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abstract

In Central Western Europe, a reconfiguration of bidding zones for electricity is 
frequently discussed as a way to improve congestion management. The current 
EU guideline on Capacity Allocation and Congestion Management even envis-
ages reviews of the bidding zone configuration (BZC) in regular intervals of three 
years. Such a change of BZCs gives rise to additional regulatory risk for genera-
tion companies. Their expected net present value depends on local prices, which 
are directly influenced by the BZC. The paper at hand develops a methodology to 
investigate the impact of this regulatory risk. Therefore the risk of bidding zone 
changes is modeled using a partly-meshed scenario tree. The risk factors reflected 
therein are uncertainties in grid developments, in combination with other risks 
such as changing coal and gas spreads, demand, or renewable infeed variations. 
Results are compared to the current BZC in Europe and to a nodal setup. 
Keywords: Electricity Market Design, Bidding Zone Configuration, Investment 
Decisions, Risks
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1. INTRODUCTION

When it comes to pricing in regional electricity markets, economists often refer to so-
called nodal pricing as the optimal solution (cf. Schweppe et al., 1988; Hogan, 1992; Bjørndal and 
Jørnsten, 2001; Ehrenmann and Smeers, 2005; Bjørndal and Jörnsten, 2007). Yet in Central Western 
Europe (CWE), a zonal pricing framework has been put in place that couples bidding zones1 whose 
borders usually align with national borders. Until 2015, a so-called Net Transfer Capacity (NTC) 
approach was applied, which in 2015 was superseded by Flow-Based Market Coupling (FLB-MC). 
With FLB-MC, a better representation of physics of the electricity grid is envisaged. However, 
the approach assumes bidding zones without internal congestions, which appears to be rather im-
possible at the moment. Redispatch costs and amounts increased significantly over the last years, 
especially in Germany (BDEW, 2017). This is mainly a consequence of the increasing infeed from 
renewable energy sources (RES) in combination with the massive delays in grid expansion, but it 
also reflects changes in regulation, e.g. the nuclear phase-out in Germany. 

1. In literature both terms “price zones” and “bidding zones” are used. We use the term “bidding zone” as it is more 
common in the European regulatory debate.
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This is why there are broad discussions about the future design of electricity markets in 
Europe. An optimized bidding zone configuration (BZC) might be one key approach in terms of 
mid- and long-term redispatch prevention and congestion management. A further split of the Ger-
man bidding zone—in addition to the split of the former German-Austrian bidding zone into two or 
more bidding zones within Germany—is frequently discussed, since the massive infeed from north-
ern RES still causes severe internal congestions and loop-flows through neighboring bidding zones. 

The current EU guideline on Capacity Allocation and Congestion Management (CACM) 
even envisages reviews of the BZC in regular intervals of three to five years (cf. Commission Reg-
ulation (EU) 2015/1222).2 Also, internal congestions shall no longer reduce capacities on cross-bor-
der lines in order to prevent internal redispatch within countries (bidding zones) (COM (2016) 861 
final).3 Such a change of BZCs gives rise to additional regulatory risk4 for generation companies 
(GENCOs). Their expected net present value depends on local prices, which are not only influenced 
by changes in primary energy and CO2 certificate prices but also by the BZC. Ergo, a frequent 
change of BZCs might have a major effect on investment and disinvestment. Various recent analy-
ses have shown that changes in primary energy prices, CO2 certificate prices, RES expansion, and 
demand changes have had a major impact on wholesale electricity prices (cf. e.g. Everts, Huber 
and Blume-Werry, 2016; Kallabis, Pape and Weber, 2016; Bublitz, Keles and Fichtner, 2017; Hirth, 
2018). So far, there is little empirical evidence regarding the impact of a reconfiguration of bidding 
zones, since few reconfigurations have occurred so far in continental Europe. The split of the Ger-
man-Austrian bidding zone is currently expected to lead to an increase of the average (base) price 
by 2 EUR/MWh for Austria,5 i.e. roughly 5% of the current price. Model-based analyses by Blume-
Werry, Huber and Everts (2017) have suggested an increase by 1 EUR/MWh. Model-based analyses 
for other reconfigurations of bidding zones (e.g. Trepper, Bucksteeg and Weber (2015); Egerer, 
Weibezahn and Hermann (2016); Felling and Weber (2018)) provide mixed evidence: if only large 
bidding zones are considered, the effects on average prices typically remain limited, whereas with 
small bidding zones or nodal prices, some areas with high price changes may occur. Moreover, these 
studies agree that prices tend to decrease in northern Germany, in case Germany is split in several 
zones.

Hence, the focus of this paper is to quantify the additional regulatory risk induced by a 
frequent change of bidding zones for GENCOs and investors, taking into account the other risks 
these stakeholders are facing. The additional risk induced by regulation is also the only one that can 
be influenced by policy makers. Thus, it needs to be assessed in detail and put into perspective for 
policy advice. Therefore, we have developed a new methodology that investigates both the BZCs 
and the risks for GENCOs by computing and assessing the distribution of present values of the 
contribution margins obtained in future operations. In principle, this methodology is also applicable 

2. Notably, a new law in Germany enforces the unified German bidding zone and places an interdiction on TSOs to split 
up the German bidding zone. However, the law only affects German TSOs and does not apply to decisions affecting the EU.

3. The compromise reached on that point by the end of 2017 foresees, as the preferred solution, an arrangement with 
fixed free capacities on cross-zonal lines to ensure maximum exchange. A split of price zones is by contrast seen as the 
“ultima ratio.”

4. In the following, the terms risk and uncertainty are used quite interchangeably. We are aware of the strict distinction 
made by Knight (1921), who defines “risk” as measurable risk with a probability and “uncertainty” as unmeasurable. Since 
then, others have elaborated further distinctions and other taxonomies (cf. e. g. Renn, Klinke and van Asselt, 2011). Here, 
we follow what we perceive as a widely used convention in decision theory, which uses “uncertainty” as the broad notion of 
“absence of certainty” and risk as the subset of decision situations where probabilities may be assigned to different states of 
the world (cf. also Weber, 2005). In the subsequent quantitative analyses we focus on risk, since modelling “ambiguity” (or 
“Knightian uncertainty”) is challenging and beyond the scope of this paper.

5. According to EEX market data for the front year base product over the period January–May 2018.
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to other cases of regulatory (and other) risks that may affect power plant investments in competitive 
markets, including jurisdictions outside the EU.

