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Measuring and Assessing the Evolution of Liquidity in Forward 
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abstract

Following the development of natural gas trading hubs in Europe, forward prod-
ucts have become a response to the higher exposure to price risk faced by energy 
companies. Yet, a significant share of trade occurs over-the-counter (OTC), where 
inter-dealer brokers act as intermediaries and deals may be customized. Hence, 
there are concerns about transparency and market quality, of which liquidity is a 
main indicator. This study investigates liquidity in the largest one-month-ahead 
European forward market for natural gas in the period from May 2010 to Decem-
ber 2014, using asynchronous high-frequency data and time-varying measures of 
spread and price impact from the financial market microstructure literature. The 
usefulness of these measures in the seasonal and evolving National Balancing 
Point (NBP) is assessed. Different aspects of liquidity and transaction costs are 
unveiled.
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1. INTRODUCTION

Liquidity can be defined as the ability to match buyers and sellers at the lowest transaction 
costs (O’Hara, 1995). This definition impounds a dynamic feature of the markets and implies that in 
a liquid market, executing a transaction over a short-time horizon does not entail higher costs than 
spreading the same transaction over a longer horizon. It also evokes the concept of elasticity, such 
that small shifts in the fundamental values of demand and supply result in negligible price changes 
when liquidity is high. Consequently, in a liquid market trading activity affects pricing only in a 
transient and marginal way (Hasbrouck, 2007), and the likelihood of uncompetitive behaviors and 
price manipulation is reduced. By contrast, illiquidity is a barrier to market entry and a source of 
competitive disadvantage, mainly to smaller players. Hence, measuring liquidity is critical when 
assessing market quality.

In the context of evolving European natural gas markets, how best to measure and assess 
liquidity has become increasingly relevant, not only to those interested in the cost of hedging and 
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investment decisions, but also to regulators and policy makers, who need to monitor market quality. 
The liberalization process, by increasing the exposure of market participants to demand-supply 
imbalances, has fostered the development of forward markets and a move away from the traditional 
oil-indexed long-term contracts towards hub (spot) pricing. According to IGU (2016), the share of 
volumes traded indexed to hub prices rather than oil prices has quadrupled in the previous ten years. 
Greater competition and forward trading have also encouraged the participation of financial insti-
tutions (investment banks, hedge and pension funds, and trading companies), which have further 
contributed to the development of hub trading. Yet, the interest of market participants in trading an 
asset depends upon its value, as well as on the market mechanisms and costs underlying the trad-
ing process (Harris, 2003; Hasbrouck, 2007). As natural gas trading garners increasing interest in 
European markets, liquidity measurement is relevant when investigating price dynamics, and has 
implications for efficiency, welfare and regulation of the trading mechanisms and market structure.

This paper measures and assesses the evolution of liquidity in the OTC forward market at 
the UK National Balancing Point (NBP, hereafter), which is the most mature hub for natural gas 
trading in Europe (Cummins and Murphy, 2015; EC, 2015). One-month-ahead forward contracts are 
considered, as these are the most frequently traded contracts and thus representative of the European 
natural gas forward market. Using tick-by-tick indicative quotes, transaction prices and volumes 
from 2010 to 2014, measures of spread and price impact that are drawn from the financial market 
microstructure literature are estimated. These measures allow for an examination of the transac-
tional properties of the one-month-ahead NBP forward market and the likely effects of trading activ-
ity on prices. Therefore, this study also evaluates whether such measures, which have been designed 
and applied in financial markets, are applicable to the physical natural gas markets. A time-varying 
approach is adopted, with the intent of addressing the evolving hub trading and exploring changes 
in market liquidity that might have occurred over the sample period.

The remainder of the paper is organized as follows. In Section 2, the literature on liquidity 
measurement in financial and energy markets is reviewed. Section 3 focuses on the data and the 
empirical methods used to assess the liquidity dynamics in the one-month-ahead NBP forward mar-
ket. The results are reported in Section 4 and discussed in Section 5. Section 6 concludes the paper.

2. MEASURING LIQUIDITY IN FINANCIAL AND ENERGY MARKETS

2.1 Liquidity Measurement in Financial Markets

As per Kyle (1985), liquidity encompasses different transactional properties of a market: 
tightness, defined as the cost of turning around a position over a short period of time; depth, that is 
the size of a traded volume innovation required to change the price by a given amount; and resil-
iency, or the speed at which prices recover from a random shock. Overall, these properties highlight 
the dynamic feature of liquidity, which reflects the transaction costs carried by investors to complete 
a transaction.

