to improve readability of the figure in grey-scale. 
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Finally, we know from Figure 2 that an important market development took place in 2011–
2014, with the total mutual information Mt

N falling after December 2010 and reaching record low 
levels in 2014. Figure 3 shows that, while the graph gets darker across the entire spectrum of matur-
ities during that period, the maturities that darken the most are the most backdated ones (contracts 
with maturities greater than three years).

5.2 Transfer Entropy between Maturities

This Section investigates cross-maturity linkages through the lens of the entropy transfers 
between contract maturities. It adds to the insights already gained from the mutual information 
analyses in Section 5.1 by answering the question of which part of the term structure is the shock 
transmitter and which one is the receiver. We first perform a static analysis across the whole sam-
ple period (Section 5.2.1), and then carry out dynamic analyses in order to assess how the typical 
emission and reception patterns evolve over time (Section 5.2.2). Finally, we define and compute 
“backward” and “forward” information flows across the term structure (Section 5.2.3).

a maximum near the 18-month maturity. It also confirms that the intermediate maturities (6 to 27 months) share substantially 
more mutual information than contracts both at the back end of the curve (shown up to 6 years out) and at the front end—es-
pecially the nearby contract.

Figure 4: Average Mutual Information Shared by Each Maturity with All Others, 2001–2017

Figure 4 represents the information that a specific WTI futures maturity (in months) shares, on average between January 2001 
and 2017, with all other maturities. Daily values are computed using settlement prices and a one-year rolling window using 
contract price data from 2000–2017, and then are averaged for each maturity over the 2001–2017 period. The bars around 
each point show the average variance of the measure over the sample period. 
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5.2.1 Static analysis: Sample-average transfer entropies associated to each maturity

We start by computing the transfer entropies over the entire sample period. This approach 
gives us a picture of the “average” behavior of the system, i.e., it shows whether one maturity sends 
on average more than what it receives or vice-versa. Starting from Equation (9), which focuses on 
the transfers between two maturities 1τ  and 2τ , we extend this pairwise measure and compute—for 
every trading day t in our sample—the total amount of entropy sent from the futures prices’ return 
with maturity τ i to all other maturities τ j ( ≠j i): 

, ,=
τ τ τ→

≠
∑S

t R t R R
i i jj i

T T  (11)

Similarly, we define the daily quantity received by maturity i from all the other maturities as: 

, ,=
τ τ τ←

≠
∑R

t R t R R
i i jj i

T T  (12)

Figure 5 depicts the daily transfer entropies associated to each WTI futures maturity, aver-
aged over all trading days in our sample period. The black line in the figure shows the total amount 
of information entropy emitted by each maturity, using 2000–2017 averages of the daily values 
computed using Equation (11). The grey line shows the total amount of information entropy re-
ceived by each contract, based on Equation (12). The vertical bars in the figure represent, for each 
maturity, the average sample variance recorded for the specific measure; these variances are partic-
ularly large for the entropy received by the long-dated contracts.

Figure 5: Average Daily Total Transfer Entropies by Maturity, 2001–2017

Figure 5 depicts time-averages of the daily transfer entropies that are emitted (black line) or received (grey line) by each 
maturity. Daily values of the total transfer entropies emitted or received are computed for each maturity using equations (11) 
or (12), using a one-year rolling window of WTI futures prices from 2000–2017, and then are averaged over the 2001–2017 
period. The bars around each point show, for each maturity, the variance recorded for the measure over the sample period. 
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Figure 5 shows that, on average, maturities up to two years (including the 24-month con-
tract) emit more than they receive. For contract maturities beyond 24 months, the average informa-
tion entropy emitted by a contract is decreasing in its maturity—with an especially sharp drop at 60 
months. The average information entropy received exhibits the opposite pattern: it is lowest for the 
first 24 maturities and highest for maturities of 25+ months (with the maximum value reached at the 
back end of the term structure). Intuitively, these static results imply that crude oil market partici-
pants whose “preferred habitat” (Modigliani and Sutch (1966)) is the back end of the maturity curve 
are, on average, more likely to be the object of a shock than to be the source of one.