The remainder of this article first gives a brief overview of the relevant literature, with a 
focus on the two streams of “bidding zone configurations” and “investment decisions and risks.” 
Section 3 develops the different steps of the methodology, and section 4 presents the application of 
the methodology on a grid- and market-model of extended Central Western Europe CWE+ (Austria, 
Belgium, France, Germany, Luxembourg, Netherlands and Switzerland). Section 5 analyzes the 
resulting BZCs and the risks for investments in or continued operation of power plants by inves-
tigating the uncertainty in present values of the future operation margins. The article ends with a 
summary of the main findings and outlook on future research.

2. LITERATURE REVIEW

To our knowledge, there are no papers that directly address the question of quantifying 
regulatory risk for power plant investments in the context of applied regulatory decision-making, 
such as the definition of bidding zones. Yet a considerable amount of related literature exists that 
may be broadly divided into the two major streams, “bidding zone configurations” and “investment 
decisions and risks.”

The first stream deals with the ongoing discussion about BZCs in Central Europe. As 
mentioned earlier, the combination of increasing RES infeed, a delay in grid enforcement, and 
the current European market design—where bidding zones mostly coincide with national borders, 
neglecting the physical constraints of the transmission grid—has caused a significant increase in 
so-called redispatch (BDEW, 2017). The reconfiguration of bidding zones is one approach for mid- 
and long-term congestion management to reduce redispatch amounts and costs (cf. Commission 
Regulation (EU) 2015/1222 ). According to mainstream economic theory, however, the first and best 
answer to these (and other) congestion management problems is nodal pricing, since nodal prices 
reflect the marginal generation costs as well as the transmission constraints in the market-clearing 
algorithm (cf. Schweppe et al., 1988; Hogan, 1992; Ehrenmann and Smeers, 2005; Green, 2007). 
Nodal pricing is mostly implemented in North American competitive markets, such as PJM Inter-
connection,6 where the Independent System Operator (ISO) is responsible for grid operation and 
power plant scheduling. Yet the implementation of an ISO across Europe is not expected for years 
to come; hence, a more efficient method of congestion management in Europe will have to rely on 
zonal pricing, at least in the medium term. In that setting, cluster algorithms are applied in order 
to identify improved BZCs. Those algorithms cluster the nodes of a system into bidding zones. 
Although various methods have been used, clustering of locational marginal prices (LMPs) and 
clustering of power transfer distribution factors (PTDFs) are the two major approaches. Clustering 
of PTDFs is done, for example, by Kłos et al. (2014) and Kang et al. (2013). Bergh et al. (2016) also 
cluster PTDFs. They present a case study for CWE and try to quantify the impact of the number of 
bidding zones on market outcome. The different bidding zones are obtained by clustering nodes with 
similar nodal PTDF-values for congested lines. Clustering of LMPs has been applied by (amongst 
others) Imran and Bialek (2007), Burstedde (2012), Wawrzyniak et al. (2013), Breuer, Seeger and 
Moser (2013) and Breuer and Moser (2014). Burstedde (2012), for example, clusters nodes to zones 
based on similarity of nodal prices using a hierarchical cluster algorithm following Ward’s crite-
rion, whereas Breuer and Moser (2014) apply a genetic algorithm developed in Breuer, Seeger and 

6. PJM Interconnection is a regional transmission organization in all or part of thirteen states and the District of Colum-
bia in the north-east of the USA (PJM Interconnection (2018))
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Moser (2013) that is based on LMPs to a large-scale model of the European transmission system. 
They assess the impacts of the optimized bidding zones on operational costs, network security, and 
market efficiency. Additionally, the authors of this paper have developed an enhanced approach to 
LMP-based clustering that weights nodes according to their relevance for an electrical network (cf. 
Felling and Weber, 2016) and which is able to compute robust configurations against a given set of 
uncertainties (cf. Felling and Weber, 2018). 

In contrast to that, there are several studies that evaluate not endogenously determined, but 
exogenously given bidding zones. Trepper, Bucksteeg and Weber (2015) investigate a split of Ger-
many into two bidding zones and analyze both the occurring price differences and the distributional 
effects. Egerer, Weibezahn and Hermann (2016) analyze the implications for the German power 
market if it were to be divided into two or four bidding zones. One of their results is that price dif-
ferences between zones could be very high, but could occur in a restricted number of hours. They 
conclude, however, that the results are dependent on the BZC. Blume-Werry, Huber, and Everts 
(2017) use the fundamental model Green-X in order to analyze the impact of splitting the common 
German-Austrian bidding zone. One of their key results is that the split has nearly no effects on the 
security of supply of both countries.

The second relevant literature stream, as mentioned previously, relates to “investment de-
cisions and risks.” Practitioners most commonly assess large investment projects based on the net 
present value, which is determined using the discounted cash flow method (cf. Brealey, Myers and 
Allen (2017)). But a major shortcoming of this approach is that it neglects optionalities embedded 
in investment decisions. This approach also uses expected future cash flows to determine whether or 
not to realize an investment project. Hence, the impact of new information on the course of a project 
is neglected (cf. Dixit and Pindyck, 1994 and Trigeorgis, 1995). Methods that do take the impact of 
new information on future decisions into account are commonly labelled as real options approaches. 
In a narrow interpretation, real options theory is based on the application of principles of the finan-
cial options theory. Dixit and Pindyck (1994) and Trigeorgis (1995) not only provide seminal works 
in that field but are also among the first to present applications of real options theory in the energy 
and power sector. One key optionality considered there is the flexibility to postpone an investment 
project. Since then many energy- and power-related applications have been developed. Simultane-
ously, the term “real option analysis” has been applied in a broader sense, generally encompassing 
methods that explicitly take into account uncertainties and the future arrival of new information. 
Fernandes, Cunha and Ferreira (2011), Martínez Ceseña, Mutale and Rivas-Dávalos (2013), Chang 
(2013), and Kozlova (2017) provide literature reviews of that field. Kozlova (2017) summarizes the 
uncertainties in renewable energy valuation and concludes that uncertainties regarding regulation 
are indeed considered, but not as often as other sources of uncertainty such as the electricity price or 
the fuel price. Examples of researchers that address uncertainties regarding regulation include Lau-
rikka (2006) and Laurikka and Koljonen (2006), who analyze the impact of the EU Emissions Trad-
ing System on investments in the Finnish power sector by using the real options approach. Fuss et al. 
(2008) also analyze investments under climate policy uncertainty. They incorporate the uncertainty 
regarding the CO2-price when evaluating an investment in electricity generation projects within 
the real options framework. A further regulatory uncertainty is the uncertainty regarding support 
schemes. This is addressed by Boomsma, Meade and Fleten (2012), for example, who adopt in a 
case study for the Nordic countries the real options approach and analyze the optimal timing of RES 
investments and the capacity choice under different support schemes. They conclude that feed-in 
tariffs result in earlier realized projects and renewable energy certificates result in larger projects.
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Besides this literature on real options, there are other literature threads that examine invest-
ments under uncertainty. Eager, Hobbs and Bialek (2012) notably use a dynamic capacity invest-
ment simulation to analyze investments in conventional generation capacity in markets with high 
penetration of wind. The investment decisions are thereby based on net present value as well as a 
value-at-risk criterion. Botterud et al. (2001) develop a dynamic simulation model of the Nordic 
electricity market to analyze investments under uncertainty. 