According to market microstructure theory, transaction costs include three components, 
namely: order-processing costs, inventory costs and asymmetric-information costs (Stoll, 1978; 
Harris, 2003), and can have different impacts on asset prices. Order-processing costs refer to com-
missions, fees, taxes and other certain costs in a transaction.

The intuitive meaning of inventory costs is derived from a microstructure model where 
customers trade only with the market-maker, i.e. an institution or individual that quotes both bid and 
ask prices in a financial instrument, e.g. futures and forward contracts. Market-makers (e.g. London 



Measuring and Assessing the Evolution of Liquidity in Forward Natural Gas Markets / 145

Copyright © 2019 by the IAEE. All rights reserved.

Stock Exchange, New York Stock Exchange) are normally required to provide sufficient liquidity to 
the market in order to reduce price volatility and guarantee market efficiency. They trade to make a 
market, rather than for their own investment reasons, and are subject to uncertainties concerning the 
future transaction price and volume of an asset. Hence, market-makers assume the risk of holding a 
certain amount of a particular asset, i.e. inventory risk, in order to provide liquidity to the market and 
facilitate the trading process of such an asset (Demsetz, 1968; Stoll, 1978; Amihud and Mendelson, 
1980, 1986). Inventory costs, therefore, represent the market-maker’s compensation for bearing the 
risk of supplying immediate liquidity; they are different from the physical cost of storage (i.e. carry-
ing costs, such as building and facility maintenance costs, insurance, financing costs) and influence 
the asset price temporarily (Stoll, 1978).

An adverse selection problem emerges in the presence of traders that are better informed 
about the asset fair value (Bagehot, 1971; Glosten and Milgrom, 1985). Informational-based trading 
is a risk faced by uninformed traders, since the gains of the informed traders are the losses of the 
uninformed traders. Consequently, asymmetric-information costs can arise in the market, and reflect 
a balancing of gains and losses due to the presence of informed traders (O’Hara, 1995).These costs 
have a permanent effect on the asset price and the quantity that can be traded at any given price (Ea-
sley and O’Hara, 1987). In contrast to order processing costs, inventory costs and asymmetric-in-
formation costs are more difficult to measure and are associated with the transactional properties of 
a market. As such, they are linked to market liquidity, and may be inferred from measures of market 
liquidity.

Since investors consider liquidity when making investment decisions, inventory costs and 
asymmetric-information costs have implications for hedging and the effectiveness of portfolio-di-
versification strategies. Several measures of spread have been introduced in the financial literature 
to investigate market tightness, and discriminate between inventory and asymmetric-information 
costs. Different econometric approaches have been also used to make inferences about the relative 
contributions of transaction costs and their implications for liquidity. Furthermore, given the link 
between liquidity, trading activity and asset prices, several measures and approaches have been 
adopted to evaluate the impact of trading activity on prices, and thus assess market depth and resil-
ience. These approaches and measures are reviewed below.

2.1.1 Measures of spread

Different measures of spread have been adopted in the financial literature, and are mainly 
devoted to capture the tightness of a market. The most commonly used measures of spread are 
the quoted bid-ask spread and the effective spread (e.g. Chordia et al., 2000; Bessembinder, 2003; 
Goyenko et al., 2009; Foucault et al., 2013). The bid-ask spread is the difference between the best 
ask price and the best bid price, and represents the transaction cost paid by a customer to the mar-
ket-maker for a round-trip, i.e. a purchase followed by a sale of the same amount. This measure of 
spread is associated with inventory costs (Roll, 1984; Stoll, 1989), nonetheless it can overstate the 
actual transaction costs if: the market-maker (i.e. a participant who undertakes to buy and sell at spe-
cific prices in a market) adjusts the bid-ask spread to control the inventory level; or, in the presence 
of asymmetric-information (Stoll, 1989). Moreover, in the over-the-counter (OTC) markets, where 
a centralized trading platform is absent, buy and sell trades are negotiated through inter-dealer bro-
kers. Although the bid and ask quotes are posted by the inter-dealer brokers based on actual trading 
orders and expressions of interest, they are not binding (Jankowitsch et al., 2011). As a result, trans-



146 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

action prices can be different from the bid and ask quotes, thus the quoted bid-ask spread can be a 
misleading measure of market tightness in OTC markets.