5.2.2 Dynamic analysis: Transfer entropies over time, by maturity

For each maturity τ i and every trading day t in 2000–2017, Figure 6 plots the total entropy 
, τ

S
t R

i
T  sent from τ i to all the other maturities. Figure 7 plots , τ

R
t R

i
T , the total entropy received by τ i from

all the other maturities.
Together, these two 3-D plots show that the short (1–3 months) and/or intermediate matur-

ities (6–27 months) send out the most information entropy (see Figure 6) while the longer maturities 
(30+ months) are those that receive the entropy (see Figure 7). As such, for much of 2000–2017, the 
daily entropy transfer patterns match the average (“static”) pattern of Figure 5 discussed in Section 
5.2.1.

Figures 6 and 7, however, also show that those typical patterns are turned on their head 
between mid-2007 and early Fall 2008. Very large transfer entropies start being sent by futures with 

Figure 6: �Daily Transfer Entropy Emitted by Each Maturity to All Other Maturities, 2001–
2017

Figure 6 shows the transfer entropy emitted by each WTI futures maturity to all other contract maturities on each trading day 
in our sample. Daily values of the total transfer entropies emitted are computed for each maturity using Equation (11), using 
a one-year rolling window of WTI futures prices from 2000–2017. The entropy emitted is displayed in a color ranging from 
blue (very low) to green, yellow, orange or red (very high). 
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maturities from 12 to 27 months (it is the only time when those maturities appear in light or very 
light grey in Figure 6).

At the same time, not only the long-dated contracts (as is typical) but also the nearest-dated 
futures (which is atypical) become the recipients of exceptionally large transfer entropies (see Fig-
ure 7). For the three nearest-dated contracts, the differences between the entropies received and sent 
are much larger (especially between July 2007 and July 2008) than at all other times in 2000–2017: 
in essence, the nearby, first- and second-deferred contracts turn almost silent for much of that year.

As shown in Figure 1, this episode coincides with the oil price “boom/bust of 2007–
2008”—see, e.g., Singleton (2014). It is truly exceptional: at no other time in the sample period do 
the nearest-dated contracts receive so much information entropy nor do the intermediate maturities 
send out as much entropy. As such, the 2007–2008 period deserves more attention: we therefore 
explore it further, using directed graphs, in Sections 6.3 and 6.4.

5.2.3 Forward and Backward Information Flows

The transfer measure 
τ

S
R

i
T  [ resp. 

τ

R
R

i
T ] defined by Equation (11) [resp. Equation (12)] cap-

tures the total entropy sent [resp. received] by a single maturity, no matter the direction of this 
emission [resp. the origin of this reception]. However, if we want to gain insights into the direction 
in which price shocks propagate, then we need to restrict the analysis to what is emitted in a single 
direction only, from any maturity.

Figure 7: �Daily Transfer Entropy Received by Each Maturity from All Other Maturities, 
2001–2017

Figure 7 shows the transfer entropy received by each WTI futures maturity from all other contract maturities, for every day in 
our sample period. Daily values of the total transfer entropies received are computed for each maturity using Equation (12), 
using a one-year rolling window of WTI futures prices from 2000–2017. The entropy received is displayed in a color ranging 
from blue (very low) to green, yellow, orange or red (very high). 
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To this end, we propose the notions of “forward” and “backward” information flows. We 
define the daily “forward flow” of information, φ F, as the sum across maturities of the transfers of 
entropy from each maturity τ i to all further-out maturities τ j: 

,
=1 >

=
τ τ

φ →∑∑
N

F
t t R R

i ji j i
T  (13)

where 
>∑ j i

 denotes summations over all the maturities greater than i. The “backward flow” φ B is 
defined analogously as: 

,
=1 <

=
τ τ

φ →∑∑
N

B
t t R R

i ji j i
T  (14)

On any given day, the forward (backward) flow captures the propagation of price shocks in 
the direction of longer-dated (shorter-dated) futures.

The top panel of Figure 8 plots the forward and backward flows (graphed, respectively, in 
black and in dark grey) computed, using a rolling 1-year window, for each trading day from Janu-
ary 2001 to January 2017. The bottom-left panel of the same figure is devoted to significance tests 
on those information flows. Relying on the methodology developed for the mutual information, it 
shows that the flows associated to real data are statistically significantly different from those associ-
ated with counterfactual data where the time index has been randomly shuffled.13