We expand the existing literature by combining these two research streams. At this time, 
there are no works that specifically analyze the risk of changing BZCs for power plant investors 
and operators. Therefore, we develop a new methodology for the analysis of the investment in new 
power plants, and/or the maintenance of existing ones, under different regulatory approaches to 
BZC. 

In order to do so, we have designed a novel approach to assess power plant profitability un-
der uncertainty. We model risk factors with quantifiable probabilities such as input price fluctuations 
(cf. section 3.2.1), i.e. risk in a narrow sense as in decision theory. We also examine the regulatory 
risk by considering different regulatory regimes as scenarios. The objective is to apply a theoret-
ically sound method while accounting for the risk aversion of decision makers and considering 
practically relevant risk factors such as volatile input factor prices, variations in electricity demand 
and RES infeed, and uncertainties in grid development. While risk factors are hence depicted in an 
electricity system perspective, their impact on individual investment and operation decisions is de-
scribed based on the corresponding electricity prices and their uncertainties. These are used as input 
in a stochastically enhanced discounted cash flow approach. Hence, regulatory uncertainty—with 
respect to BZC as perceived by GENCOs—is treated as a consequence of the choice of a regulatory 
regime by policy makers, as well as the response foreseen in the regime to the realizations of risk 
factors (cf. section 3.2). It is therefore one among several risk factors influencing the profitabil-
ity and riskiness of power plant investments in competitive markets. We then investigate differ-
ent schemes of BZCs, including different robust configurations as discussed in Felling and Weber 
(2018), to describe different regulatory approaches to BZC. By assessing investment profitability 
and riskiness under these different regulatory settings, we offer new advice to regulatory authorities 
regarding the impact of different regulatory choices on the energy investment climate. 

3. METHODOLOGY

In this section we describe our methodology for the assessment of investment profitability 
and riskiness under different regulatory settings. In section 3.1, we discuss the general interplay 
between regulatory decisions and the decisions of GENCOs. Subsequently, we introduce our novel 
three-step approach that reflects this interplay in section 3.2. 

3.1 General Approach

GENCOs, like other firms, will take the existing regulatory framework into account when 
making their decisions. It is therefore useful to distinguish operational decisions of unit commitment 
and dispatch from investment (and disinvestment) decisions that typically involve important one-off 
payments and that induce sunk cost as well as other types of irreversibility. Especially when it comes 
to such (partially) irreversible decisions, anticipation of possible future developments is a key el-
ement of rational decision making. This also includes the anticipation of future regulatory risk, 
along with other risk factors. This leads us to the lower three levels of decision making sketched in  
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Figure 1: (1) operation decisions, (2) determination of BZC, and (3) investment and continuation 
of operation decisions. Decisions made at the upper levels impact subsequent decisions, and con-
versely, decisions at the lower level have to be anticipated at higher levels. This ought also to be true 
for the uppermost level, the decision of the regulatory authorities regarding the regulatory scheme 
for BZCs. This choice of a regulatory scheme determines in particular how often the BZCs are 
changed in the future and how the BZCs are assessed.7 Obviously, this decision directly influences 
the (dis-)investment choices of GENCOs as they decide whether to invest in new power plants or 
to continue operations of existing ones. At this level, the GENCOs will assess the expected profit-
ability of any (dis-)investment; they will thereby also take its riskiness into account. This requires 
an anticipation of expected future operational cash flows and their stochastic distribution. These 
depend on the actual BZCs as they are reconfigured at regular intervals, in our case every five years. 
Those decisions in turn determine the operational decisions of generators as well as the correspond-
ing market prices, which obviously impact the revenues (represented in our case by the contribution 
margins) of the GENCOs. 

In view of a rational, welfare-maximizing policy choice, the regulator should also antic-
ipate, in his selection of a regulatory scheme, the implications for subsequent decisions; our ap-
proach is meant to support the regulatory authorities in their choice. We hence provide decision 
support to a regulator acting as “benevolent dictator,” and disregard any strategic behavior or other 
deviations from pure (risk-adjusted) welfare maximization.

Therefore, we will evaluate the profitability and riskiness of power plant (dis-)investments 
from a GENCO perspective under different regulatory schemes. We will use the present value of 
future cash flows and the lower partial moment as ex ante evaluation criteria (cf. section 3.2.3). 
In order to evaluate these criteria, not only the determination of BZCs in each base year has to be 
anticipated, but also the market outcomes depending on various risk factors. Notably, the market 
outcome influences both the direct operating decisions of GENCOs and the shape of the BZC. Both 
factors significantly impact the GENCO’s operating decisions—hence the contribution margin, 
which is our ex post evaluation criteria. 

Having introduced the general approach of decision making, we introduce in the following 
section how these sequences of decisions are converted into our developed methodology.

7. We disregard in this paper the possibility of time-inconsistent regulatory choices, i.e. the possibility that a regulator 
may revise its choice of a regulatory scheme. Obviously this type of regulatory risk is also considered by firms in practice.

Figure 1: Sequence of decisions and uncertainties
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3.2 Three-Step Approach

In order to model the previously described interplay of decision making, we have devel-
oped a novel three-step approach that allows us to assess the impact of different regulatory schemes 
for BZC. Figure 2 visualizes the three-step approach: 

First, scenarios are constructed that reflect general market and system uncertainties rele-
vant for electricity market prices. Each scenario describes a possible future market and grid state 
for a certain year. These are then used to model a meshed scenario tree, with transition probabilities 
between scenarios of different years. The details of this approach are described in Section 3.2.1. The 
corresponding parameters for each scenario are then used as input for step 2.

Step 2 comprises the derivation of the new BZCs for a given choice of regulatory scheme. 
Here three sub-steps are carried out. First we apply a DC optimal power flow (DC-OPF) model 
(Zimmerman et al., 2011) on a detailed grid model of CWE+ to calculate nodal prices (LMPs) based 
on the scenario input parameters. Note that the LMPs are independent of the regulatory scheme but 
depend on the previously defined scenario parameters. In the next sub-step (step 2.2), the calculated 
LMPs for the different scenarios are then used to cluster the grid nodes into new (robust) BZCs 
using a hierarchical cluster algorithm (Felling and Weber, 2018). Here, the choice of regulatory 
scheme determines the way that BZCs are computed, as well as which scenarios are considered 
simultaneously when determining an optimal or “robust” BZC. The BZCs correspond to an assign-
ment of grid nodes to bidding zones. These are then used in the third sub-step (step 2.3) to re-aggre-
gate the LMPs from sub-step 2.1 to average prices in zones (zonal prices). Finally, in a last step (step 
3), we calculate the evaluation criteria to assess the profitability and riskiness of power plant (dis-)
investments, i.e. present values of the power plant’s contribution margins based on the zonal prices 
of step 2.3 and the lower partial moment. These key figures provide the basis for the investment and 
continuation of operation decisions.