The effective spread was introduced in the financial literature as an alternative to the 
quoted bid-ask spread and provides a more reliable measure of tightness. It reflects transaction 
prices that are negotiated either inside or outside the indicative quotes (Huang and Stoll, 1996), and 
is computed as the difference between the actual transaction prices and the average of the bid and 
ask quotes, namely the midquote, which is a proxy for the asset fair value (Bessembinder, 2003; 
Foucault et al., 2013). Since the midquote is a basis to evaluate whether the buyer is paying a high 
price and the seller is receiving a low price, the effective spread can be totally ascribed to the trading 
process, thus measuring transaction costs in the market. This fact has been exploited by Goyenko et 
al. (2009), who introduced a measure of spread defined by midquote changes to assess the informa-
tional component in the effective spread, based on the norm that the asset value reduces in response 
to seller-initiated trades and increases in response to buyer-initiated trades (Kyle, 1985; Brennan 
and Subrahmanyam, 1996). Yet, the effective spread also includes inventory costs. As explained by 
Stoll (1978), the intuition behind inventory costs, which represent the non-informational compo-
nent of the effective spread, is that the transaction costs should lead to a temporary deviation of the 
asset price from its fair value. This non-informational component follows a post-transaction price 
reversal and is measured by the realized spread, which is the difference between transaction price 
and post-transaction midquote (Amihud and Mendelson, 1980; Bessembinder and Venkataraman, 
2010).

In all, the effective spread has been proved to be a reliable measure of transaction costs, 
and thus it is suitable for liquidity assessments in OTC markets. Other measures of spread, such as 
the realized spread and the measure proposed by Goyenko et al. (2009) have been also used in the 
financial literature to capture inventory costs and asymmetric-information costs, and thus they pro-
vide insights on liquidity dynamics (e.g. Chordia et al., 2000; Goyenko et al., 2009). In addition to 
these measures of spread, statistical and econometric approaches have been adopted to quantify the 
relative contribution of each cost component. These approaches are based on the theoretical expec-
tation of market microstructure that trading activity has different impacts on prices, depending upon 
the prevalence of inventory costs, asymmetric-information costs or order processing costs.

2.1.2 Measuring the relative contribution of the different transaction costs

Roll (1984) focused on a serial covariance estimator of transaction prices to make infer-
ences on the cost components of the bid-ask spread. Subsequent research used covariance models to 
measure the relative contributions of order processing costs, inventory costs and asymmetric-infor-
mation costs in the spread (Choi et al., 1988). A different class of models used buyer-initiated and 
seller-initiated trades to infer the relative impact of these costs on prices (Glosten and Harris, 1988; 
Stoll, 1989; Hasbrouck, 1991; Madhavan et al., 1997).

The econometric approach proposed by Huang and Stoll (1997) represents, however, the 
first attempt to measure the relative contribution of all three components of the transaction costs in an 
unified way, by exploiting the information unveiled in the trading activity. Specifically, their “three-
way decomposition” model moves from the assumption that informational-based trading should be 
revealed by serial correlation in the trade direction (i.e buyer-initiated and seller-initiated trade), 
and by imbalances between buyer-initiated and seller-initiated trades. Order processing costs are 
therefore identified, so that the permanent component of the price changes, which is attributable to 
asymmetric-information costs, can be discriminated from the transitory component, which is driven 



Measuring and Assessing the Evolution of Liquidity in Forward Natural Gas Markets / 147

Copyright © 2019 by the IAEE. All rights reserved.

by inventory costs. In summary, the approach by Huang and Stoll (1997) overcame some limitations 
of the measures of spread which are mostly focused on one component of transaction costs and may 
neglect measurements of order processing costs. Yet, it still does not allow for inferences on the 
impact of trading activity on prices nor on the depth and resilience of a market. Different measures 
and approaches have been used in the literature to evaluate price impact and are reviewed below.