Figure 8’s top panel delineates three main sub-periods in our sample. In almost all of 
2000–2003 and much of 2014–2017 (“Sub-periods I and III” in Figure 8), the forward flows are 
higher than the backward flows: in economic terms, the term structure of WTI futures prices is gen-
erally more prone to influence from shocks arising at the near-end of the maturity curve. From 2004 
through the Winter of 2014 (“Sub-period II”), in contrast, the amplitudes of the two information 
flows are generally similar: in other words, the driving forces of price movements are broadly equal 
all along the term structure, with price shocks propagating in the backward direction as easily as in 
the backward direction. Figure 8 even highlights a year in Sub-period II (namely, 2008) when the 
backward flows are not only exceptionally high but are, in fact, much stronger than the contempo-
raneous forward flows. This period, which includes the peak of the oil price boom (in the first half 
of 2008) and the subsequent crude price collapse (in the late Summer and Fall of 2008), is the same 
outlier that we already detected—using other information measures—in Sections 5.1.1 and 5.2.2.

A natural question is whether the relative strengths of forward vs. backward flows are 
statistically significantly different across sub-periods. The bottom-right panel in Figure 8 answers 
in the affirmative by analyzing the difference between forward and backward flows, δ −f b. The panel 
depicts the densities of distribution of δ −f b in each sub-period. Sub-period I, shown in black, is 
clearly characterized by higher forward flows. This is also the case for sub-period III (in green), 
which exhibits a bi-modal distribution. Sub-period II (in red), in contrast, is centered around null 
values. The same panel also provides the results of Kolmogorov-Smirnov (KS) tests. The notations 

−
KS
I IIp  correspond to the p-values of a KS test comparing the distribution of δ −f b in sub-period I with 

that of δ −f b in sub-period II. The probability that these two distributions are the same is extremely 
low. The same conclusion obtains for −

KS
II IIIp  and −

KS
I IIIp .

13.  We generate counterfactual forward- and backward-flow measures by “shuffling” the time index of each dataset. The 
resulting forward information flows are shown in medium grey (“Forward shuffled” in the figure) and the backward flows are 
in light grey (“Backward shuffled”). Unlike the actual forward and backward flows (depicted in black and dark grey, respec-
tively), the counterfactual information flows fluctuate little. Crucially, their values are almost equal for all t. 
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5.3 Discussion: Links with the Samuelson Effect

Our findings on forward and backward information flows raise questions regarding the so-
called Samuelson effect. Samuelson (1965) hypothesizes that futures price volatility increases as the 
contract approaches expiration. Some theoretical models explain that effect.14 Other models, though, 
predict that futures price volatility may instead decrease as expiration nears.15

Extant theoretical papers’ results on the Samuelson effect have direct implications for the 
relative volatility of futures with different maturities. Taken as a whole, they show that it is possible 

14.  Bessembinder et al. (1996), for example, identify conditions under which the Samuelson effect holds—such as asset 
markets in which spot price changes include a temporary component (so that investors expect mean-reversion). Note that a 
number of reduced-form term structure models generate a Samuelson effect without modeling it.

15.  Anderson and Danthine (1983), for instance, show that “volatility may increase or decrease as delivery approaches 
depending upon the pattern of information flow into the market ( ibid., p. 257). Hong (2000) shows that the volatility-matu-
rity relationship changes depending on whether market participants are symmetrically informed.

Figure 8: Daily Forward and Backward Information Flows Between Maturities, 2001–2017

Figure 8 exhibits the daily information flows between WTI futures maturities in 2001–2017. The top panel illustrates the 
daily sum of information flows that are emitted by all maturities in the direction of longer maturities (“Forward”, black curve) 
and the daily sum of information flows received by all maturities from shorter maturities (“Backward”, dark grey curve). 
To provide a test for the statistical significance associated to these flows, we generate two counterfactual series—“Forward 
(shuffled)” and “Backward (shuffled)”—by using permutations of the time index of the underlying WTI futures price returns. 
These counterfactuals are plotted in medium grey (Forward) and light grey (Backward) in the top panel. The second panel, 
on the bottom left, gives the results of a Welch t-test that compares the information flows in the real data with those in the 
counterfactual data. The associated p-values are denoted by pW. The third panel, on the bottom right, gives insights in the 
difference between the forward and the backward flows, δ −f b. It depicts the density of distribution of δ −f b. −

KS
A Bp  is the p-value of 

a Kolmogorov-Smirnov test comparing the distribution of δ −f b in sub-period A with that of δ −f b in sub-period B. 
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for the futures price volatility to be either increasing or decreasing across the term structure. Insofar 
as price volatility is related to the arrival of information, it might be tempting to conclude that the 
same models also predict that information could flow either forward or backward across the futures 
curve depending on circumstances—a possibility that Figure 8 establishes as an empirical fact.