In conclusion, the underlying LMPs of step 2.1 of the scenario tree remain unchanged for 
all different kinds of regulatory choices. The choice of regulatory scheme only determines how and 
how often the bidding zones are reconfigured and how the LMPs are re-aggregated to zonal prices 
that are used to determine the contribution margins (CMs). 

Ergo, by applying different regulatory schemes on the same scenario tree, the regulatory 
risks are derived by comparing the investment profitability and riskiness under different schemes.

Figure 2: Three-step approach
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3.2.1 Construction of Scenarios

Construction of a Scenario Tree

As mentioned previously, scenarios are constructed first. In order to cope with future un-
certainties, it is important to describe them in a parsimonious way while at the same time being as 
exhaustive as possible. This requires, as a first step, the selection of the key relevant risk factors. As 
we consider both the regulatory decision on BZCs and the corporate decisions on (dis-) investment, 
key drivers are those which affect one or both of these decisions. As a BZC in our approach is driven 
by the LMPs obtained in a DC-OPF, and contribution margins also depend on the (zonal) prices, key 
drivers in both cases are those that affect prices as well as price patterns. We hence build descriptive 
scenarios (c.f. Greeuw et al., 2000) which capture key uncertainty factors exogenous to the decision 
makers. We consequently define as a scenario the combination of a future year and specific realiza-
tions for the following four key risk factors (inspired by the findings of Kallabis, Pape and Weber 
(2016), Hirth (2018) and others):

- RES expansion
- Electricity demand
-  Input factor prices, described through the spread between variable costs for coal- vs. 

gas-fired generation8 
- (Delays in) Grid expansion

A scenario path is then a sequence of scenarios for the different future years under consideration. In 
order to derive the distribution of contribution margins and corresponding present values over all 
possible scenario paths, we define transition probabilities for the shift from one scenario to another 
between the years. We hence construct a meshed (or recombining) scenario tree, as schematically 
sketched in Figure 3. The derivation of adequate numerical assumptions is described in the next 
subsection and in section 4.2.

8. The variable costs include the primary energy costs (fuel) as well as the cost of CO2 emissions induced by CO2 prices 
in the European emission certificate trading system.

Figure 3: Construction of a meshed (or recombining) scenario tree
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Derivation of Scenario Parameters 

For the derivation of the range of future uncertainties in the key parameters, there are basi-
cally two approaches: expert guesses, or extrapolations based on historical statistics. 

For the future grid expansion and RES expansion, an extrapolation of historical obser-
vations is difficult given the lack of adequate historical observations and/or expected structural 
changes that invalidate pure extrapolation techniques. Therefore we use official grid development 
and RES deployment objectives, and estimate possible deviations therefrom (cf. section 4.2). 

In contrast, the development of electricity demand is described using historical observa-
tions, together with the hypothesis of a simple Brownian Motion for deviations from a longer term 
trend (see section 4.2).

The input factor price risk is modelled by the uncertainty of the spread between variable 
costs for coal-fired and gas-fired units. These are currently the marginal (price-setting) technologies 
for most hours of the year in the European power markets, and this is expected to continue at least 
for another decade. In that situation also, the contribution margins will be affected mostly by the 
spread between these two types of variable costs. Notably, the contribution margin of a coal-fired 
plant depends on the spread between its variable cost and the variable cost of gas-fired generation 
if the latter sets the power prices. Conversely, gas-fired generation will only earn money during the 
periods when coal generation sets the price if the spread in variable generation costs has reversed, 
so that gas is cheaper in terms of variable cost than coal. Again we hypothesize a Geometric Brown-
ian Motion, i.e. independent and normally distributed price increments, in line with standard ap-
proaches in finance (cf. e.g. Hull, 2015). We use the approach of Felling and Weber (2018), who also 
consider the spread between the variable generation costs of gas-fired and coal-fired power plants, to 
determine the expected average fuel (gas and coal) and CO2 prices for high- and low-spread scenar-
ios, making use of historical observations of the year 2015 to determine the volatility of the spread 
in the variable cost. This spread is the key price-risk factor, since it includes the combined effects of 
fuel price and CO2 price changes. 

3.2.2 From Nodal to Zonal Prices 

In order to get the zonal prices for each scenario, steps 2.1 through 2.3 are carried out as 
indicated in Figure 2. At first, LMPs are computed by a DC-OPF using MATPOWER on a high-volt-
age grid-model of CWE+. For the approximately 2,300 represented nodes, the LMPs are determined 
for each scenario for the 8,760 hours of a year. The different parameter variations, as described in 
section 3.2.1, directly influence the LMPs, through (for example) the variation of RES infeed or the 
status of the network extension. 

Second, based on these LMPs, the cluster algorithm is applied in step 2.2 to compute BZCs. 
Yearly averages of infeed and demand values are then used to compute weights for nodes (cf. Fell-
ing and Weber (2016)). The overall objective function for clustering aims at minimizing the price 
variation within bidding zones. Congested lines, on which ends the prices spread apart, are hence 
detected and eventually placed between bidding zones. 

To describe different regulatory settings, we introduce different “regulatory schemes” to 
determine robust BZCs. A robust BZC is computed by using the LMPs of not one, but several sce-
narios as input data for the cluster algorithm. Details on this methodology and its benefits are dis-
cussed in Felling and Weber (2018). A “regulatory scheme” then determines how many and which 
scenarios are used to compute the robust configurations. In section 4.3, we introduce four different 
schemes. For example, the scheme “One robust” assumes that the BZC is determined only once and 
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is selected in such a way that it is robust against all uncertainties. Therefore the clustering algorithm 
determines the optimal BZC based on all scenarios, across all parameter variations and base years 
of the scenario tree. In case of a revision of the BZCs every five years, the scheme “Five Years Ro-
bust” computes one BZC for each base year, based on the particular scenarios occurring in that year.

In a last step, the LMPs computed in step 2.1 are re-aggregated to zonal prices according 
to the previously computed BZCs of the cluster algorithm. As a BZC equals an assignment of each 
node to a single bidding zone, the average zonal price for each hour can be computed using that 
assignment. Thus, although the LMPs of each scenario remain the same, different BZCs will even-
tually result in different zonal prices for the same LMPs. Figure 4 visualizes this effect. 