2.1.3 Measures of price impact

The price impact captures the pressure exerted by trading activity on asset prices, which 
depends on traded volumes (Kyle, 1985; Easley and O’Hara, 1987). The serial covariance estimator 
of transaction prices by Roll (1984) measures this impact by assuming that, if markets were effi-
cient (Fama, 1991), prices would fully reflect all the available information on the asset fair value. 
In which case, their serial covariance should be zero when transaction costs are negligible, while a 
negative serial covariance entails positive transaction costs. However, this measure of price impact 
is only unbiased for large sample sizes, or when changes in prices are uncorrelated with the trading 
process and inventory costs are zero (Huang and Stoll, 1997).

Amihud (2002) developed a measure to capture the impact of one-dollar of traded volume 
on prices, and Brennan and Subrahmanyam (1996) introduced a measure of price impact defined 
by the magnitude of price changes associated with the order flow, i.e. the difference between buy-
er-initiated and seller-initiated trades. In a similar vein, Pastor and Stambaugh (2003) focused on 
the expected return reversals associated with the signed volume, which is a measure of traded vol-
ume that discriminates between buyer-initiated and seller-initiated trades. Their measure follows 
from the expectation that low liquidity is accompanied by a high volume-related return reversal. 
Hence, impulse response functions can determine the speed of convergence of price changes to-
wards their equilibrium after unexpected traded volumes. This is the rationale for the approach taken 
by Hasbrouck (1991) and by Banti et al. (2012). Yet, prices adjust to the information impounded in 
traded volumes gradually, and thus may not be immediately revised to reflect public information. 
To overcome the issue of price adjustment to information over time, Hasbrouck (2009) measured 
price impact as the price changes associated with the cumulative signed volume over a fixed time 
interval, thus allowing for inferences on the pressure exerted on prices by larger trades, which are 
often executed in multiple transactions.

The measures of price impact that were described above exploit the fact that trading ac-
tivity has different impacts on asset prices, depending on transaction costs (Foucault et al., 2013), 
and have been thus used to investigate both depth and resilience of financial markets. Consequently, 
measures of spread and price impact contribute to the assessment of the transactional properties of 
a market and its liquidity dynamics.

2.2 Liquidity Measurement in Energy Markets

Like in financial markets, liquidity in energy markets can be regarded as a sign of a grounded 
market. In particular, for an energy trader “the presence of good liquidity in a market signifies an 
important reassurance that he is not alone, that he will be able to find a counterparty when he needs 
to adjust his position, that the bid to offer price spread will be manageable and that the reference or 
index price used in that market is credible” (Peter Styles, Chairman of the Electricity Committee at 
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the European Federation of Energy Traders, February 14, 2013).1 Therefore, measuring liquidity in 
energy markets is crucial when assessing their quality.

Practitioners in natural gas and electricity markets usually refer to the churn ratio when 
measuring liquidity. This measure is the ratio of traded volumes to physical deliveries after the 
transactions: the higher this ratio, the greater is liquidity. Yet, in natural gas markets, traded volumes 
are weather-dependent, and this seasonal component can impact the churn ratio. As illustrated in 
Figure 1, on average greater churn ratio is observed in the summer (July–September), when the 
traded volumes are lower compared to the winter months. As the level of storage grows in the sum-
mer (Timera, 2016), one may conjecture that physical deliveries reduce relative to financial trading, 
thus driving the churn ratio up. The churn ratio can also increase because of higher level of financial 
trading due to efforts to rebalance portfolios in the light of unexpected changes in the natural gas 
demand. Most importantly, the churn ratio does not provide information about the transactional 
properties of the market.

When considering the literature on commodity and energy markets, measures of spread ap-
pear to have been first used by Locke and Venkatesh (1997) when investigating liquidity in the Chi-
cago Mercantile Exchange (CME) futures market and, more recently, by Marshall et al. (2012) and 
Marshall et al. (2013) to assess the liquidity of commodity futures comprising the S&P Goldman 
Sachs Commodity Index and its link with stock market liquidity. Furió et al. (2009) used a measure 
of depth defined as the ratio of the demanded electricity to the offered electricity to evaluate liquid-
ity risk in the Spanish power market, whilst Bevin-McCrimmon et al. (2016) relied on the traded 
volume, the open interest, and on the measure by Amihud (2002) to investigate the link between 

1. https://www.euractiv.com/section/energy/opinion/energy-markets-and-policymakers-in-search-of-liquidity/

Figure 1: Monthly NBP traded volumes and churn ratio

*Includes ICE Endex data. Source: Ofgem-Data portal
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liquidity and risk premia in the New Zealand power market. In the European context, Weber (2010) 
adopted price-demand functions as measures of price impact to investigate liquidity in the German 
power market, while Frestad (2012) used the quoted bid-ask spread to evaluate effectiveness and 
cost of hedging strategies in the Nordic power market. A measure of bid-ask spread based on flexible 
generating capacity was introduced by Hagemann and Weber (2013) to assess liquidity determinants 
in the German power market. By contrast, Neuhoff et al. (2016) relied on the difference between the 
volumes at the highest and lowest possible electricity prices to measure depth in the same market.