In those models, however, a single futures contract trades at any point in time, and this 
contract moves closer to maturity each period—ruling out the possibility that information could 
flow in both directions across the term structure. We are not aware of any theoretical model that 
predicts a key informational role for intermediate maturities (Section 5.2.2), or why backward flows 
would dominate on 37 percent of all trading days in 2000–2017 (Section 5.2.3). In fact there is, to 
our knowledge, no model studying how market participants reveal information during price forma-
tion in a setting where multiple maturities of futures contracts trade simultaneously. Our empirical 
findings point to the need for such theoretical research.

Our results show that, in practice, there are price shocks coming from the far end of the 
crude oil futures term structure that spread to shorter maturities, and vice versa. An important ques-
tion is how far they travel—in particular, are shocks at the far end of the futures curve strong enough 
to spread to the nearby contract and, thus, to the physical market? Section 6 answers this question.

6. DIRECTED GRAPHS

In this Section, we bring the non-parametric transfer entropy measures of Section 5.2.1 into 
the framework of graph theory, which is ideal for large-scale analyses. This innovation allows us to 
carry out an analysis of price shock transmission for all maturity pairs (528 daily links in our case).

We propose a directed graph that shows not only the directions of the pairwise transfer 
entropies, but also their strength, based on the net amount of entropy transported between two 
maturities (Section 6.1). We then use data from the entire sample to compute a benchmark graph 
representative of the average functioning of the market (Section 6.2). Next, we develop a measure of 
the “distance” between this sample-average graph and the graphs that we compute, using a one-year 
rolling window, for every day in 2000–2017. We find that, while the information flows across the 
term structure do generally follow the patterns seen in the benchmark graph, there are exceptions. 
From Fall 2004 to Fall 2005, and again from Fall 2007 to Winter 2009 (a period that includes the 
2007–2008 oil price boom/bust, Lehman Brothers’ bankruptcy, and physical infrastructure issues 
affecting WTI futures), the cross-maturity information flows differ substantially from the bench-
mark case (Section 6.3). Finally, we conclude with a case study of the differences between the graph 
computed for the most “pathological” day in 2008–2009 (October 8, 2008) and the benchmark 
graph (Section 6.4).

6.1 Building Graphs using Transfer Entropy

A graph is defined by its nodes and links (or “edges”). We assign to each node the time 
series of price returns for a specific futures maturity. In our case, a graph thus has = 33N  nodes.

In order to enrich the links of the graph regarding the direction and the intensity of the net 
transfer entropy between each given pair of nodes τ i ( = 1,..., )i N  and τ j ( )≠j i , we define a daily 
“directionality index” , τ τt R R

i j
D  as follows: 
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The value of the index , τ τt R R
i j

D , which is bounded by –1 and 1, expresses the strength of the

link between the maturities τ i and τ j.16 Its sign gives the direction of the net entropy transfer: from 
τi

R  to τ j
R  when , > 0

τ τt R R
i j

D , and from τ j
R  to τi

R  otherwise.

6.2 The Benchmark: The Sample-Average Directed Graph

To create a benchmark directed graph for the WTI futures market, we compute sample-av-
erage directionality indices. Based on Equation (9), we start by using one-year rolling windows to 
compute the transfer entropies , τ τ→t R R

i j
T , from each contract maturity τ i to each other maturity τ j, for

every trading day. Next, we average those daily values across our 2000–2017 sample. Finally, we 
input those ( 1) = 1,056−N N  averages into Equation (15). This process yields 528 average direc-
tionality indices, which we denote 

τ τR R
i j

D  ( = 1,..., ; )≠i N j i .

6.2.1 Capturing the graph’s rich content

The resulting benchmark graph, with its dozens of nodes and hundreds of links, is very 
difficult to read. To make its interpretation easier, we filter it according to the strength of the con-
nections between its nodes. Figure 9 depicts four filtered benchmark graphs, ranked in order of in-
creasing link intensity D. For example, the top-left panel focuses on the benchmark graph’s weakest 
links: | |< 0.25

τ τR R
i j

D ; the top-right panel only shows links with 0.25 | |< 0.5
τ τ

≤ R R
i j

D ; etc.