3.2.3 Assessment of Investment Profitability and Risk 

This section describes the evaluation methodology to determine investment profitability 
and risk and the corresponding two key indicators used: the (expected) present value of contribution 
margins and the lower partial moments (LPMs).

Computation of the Expected Present Value

The key figure used to evaluate the profitability of power plants is the probability-weighted 
present value of contribution margins (wPV ). A comparison of the wPV across different regulatory 
schemes indicates the expected profitability for investments in different locations, as well as the 
impact of frequent changes of BZCs compared to a conventional, country-based delimitation. We 
compute the present value of the contribution margins, instead of the net present value (including 
initial investment expenditures), since we want to consider not only new investments but also the 
continued operation (vs. early disinvestment) of existing plants. 

Therefore, we determine a simplified contribution margin CM for every considered power 
plant i and every scenario s. The simplification neglects operational restrictions of the power plants 
and hence assumes that the plants produce electricity whenever the hourly price ( ),P s t  exceeds 
the variable costs ( ),VC s i . The contribution margin also takes into account the annual fixed cost 

( )AFC i  for operating the power plant, notably including costs for insurance, staff, and so on.

( ) ( ) ( )( ) ( )
8760

1

, 0; , ,
=

= − −∑
t

CM s i max P s t VC s i AFC i
 

(1)

Based on (1) we compute the Present Value for a single path n by discounting the CMs with 
the discount factor d(y):

Figure 4: Zonal prices
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The ( )wPV i  for a power plant i then arises from the discounted CMs ( ( , )PV n i ) that are 
weighted with the corresponding probability ( )p n  of each path n.

( ) ( ) ( )
1

,
=

= ⋅∑
N

n

wPV i p n PV n i
 

(3) 

If this value is negative, it is not economical to continue operation of the respective power 
plant. For an investment in a new power plant, the investment costs need to be covered as well. In 
other words, the weighted present value of contribution margins ( )wPV i  has to be corrected by the 
investment cost to obtain the corresponding net present value ( )NPV i .9 

Lower Partial Moments

As a second key indicator, we consider the Lower Partial Moments (LPMs) of order 1 to 
cope with risk aversion of investors (Fishburn 1977). The LPMs—introduced by Bawa (1975) and 
Jean (1975)—focus on the downside risk, which is most relevant to investors who want to be aware 
of risks (Grootveld and Hallerbach 1999). In this paper we use a value of zero as threshold, since it 
is obviously not profitable to operate a power plant that cannot cover its operation costs. The LMP1 
describes the expected losses (Unser 2000). We calculate the LPM as shown in equation (4).10

( ) ( ) ( )( )0 1
1

1

[min 0, , 0 ]
=

= ⋅ −∑
N

n

LPM i p n PV n i

 

(4) 

Further Evaluations

Additionally, we evaluate the distribution of the PVs graphically for selected power plant 
locations using a box plot. In the box plot, the maximum, 75th percentile, median, 25th percentile, 
and minimum of the PVs are indicated. This illustrates how different regulatory schemes affect the 
distribution of PVs. 

On the other hand, we are interested in aggregate assessments of the impact of regulatory 
schemes on the locational signals provided to GENCOs. These are particularly important for loca-
tions with scarce supply. If we consider nodal prices to reflect actual scarcity, the focus of evaluation 
should be on the locations with the highest wPVs in the nodal BZC;11 we focus in the application on 
the top 10%. The validity of the locational signals is then measured by the gap between the wPVs 
of those sites with high scarcity and the average wPVs of power plants. At the same time, riskiness 
of investments is evaluated by comparing the average LPMs and standard deviation of PVs of the 
top 10%. We show the standard deviation here in addition to the LPM, since the large proportion of 

9. If the planning horizon does not cover the full lifetime of the new power plant, auxiliary assumptions are needed, 
either to adjust the investment cost or to extrapolate revenues beyond the planning horizon.

10. Note that we use a different sign convention in our definition of the LPM compared to most references (e.g. Fishburn, 
1977, Grootveld and Hallerbach, 1999). As defined here, the LPM is always negative, and thus the sign convention is aligned 
to the sign of the PV, where extreme negative values are less preferred than a value of 0. Furthermore, one may note that 
Fishburn (1977) and others like Grootveld and Hallerbach (1999) associate the LPM of order 1 with risk-neutral behavior. 
Yet they use a threshold value that is higher than all realizations of the stochastic variable (here PV). This is obviously not 
the case for our stochastic variable PV and the threshold 0. Thus our LPM describes loss aversion, which corresponds to one 
type of risk aversion.

11. As described later, the nodal BZCs assign each node to a single zone.
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negative PVs implies that the LPM of order 1 is rather close to the average wPVs and hence may not 
reflect variability of PVs. 

4. APPLICATION

In this section, we apply the presented methodology to a case study covering CWE+ and 
different regulatory regimes for obtaining BZCs. The case study covers a period of 20 years in five-
year steps, as CACM is most likely to propose a new BZC every (three to) five years. Thus, the four 
base years in scope are 2020, 2025, 2030 and 2035. Every base year represents five years. 2020 
represents the years 2018 to 2022, 2025 represents the period 2023–2027, and so on.

Subsequently, we first summarize the used grid, demand, and RES models in section 4.1. 
Section 4.2 then presents the used scenarios and parameters. The investigated regulatory schemes 
are discussed in section 4.3. 

4.1 Used Models

The grid model is based on publicly available data (among others, static TSO grid models 
as under APG (2017); RTE (2017); Tennet (2017)), and comprises the 220 and 380 kV grid. Around 
2,300 nodes, 3,600 branches, and 600 transformers are modelled. Phase shifters and HVDC are 
incorporated into the model as well. HVDC lines are assumed to operate with 5% losses. Envis-
aged grid extensions are modelled in line with the European Ten-Year-Network-Development-Plan 
(ENTSO-E (2016)) and the German grid development plan (50Hertz Transmission GmbH et al. 
(2017)). The status of the grid development, as mentioned in section 3.2.1—in particular, the com-
missioning and decommissioning dates of both HVDC- and AC-lines and phase shifters—is one key 
parameter that varies across the scenarios.

Values for residual load, including the infeed of RES, are derived by a separate vertical 
load model developed in the research group (Osinski and Weber, 2016). In addition, shadow prices 
for hydropower plants and cross-border flows to non-CWE countries are derived by an initial run of 
the “Joint Market Model” (JMM) (Meibom et al., 2011; Tuohy et al., 2009) and transferred via an 
interface to the grid model. 

4.2 Scenarios and Input Data

As described in section 3.1, we investigate different scenarios resulting from the combina-
tion of different uncertainties. The following section describes the characteristics assumed for the 
previously introduced parameters. 

For the grid expansion, we consider three possible realizations. The first possibility is “re-
alized as planned,” so no delay in the grid development is occurring. The second is “delayed by two 
years”, considering a two-year delay on all grid expansion projects, and the third is “delayed by five 
years”, including a five-year delay in comparison to the commissioning date of the German- and 
European Grid Development Plans (c.f. 50Hertz Transmission GmbH et al., 2017 and ENTSO-E, 
2016).

For each of the three other risk factors—“RES expansion,” “electricity demand,” and 
“coal-gas spread”—we consider two possible realizations, “high” or “low.”

The assumptions regarding the RES expansion are based on the values of the Scenario Out-
look & Adequacy Forecast (Scenario B) of the ENTSO-E (2015). The “High” scenario adds +50% 
to the expected increase in capacities, whereas the “Low” scenario assumes that the RES expansion 
is slower than expected (-50% of the expected increase).
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The values for the electricity demand scenarios are derived from the Brownian motion 
assumption. A volatility of annual demand of 2% (c.f. Strohbücker, 2011) and uncertainty over five 
years results in:

High:   0 1.045= ⋅HD D  (5)

Low:   0 0.955= ⋅LD D  (6) 

It is assumed that there are no increases in (expected) electricity demand during the period 2020–
2035.

In line with the methodology sketched in section 3.2.1, we analyze the weekly fuel price 
changes of the future prices 2018 traded in 2015. We derive therefrom annualized standard devi-
ations for the mean variable costs and for the spread between coal- and gas-fired generation (cf. 
Felling and Weber (2018)):

Mean:   σ =cm 0.124 (7)

Spread:   σ∆ =c 0.067 (8) 

We use these parameters to derive the values for the “High-” and “Low-” spread scenarios 
as given in Table 1 for coal, gas, and CO2 prices. The prices for fuel oil and light oil are taken from 
the world energy outlook (WEO16, New Policies Scenario, International Energy Agency, 2016), 
and the price for lignite (1.51 €/MWh) from the German grid development plan 2025 (50Hertz 
Transmission GmbH et al., 2016). Variations in these prices are not considered as they would hardly 
affect the results, since either variable costs are low (nuclear and lignite plants) or the share in power 
generation is low (fuel oil and light oil).

For the transition between different grid development stages, we assume the transition 
probabilities given in the left part of Table 2. The transition probabilities for the other key parame-
ters are indicated in the right part of Table 2.

This results in a scenario tree consisting of 24 scenarios per base year, i.e. a total of 96 
scenarios (see Figure 5).

Table 1: Fuel prices
2020 2025 2030 2035

high low high low high low high Low

CO2 [€/t] 13.34 24.37 19.00 34.73 24.67 45.08 29.01 53.01
Coal [€/MWh] 6.74 6.96 7.58 7.18 8.42 7.40 8.79 7.19
Gas [€/MWh] 26.89 16.99 33.27 20.48 39.65 23.97 42.29 24.97
Fuel oil [€/MWh] 33.50 33.50 40.28 40.28 47.07 47.07 49.83 49.83
Light oil [€/MWh] 72.07 72.07 86.67 86.67 101.27 101.27 107.20 107.20

Table 2:  Transition probabilities between the grid development scenarios (left) and the other 
key parameters (right) from one base year to the next.

From to Planned grid -0 Planned grid -2 Planned grid -5 From to  High Low

Planned grid -0 60 % 30 % 10 % High 75 % 25 %
Planned grid -2 20 % 60 % 20 % Low 25 % 75 %
Planned grid -5 10 % 30 % 60 %
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4.3 Regulatory Schemes

The aforementioned parameter variations have an impact on the computation of the LMPs 
in the 96 scenarios in step two. As the nodal prices are the basis for the computation of the BZC in 
step 2.2 and the re-aggregation to zonal prices in 2.3, they influence both the BZCs and the zonal 
prices for the later analysis and computation of contribution margins.

Two different schemes to identify robust BZCs are investigated. Moreover, the current 
BZC in CWE, where national borders align with bidding zone borders, is considered and a pure 
nodal pricing scheme is also investigated for comparison purposes. Thus, three different so-called 
“reconfiguration schemes” are evaluated in total. 

“Country”: No change assumed. Borders of bidding zones still coincide with national borders. One 
BZC for all scenarios.

“One Robust”: Also one BZC for all scenarios. However, the configuration is optimized and de-
rived from the cluster algorithm based on the LMPs of all 96 individual scenarios. The configuration 
is designed to be robust against all investigated uncertainties. Uncertainty for market participants is 
thereby reduced by choosing one optimized BZC applicable to all time steps. 

“Five Years Robust”: One BZC assumed for every five-year period. This scheme is chosen to align 
with the CACM regulation that foresees a revision of the BZC every five years. Thus, one optimized 
BZC is computed for each representative year (2020, 2025, etc.) based on the 24 scenarios of this 
year. In total, four BZCs therefore occur.

“Nodal”: Assumption of nodal prices. With nodal prices, no reconfiguration of bidding zones is 
necessary. Rather, the asset owners are directly exposed to the nodal price variations. Hence there is 
one (nodal) BZC under this scheme.

Figure 6 summarizes the two schemes that include endogenous determinations of bidding 
zones, i.e. the “One Robust” and “Five Years Robust” schemes.

Figure 5: Constructed partly-meshed scenario tree
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5. RESULTS

This section presents key findings obtained from the application of the introduced method-
ology. Exemplary BZCs are displayed first, in order to provide a glimpse at the effects of different 
schemes and scenarios with respect to BZCs (see section 5.1). For these, the resulting wPVs (see 
section 5.2) and LPMs (see section 5.3) are then compared for power plant locations in CWE+. 
Subsequently, based on the analyses of the wPVs, we select six power plant locations and evaluate 
the distribution of the PVs using box plots (see section 5.4). Furthermore, we evaluate the average 
of the wPVs, the LPMs, and the standard deviation of PVs for those nodes with highest scarcity 
(top 10% with highest wPVs in the nodal BZC) and compare their results to those for all nodes (see 
section 5.5). 

Table 3 indicates the assumed simplified power plant parameters used for the evaluation. 
We focus on gas-fired generation, since former analyses indicated that the results for coal-fired 
power plants are not very sensitive on different schemes for BZC.12 

The assumed discount rate is 2%. This reflects an (almost) risk-free discount rate under 
current central bank policies in Europe. The use of a risk-free discount rate is justified by the fact 
that the risks of the operation/investment are modelled explicitly outside the discount rate and are 
captured by other key figures such as LPMs or standard deviations.