In addition to the intensity of the graph’s links, it is useful to also keep track of the number 
of indegrees (outdegrees) at each of its nodes—that is, the number of nodes from which (to which) 
a given node receives (sends) net transfer entropy. A node’s number of indegrees in Figure 9 is 
readily seen by counting, across the four panels, the arrows reaching that node. In order to simul-
taneously depict the average number of outdegrees from each node while preserving readability, 
we color-code the nodes from light grey (few outdegrees) to dark grey (many outdegrees). At each 
node, across the four panels, indegrees and outdegrees together sum up to 1 = 32−N . 

6.2.2 Findings

The most obvious stylized fact in Figure 9 is that the links between maturity pairs are 
concentrated in the bottom two panels: put differently, on a typical day in 2000–2017, the informa-
tion-related strength of most cross-maturity linkages is high. Figure 9 also shows where, on average, 
the information entropy flows from and where it flows to.

We already know from Figures 5 to 7 that far-dated WTI futures typically send little in-
formation but receive information from the rest of the term structure. Figure 9 refines this finding 
by showing that, in net terms, long-dated futures receive a lot of entropy from many different other 
maturities (lots of arrows hit nodes 30 through 72, and the vast majority of those arrows are seen 
in the bottom two panels where | | 0.5≥D ) and, conversely, are net senders of entropy to very few 
other maturities (these same nodes’ colors are shaded in light grey in all four panels). Figure 9 tells 
us more than Figures 5 to 7, by showing that some of the information reaching the longest maturities 
comes all the way from the nearest-dated contracts. To wit, the bottom-left (top-right) panel shows 
high (moderate) net transfer entropies from the nearby, first-deferred, and second-deferred contracts 

16.  We define the normalized quantity ,t R R
i j

D
τ τ

 to capture the strength of the directionality, rather than the quantity of in-

formation transmitted (on which Section 5.2 focuses instead). A variant of Equation (15), using its denominator’s maximum 
across contracts, would capture the latter quantity.
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to all futures maturities between 30 and 72 months (24 to 29 months). In that sense, the benchmark 
directed graph appears to support a conventional view of how a futures market operates—specifically 
that price shocks are thought to form in the physical market (here represented by the short maturities) 
and transmit to the paper market (here made up of contracts with maturities of two years or more).

We also know from Figures 5 to 7, though, that many middle maturities (5 to 21 months) 
emit more entropy than they receive. Figure 9 goes beyond that finding by showing that those sub-
stantial net transfer entropies from middle maturities flow not only to further-out maturities but also 
to the shorter-dated futures. As a matter of fact, the biggest recipient of entropy from the middle 
of the term structure is the front-month contract (top-right panel in Figure 9). This finding calls for 
new theoretical work that would generate such a role for the intermediate maturities in a commodity 
futures market.

Figure 9: Typical Filtered Directed Graph

Figure 9 shows the net transfer entropies between WTI futures maturities between January 2000 and January 2017. Each 
node represents a time series of price returns for a given maturity; the maturity is denoted inside the node. The link between 
each pair of nodes is oriented according to the directionality index 

τ τR R
i j

D , i.e., the average net transfer entropy (15) between

maturities τ i and τ j. The entire directed graph has 33 nodes and 528 links. For clarity, the graph is filtered—each panel displays 
only a subset of links. For example, the panel at the top left shows only the links with | | 0.25

τ τ
≤R R

i j
D . The color of each node 

in a graph reflects the number of arrows of a given index strength that go out of that node in direction of other nodes (i.e., 
“outdegrees”). 
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6.3 Dynamic Analysis: Daily Distance from the Benchmark Case

The directionality index also allows for dynamic analyses. On the basis of one-year roll-
ing windows, we compute, at each date t, the instantaneous directionality matrix , τ τt R R

i j
D . This lets 

us construct daily directed graphs, whose properties and evolution over time we can examine. An 
important point of interest regarding the properties of daily directed graphs is their stability: do the 
directions in the graph evolve during the period? If so, then how?