5.1 Resulting Robust Bidding Zone Configurations

This section presents the BZCs for different reconfiguration schemes that are assessed by 
the cluster algorithm to give a glimpse of the shape and size of the optimized BZCs. Given the 
amount of investigated BZCs, only a few exemplary BZCs are presented here. Those are illustrated 
in Figure 7. 

Among the presented BZCs is the configuration of the “One Robust” scheme (top left). In 
addition, the BZCs for the base years 2020 (top right), 2030 (bottom left), and 2035 (bottom right) 

12. The results can be provided upon request.

Figure 6: Reconfiguration schemes

Table 3: Power plant parameters
Technology Efficiency Investment costs Operating time Annual fixed operating costs

[%] [€/kW] [years] [€/kW]
Coal-fired 46 1400 40 15.06
Gas-fired (Combined Cycle) 60 800 40 6.23

Notes: Based on Sunderkötter and Weber (2012); Steffen and Weber (2013); Konstantin (2017), and our own analysis.
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of the “Five Years Robust” scheme are shown. The BZCs obviously differ between the schemes and 
underlying scenarios; yet, some similarities can be identified. For example, there are always a few 
rather small zones in northern Germany with low average prices (due to the high amount of infeed 
from RES). Furthermore, prices in the southern parts of CWE+ are higher than in the northern parts. 
In contrast, most parts of France show low average prices due to the high share of nuclear power 
plants. Nevertheless, the shape and size differ across the BZCs. However, with growing grid exten-
sion the BZCs seem to stabilize. There are hardly no differences between the “Five Years Robust” 
configurations in 2030 and 2035.

5.2 Resulting Present Values

Figure 8 summarizes the weighted PV of the contribution margins (wPV) 0for gas-fired 
power plants for each configuration scheme. We thereby focus on results in grid locations where 
thermal power plants are currently installed. The figure on the top left indicates the “Country” 
scheme as a reference, and the figure on the top right presents the corresponding values in the 
“Nodal” scheme. The “One Robust” (bottom left) and “Five Years Robust” (bottom right) schemes 

Figure 7: Exemplary BZCs for the different reconfiguration schemes
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follow. Arrows pointing upwards indicate positive wPVs, and arrows pointing downwards indicate 
negative wPVs. Furthermore, the sizes and colors of the arrows indicate to what extent the wPVs are 
positive or negative.

The results for gas-fired power plants are diverse; however, a commonality is that the wPVs 
are often negative. The power plants are not able to cover their fixed costs of operation—i.e., even 
existing power plants do not have sufficient incentives to continue operation. Power plants in north-
ern and western Germany, in particular, cannot operate profitably. In southern and central Germany, 
wPVs vary greatly. Yet, the wPVs become positive for some nodes in different schemes. Thereby, 
differences between nearby nodes also appear, especially for the nodal scheme.

Obviously, the nodal prices depend strongly on the location of the node. Hence, the wPVs 
of the nodal configuration schemes are significantly higher in central and southern Germany, as 
well as in the south of France, than in the other European regions. The differences between the 
nodal prices and the other configuration schemes stem from the fact that the prices are not averaged 
through the construction of zonal respectively country prices. Local congestions directly influence 
the price at the node.

In general, the choice of the scheme to determine the BZCs has an impact on the wPVs. Re-
gional differences in wPVs are highest in the “Nodal” scheme and seem to decrease from the “Five 
Years Robust” scheme to the “One Robust” scheme, e.g. the differences of wPVs in the southwest 
region of Germany (near the border with France) or in northeastern Germany. In order to better un-

Figure 8: Resulting wPVs (in 10³ €/MW)
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derstand the presented results, section 5.4 shows the distribution of the wPVs of all 331,776 paths. 
Therein we focus on selected nodes in Germany, as they vary the most with changing reconfigura-
tion schemes. Before doing so, we present the corresponding LPMs to the shown nodes in CWE. 

5.3 Resulting LPMs

Figure 9 presents the LPMs of gas-fired power plants for the same nodes in each configura-
tion scheme. Again, the figure on the top left indicates the “Country” scheme as a reference, while 
the figure on the top right gives the corresponding value in the “Nodal” scheme. The “One Robust” 
(bottom left) and the “Five Years Robust” (bottom right) scheme follow.

The LPM is negative by definition (see formula (4)) and describes the expected losses 
towards the selected threshold of zero. Thus, a LPM close to zero indicates less risk than a more 
negative LMP. As there are no LPMs with a value of zero, no location is free of risk. Yet, there are 
nodes with comparably low LPMs. In line with the presented wPVs in section 5.2, the height of the 
LPMs in the nodal scheme vary most between different regions. The south and northeast regions of 
Germany, in particular show higher regional differences. Again, differences decrease in the “One 
Robust” and “Five Years Robust” schemes. In contrast to resulting wPVs, differences between “One 
Robust” and “Five Years Robust” are rather low. 

Figure 9: Resulting LPMs (in 10³ €/MW)
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5.4 Resulting Distribution of PVs for Selected Power Plant Locations

The previous two sections provided results for nodes in the entire CWE region. In this 
section, we focus on regional differences within Germany and show detailed results for selected 
nodes regarding the impact of different BZCs. Therefore, we show the distributions of the PVs over 
all paths for gas-fired power plants at the selected locations in Germany (see Figure 11). Figure 10 
illustrates the locations of the selected nodes, with two in the north, two in the south, one in the west, 
and one in central Germany, respectively.

Figure 11 presents the box plots of the (probability-weighted) distribution of the PVs of 
all 331,776 paths of the scenario tree. The leftmost bar indicates the distribution of the “Country” 
scheme as a reference. Subsequently, for all six selected nodes the distributions for the “One Ro-
bust,” “Five Years Robust,” and “Nodal” schemes are presented.

In line with the negative wPVs  presented in section 5.2, the quantiles of the wPVs  are 
mostly negative for the location in the west (see Figure 11). In fact, the 75% quantile is always be-
low the profitability threshold of zero. In contrast to that, more than 25% of the wPVs  in the south 

Figure 10: Location of analyzed power plant stations

Figure 11: Box plots of PV distributions for selected nodes in Germany
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and east German locations are above the threshold, even though the median is always below zero. 
Yet, this is sufficient for the node “South 1” to achieve a positive wPV, as presented previously. 
Accordingly, the total earnings on the (fewer) lucrative paths exceed the losses of the paths where 
costs cannot be covered. 