To answer these questions, we start from the benchmark case (the sample-average directed 
graph built on the basis of the matrix of directionality 

τ τR R
i j

D ) and measure the distance between that 

benchmark graph and the daily directed graphs. Our distance metric is the “survival ratio” or the 
proportion of links that retain the same direction in both graphs (Onnela (2003)). Here, we compute 
the daily average survival ratio tSR  between the benchmark and daily graphs as: 

,=1

2=
( 1) τ τ τ τ

∩
≠− ∑∑

N

t D Dt R R R Ri j i i j i j

SR I
N N

 (16)

where the averaging is across maturities, and 
, τ τ τ τ

∩D Dt R R R R
i j i j

I  is an indicator function that takes the 

value 1 if , τ τt R R
i j

D  has the same sign as 
τ τR R

i j
D  and 0 otherwise. On day t, tSR  quantifies the stability 

of the graph’s directionality: it tallies up the edges with the same directions in both graphs, and 

expresses that sum as a proportion of the total number of elements in each graph, ( 1)
2
−NN . If 

= 1tSR , then the two graphs are identical in the sense that all the edges in both graphs have the same 
directions. At the other extreme, if = 0tSR , then the set of directed links is totally different.

The top panel of Figure 10 shows the distance between the benchmark graph and each of 
the daily graphs, measured through the time series of the survival ratios tSR . The daily survival ratio 
fluctuates between a maximum of 76% and a minimum of 24%; two thirds of the time, it is higher 
than 50%. This pattern indicates that in our sample period, day after day, a majority of the directed 
links are in the same state as in the benchmark case. The panel, however, also highlights two periods 
when the information flows change massively. The first such episode starts in late Fall 2004 and 
ends approximately a year later. The second episode, during which tSR  reaches its lowest sample 
value, starts in mid-2008 and ends in Spring 2009.

In order to connect these two episodes with physical and futures market developments, 
we use the bottom panel of Figure 10. It reveals the maturities most affected by any reorganization 
of the graph. On a given day t, each maturity τ i is color-coded based on its survival ratio that day 
(ranging from dark grey for the lowest values, to light grey for the highest values). Precisely, we 
compute and plot ,τt i

SR  ( = 1,...,i N): 

, ,

1=
1τ

τ τ τ τ
∩

≠− ∑
N

t D Di t R R R Rj i i j i j

SR I
N

 (17)

During the first episode (2004–2005), Figure 10’s bottom panel pinpoints the far-out ma-
turities as contributing the most to the graph’s reorganization—i.e., to the change in the pattern of 
shock propagation. It complements Figure 6 which shows that, during that period, futures of 2+ 
years send out uncharacteristically large amounts of information (for the first time ever). Interest-
ingly, this very period witnessed a profound change in WTI trading activity, with open interest in 
WTI futures with maturities of 3+ years quadrupling compared to 2003 levels amid the financial-
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ization of commodity markets (Büyüksahin et al. (2011)). Thus, our findings point to the need for a 
theoretical model in order to assess the extent to which financialization could bring about this kind 
of changes in cross-maturity informational linkages. During the second episode (2008–2009), the 
bottom panel of Figure 10 shows that, while long maturities contribute to the graph reorganization, 
so do the near-dated contracts—but only in the Fall of 2008 and Winter of 2009. Interestingly, that 
period starts with the demise of Lehman Brothers and continues with a massive steepening of the 
WTI futures curve amid a petroleum storage-capacity crisis at the WTI futures delivery point in 
Cushing, Oklahoma—see Büyüksahin et al. (2013). Once again, the methodology we have proposed 
is able to capture the impact of these market developments on information flows across the term 
structure.

6.4 A Case Study: October 8, 2008

Figure 10’s top panel shows that the survival ratio tSR  hits its two lowest values for the 
2000–2017 period in Fall 2008. The first (26%) is reached on September 18—three days after Leh-
man Brothers’ bankruptcy, two days after AIG’s takeover by the U.S. Federal Reserve, and one day 

Figure 10: Survival Ratios

Figure 10 comprises two panels. The top panel provides insight into the distance between the static non-filtered directed 
graph, used as a benchmark, and daily directed graphs, by plotting the survival ratio ( )RS t . We measure ( )RS t  as the number 
of same-sign elements in 

1 2 1 2

1 ( )
τ τ τ τ

∩R R R RD t D
N

. For each day t from January 2001 to January 2017, the values are computed 

using daily returns from the prior year (a rolling window of 250 trading days). At one extreme, if ( ) = 1RS t , then the two graphs 
are identical—from which one concludes that the pattern of shock propagation has remained stable. At the other extreme, 
if ( ) = 0RS t , then the set of directed links has been completely rearranged (compared to the benchmark graph). In addition 
to the top panel’s level of the survival ratios, the bottom panel identifies the individual maturities touched by the daily re-
organization of the graph. Every day in the sample, each maturity is plotted on a grey-scale depending on whether the survival 
ratio is high ( light grey) or low ( dark grey). 
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after the rescue of HBOS (the UK’s then largest mortgage lender) by Lloyds. The other (24%) is 
reached three weeks later, on October 8, “amid the worst ever week for the Dow Jones.”17

Figure 11 provides the filtered graphs for a case study of the information flows across 
the WTI term structure on October 8, 2008. It is organized and color-coded exactly like Figure 9, 
allowing for easy comparisons with the sample-average directed graph. As such, several stylized 
facts emerge.

First, in Figure 11, most of the links are in the top left panel—where 8,| | 0.25
τ τ

≤Oct R R
i j

D  

(Section 6.2.2). In Figure 9, in contrast, ,| | 0.5
τ τ

≥t R R
i j

D  for most links.18 In plain English, not only 
is the direction of the net information entropy transfer different from its sample-average for more 

17.  The Guardian (https://www.theguardian.com/business/2012/aug/07/credit-crunch-boom-bust-timeline).
18.  Figure 12 provides two histograms of the link strengths in, respectively, Figures 9 and 11.

Figure 11: Filtered Directed Graph on October 8, 2008

Figure 11 summarizes the net transfer entropies between WTI futures maturities on October 8, 2008. The link between each 
pair of nodes is oriented according to the directionality index 

τ τR R
i j

D , i.e., the net transfer entropy (15) between maturities τ i 
and τ j computed using daily returns in the previous year. The entire directed graph has 33 nodes and 528 links. For clarity, 
the graph is filtered—each panel displays only a subset of links. For example, the panel at the top left shows only the links 
with ,| | 0.25

τ τ
≤t R R

i j
D . The color of each node reflects the number of arrows of a given index strength that go out of that node 

in direction of other nodes (i.e., “outdegrees”). 
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than three quarters of the 528 maturity pairs ( .8 = 0.24OctSR ), but the strength of most of the pairwise 
directionality indices is also lower on October 8, 2008, than during much of 2000–2017.

Second, we know from Figure 5 that, on average, far-dated futures (30+ months) send little 
entropy to other maturities while receiving substantial amounts of entropy from those other matur-
ities (Section 5.2.1). Furthermore, we know from Figure 9 that far-dated futures are net entropy re-
cipients from virtually all the other maturities—including from the nearest-dated contracts (Section 
6.2.2). We also know from Figures 6 and 7, however, that these patterns are turned on their head 
in 2008—with the front months becoming the recipients of very large transfer entropies (Section 
5.2.2). What Figure 11 tells us—but the other figures could not reveal—is that, three weeks after 
Lehman’s collapse and amid a massive crude oil price plunge, the pattern is completely reversed:

• � In the average graph, the only nodes that send net entropy to many other nodes (color 
code: medium to dark grey) correspond to maturities between 8 and 19 months. On 
October 8th, in contrast, the contracts that are similarly color-coded have maturities of 
21+ months. Indeed, almost all of the nodes for futures of 21+ months are in medium to 
(very) dark grey. 

• � On October 8th, all the far-dated contracts are net senders of entropy to most other ma-
turities, including the nearest-dated ones. To wit, the 6-year futures (node 72) hits the 
nearby with a medium-strength net transfer (top-right panel of Figure 11), and it hits the 
first-deferred with a high net transfer (bottom-left panel of Figure 11). 

The graph computed for October 8, 2008, is based on a one-year rolling-window of returns. 
Hence, the fact that the lowest value of tSR  is reached on October 8, 2008, implies that the entire 
prior year—corresponding to the oil price boom/bust of 2007–2008—is characterized by highly 
unusual information flows across the term structure. The extant literature on the financialization of 
commodities focuses on the impact of index traders’ and hedge funds’ trading activities on spot or 
nearby-futures prices, including the possibility that they may cause bubbles—see, e.g., Singleton 

Figure 12: Link Strength Frequency: Average Directed Graphs versus October 8, 2008

Figure 12 compares the distribution of the 528 directionality indices 
τ τR R
i j

D  (the net transfer entropies between WTI futures 

maturities τ i and τ j) in Figure 9 (sample-average graph) vs. in Figure 11 (October 8, 2008 graph). Both directed graphs have 
= 33N  nodes (one per maturity) and ( 1) = 528−N N  links between its nodes. 
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(2014) and Sockin and Xiong (2015). Our case study’s findings suggest that other components of 
the futures curve, as well as the informational relationships between them, may be impacted too. 