Furthermore, the maximal range between losses and profits at each node occurs always in 
the ”Nodal” scheme, where the profits in particular rise significantly higher than in other schemes. In 
the other schemes, the range tends to get smaller from the “One Robust” scheme to the “Five Years 
Robust” scheme. Yet, there is no general rule to be observed. In the south, for example, the range 
between profits and losses is smaller in the “Five Years Robust” scheme in contrast to the other 
nodes. Notably, even though nodes are located in the same region and are close to each other, their 
chance of profits are significantly different even in the robust schemes. Both node pairs in the south 
and north are frequently at the borders of bidding zones, as visualized in Figure 7. 

In general, the performance of gas-fired power plants in the south is better than in the north. 
Hence, a change of BZCs or even a “Nodal” set-up leads to more chances for gas-fired power plants 
to earn profits. However, the range of possible outcomes rises significantly, whereas the number of 
profitable paths mostly increases. Again, there are exceptions, namely the nodes “East” and “North 
1,” where the range between profits and losses decreases in the robust schemes in comparison to 
the country configuration. That applies to the total range but also to the range between the 25% and 
75% quantiles.

As expected, changes in the BZC are most beneficial to power plants in the south. Clear 
differences between the regulatory schemes may be observed, yet no general rule can be derived in 
terms of which scheme leads to the lowest risk for GENCOs. 

5.5 Assessments of the Impact of Regulatory Schemes on the Locational Signals Provided to 
GENCOs

In this section we analyze the average of the wPVs , the LPMs, and the standard deviation 
of PVs for those nodes with highest scarcity (top 10% with highest wPVs  in the nodal BZC), and 
compare their results to those for all nodes in order to assess the impact of regulatory schemes on 
the locational signals (cf. Table 4):

As described above, the strength of the locational signals is assessed based on the gap be-
tween the wPVs  of the top 10% nodes and the average wPVs  of all power plant nodes. Therefore, 
the average wPVs for all nodes only change slightly between the different regulatory schemes. By 
contrast, the results for the top 10% considerably improve and even change sign when moving 
from the current country-based bidding zones to the nodal BZC. The incentives provided by the 
two robust schemes are located in between. Hence the “Nodal” scheme provides the best locational 
signal and notably makes the continued operation of gas-fired power plants in the top 10% locations 
profitable.

Table 4: Average of the wPVs, the LPMs, and the standard deviation of PVs 
[€/MW] Country One Robust Five Years Robust Nodal

Top 10% wPV -20.370 -2.337 1.953 38.166
LPM -59.910 -56.526 -54.272 -42.575

stdDev(PV) 107.506 125.699 127.585 154.518

All nodes wPV -35.056 -32.204 -31.750 -26.631
LPM -61.762 -60.809 -60.488 -57.995

stdDev(PV) 87.812 88.761 88.779 90.613
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In terms of LPMs, the difference between the schemes are more limited. “Nodal” again 
performs best, but the improvement (increase in LPM) for the top 10% is rather small. If we alterna-
tively consider the standard deviation of PVs as measure of risk, the results flip: the “Nodal” scheme 
turns out to be most risky, with an increase in risk of almost 50% as compared to the “Country” 
scheme. The two robust schemes perform similarly, and are roughly halfway between the two ex-
treme configuration schemes. 

The different results regarding the risk under the “Nodal” scheme look puzzling at first 
sight. Yet they are attributable to the fact that LPM focuses on downside risk, whereas the stan-
dard deviation is a symmetric measure risk. If the LPM improves while the standard deviation 
deteriorates, this indicates that the possible downsides are reduced while potential upsides increase 
(scenario paths with high prices). Hence, as a bottom line, standard deviation reflects the common 
perceptions of nodal prices as being more volatile. But in terms of actual corporate (downside) risk, 
the LPMs provide a more accurate measure. Accordingly, the nodal BZC is to some extent risk-re-
ducing for the critical top 10%.

6. CONCLUSION 

In research, both the investment and the disinvestment decisions for power plants and the 
identification of new BZCs have been addressed repeatedly. Yet the combination of both has not 
been investigated so far, especially in relation to the European guideline that BZCs are to be ad-
justed at regular intervals. This paper develops a novel methodology in order to quantify the risk 
impact of such regulations and to compare the overall riskiness of power plant investments under 
such regulatory schemes. Hence the implications that go along with a frequent reconfiguration of 
bidding zones are investigated in a comprehensive setting.

The novel methodology takes several risk factors into account and combines them into 
scenarios for each computation year. Those in turn are combined with scenario paths in a meshed 
scenario tree. For each scenario, nodal prices (LMPs) are computed and aggregated to zonal prices 
based on the particular BZC. Besides the current BZC in CWE+, various new configurations are 
investigated making use of a cluster algorithm based on the LMPs. As key figures to evaluate the 
profitability of power plants, the probability-weighted present value of contribution margins (wPV) 
and the corresponding lower partial moments (LPM) are assessed. A comparison of the key indica-
tors across different regulatory schemes, and with the “Country” and “Nodal” schemes as reference 
cases, indicates the impact on profitability and riskiness of (repeated and/or robust) bidding zone 
reconfigurations. 

The riskiness is found to depend strongly on the location of the power plant and its type. 
Coal-fired power plants always expect positive contribution margins in contrast to gas-fired power 
plants, which is why we put the focus on the results of gas-fired plants. This reflects the current 
electricity market situation in CWE, with overcapacities and low CO2 certificate prices, which ac-
cording to our computations is likely to last even in future years. But it might also be partially 
related to an overestimation of the production from coal-fired power plants, as their operational 
restrictions are not considered in this simplified modelling approach. Conversely, this may also lead 
to an underestimation of the production of gas-fired power plants. However, we do not expect that 
this has a significant impact on the results. Another simplification of our approach is the exogenous 
specification of the power plant park. An endogenous treatment of the evolution of the power plant 
park would be desirable, yet is left for further research since it adds a further layer of complexity. It 
would require the solution of a stochastic multi-stage investment equilibrium. The results of such an 
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exercise would be quantitatively different, but we do not expect major qualitative changes since the 
stochastic drivers and the resulting regulatory risk remain unchanged.

According to our findings, the chosen regulatory scheme influences the results, although the 
relationship between any regulatory scheme and the riskiness for GENCOs turns out to be strongly 
nonlinear. The effect on power plants differs, depending on their location and their assignment to op-
timized (robust) bidding zones. A change of bidding zones might notably set stronger incentives for 
power plants in southern Germany. Further research may therefore investigate in depth the risks re-
lated to different configuration schemes and the potential benefits of “robustifying” the BZC against 
various risk factors. An assessment of future changes in the wPVs may also be investigated, as we 
only consider the PVs for our reference year 2018. There might be incentives to invest in the future 
due to developments in the years after 2035 that we have not considered.
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