7. CONCLUSION

We apply the notions of mutual information and transfer entropy to investigate empirically 
the nature of pricing relationships across the WTI crude oil futures term structure in 2000–2017. 
In this setting, information refers to the uncertainty associated to a variable. It captures unexpected 
changes, typically a shock in the futures prices’ return.

We use the level of mutual information across maturities as a proxy for market integration, 
and we introduce the notions of forward (backward) information entropy flows as proxies for the 
extent to which price shocks propagate in the direction of longer (shorter) maturities. Our forward 
and backward flows are conceptually related to volatility spillovers, but they allow for non-linear 
interdependencies between variables and for the analysis of a high-dimensional system (here, a term 
structure over two decades). We further innovate by proposing a novel type of directed graph linking 
different parts of the futures curve based on the net entropy transfers between maturity pairs.

First, we find major variations over time in the amount of mutual information shared be-
tween futures with different delivery dates. The mutual information increases substantially starting 
after 2003, falls back sharply in 2011–2014, and rises again thereafter. Büyüksahin et al. (2011), in 
a widely-cited study, show that the prices of the nearby, one-year, and two-year WTI futures became 
cointegrated in 2003–2010 due to a combination of tight supply conditions in the physical oil market 
and of commodity markets’ financialization. Our findings point to a puzzling re-segmentation of the 
WTI market by maturity in 2012–2014. Further research, using regulatory trader-level activity data, 
is therefore needed to determine whether the 2011–2014 free-fall in mutual information levels can 
be explained by physical-market developments (perhaps those that brought about a concomitant 
surge of the Brent-WTI price spread) or, alternatively, by a possible pullback of key financial insti-
tutions from participation at the back end of the WTI futures curve (perhaps due to the anticipation, 
and the coming into force, of costlier regulatory requirements during that same period).

Second, our findings on the magnitude and direction of information entropy flows also 
suggests interesting venues for theoretical research.

On the one hand, we document that the short- and medium-dated futures are on average 
net senders of information entropy, and that they emit more entropy than longer-dated contracts do 
(30+ months). We also show that, on average, information entropy flows forward rather than back-
ward—with price shocks transmitted all the way from the front to the far end of the futures curve. 
These facts appear consistent with a conventional view of how futures markets work: price shocks 
propagate in the forward direction.

On the other hand, we document for the first time that the intermediate maturities (6 to 
24 months) play an important informational role, sending information forward and backward, and 
that the information flows change in magnitude and in direction amid the “oil price boom/bust” of 
2007–2008. We even find that substantial net information transfers flow from the far end all the way 
to the very front end of the term structure during that boom/bust episode.

New theoretical models are needed to rationalize those findings and provide guidance on 
identification. While existing models of the Samuelson (1965) effect allow one to make predictions 
regarding the relative volatility of futures contracts with different maturities, all of them assume that 
only one futures contract trades at any given time. As such, those models are by construction unable 
to generate the bi-directional information flows across the term structure that our analysis reveals. 
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Doing so requires a micro-founded dynamic equilibrium model in which multiple futures maturities 
trade simultaneously.

Finally, our findings point to a number of new venues for empirical work. i) On the finance 
side, the methodology we propose in this paper could be applied to other markets, like financial 
futures. ii) It also raises tantalizing possibilities of applications in the realm of return predictability. 
iii) On the commodities side, a debate has raged for over a decade on the extent to which financial-
ization is responsible for the 2007–2008 commodity price boom. Extant bubble studies focus on the 
spot or nearby futures prices. Our finding that the three nearest-dated WTI futures turn almost silent 
during that entire episode and, instead of emitting information, start receiving net entropy transfers 
from even the furthest-out contracts, indicates that any analysis of the 2007–2008 boom/bust must 
consider the possible impact of financialization on all the components of a term structure—not 
just its front end. iv) The past twelve years have witnessed numerous failures of U.S. agricultural 
futures and spot prices to converge at expiration, spawning a growing body of work analyzing 
this phenomenon (see, e.g., Garcia et al. (2015)). In that literature also, the focus is solely on the 
behavior of the spot and front-month futures prices. Extending the methodologies utilized in the 
present paper would make it possible to highlight the impact on the entire futures curve. Hence, it 
would allow for the development of a pathology of price discovery impairments and cross-maturity 
information-flow disruptions during such episodes—which would be of use to market participants, 
regulators, and futures exchanges.
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