In all, different measures have been employed in the literature to investigate liquidity in 
energy markets. However, to date, a comprehensive assessment of the transactional properties of 
energy markets implied by liquidity, i.e. tightness, depth and resilience, and measurements of the 
relative contributions of the different transaction costs appear to have been neglected. As a result, 
how best to measure and assess the evolution of liquidity in energy markets is a research question 
that, to the best of our knowledge, remains to be addressed in the context of natural gas markets.

3. THE STUDY

Given the limitations of the literature concerning liquidity measurement in energy mar-
kets, and the questions posed by the churn ratio as a practical measure of liquidity, in this study 
the perspective of the financial market microstructure literature is adopted. Measures of spread and 
econometric approaches are used to investigate market tightness and the contribution of the different 
components of transaction costs to liquidity in the one-month-ahead NBP forward market. In addi-
tion, measures of price impact are adopted to evaluate the pressure exerted by the trading activity on 
prices and make inferences about the market’s depth and resilience.

3.1 Data

Records of transactions and quotes for the NBP forward contracts over the period from 
7 May, 2010 to 29 December, 2014 are considered. These were made available by Tullett Prebon 
Information (http://www.tpinformation.com/indepthdata/commoditiesenergy.aspx), which is part of 
the TP ICAP group and an international provider of independent real-time price information from 
the global OTC markets.

The sample covers about a third of the total OTC market for the NBP in the period. Two 
data sets are considered: the first includes tick-by-tick indicative quotes, corresponding to 350,889 
observations; the second includes tick-by-tick transaction prices and volumes, totalling 110,774 ob-
servations. In order to account for the asynchronous nature of the tick-by-tick data, a stepwise clean-
ing procedure is adopted, which is based on Brownlees and Gallo (2006) and Barndorff-Nielsen et 
al. (2009). Holidays, weekends, errors and outliers are deleted. For transactions and quotes, the trad-
ing window from 7:00 to 17:00 (GMT) on standard working days (Monday-Friday) is considered. 
Simultaneous records are aggregated in a single record: quotes and transactions are measured by 
their median; while, volumes and transaction prices are aggregated by using their respective totals.

Following Barndorff-Nielsen et al. (2009), outliers are detected via a non-parametric dis-
tance-based approach. Entries for which the bid-ask spread is greater than 10 times the median 
spread of that day are discarded. Similarly, entries are deleted if the midquote, which as defined 
above is the average of bid and ask quotes, deviates by more than 10 median absolute deviations 
from the median midquote on that day. Records are also deleted when the transaction price is nega-
tive and when the absolute relative deviation of the transaction price from the prevailing midquote 
is more than 10 times the median of the absolute relative deviations in the sample. This smooths 
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the trade data using prevailing bid and ask quotes. Similar to Lee and Ready (1991), last quotes are 
defined as quotes occurring at least 5 seconds before the trade.

Month-ahead NBP futures and forward contracts are for delivery in fixed calendar months 
(e.g. one-month-ahead contracts on March 15, 2014 are for delivery in April 2014). These contracts 
cease trading two business days prior to the first calendar day of the delivery month (ICE, 2017).
Therefore, entries corresponding to transactions recorded during the rollover period, i.e. after the 
end of the trading period and before delivery, have been discarded. Overall, the data cleaning results 
in discarding less than 13% observations. Together, the cleaning and subsequent alignment of each 
transaction to the prevailing midquote results in 69,787 observations, which are recorded at trading 
time. The data are then sampled at regularly spaced time intervals.

According to Foucault et al. (2013), regular time intervals are required to ensure that prices 
have adjusted to the information content of the cumulative transactions over time. Similar to Zhang 
et al. (2005) and Boffelli and Urga (2015), the trading window is split into fixed-time intervals. For 
each time interval, the following information is extracted: the end-of-interval price, the end-of-in-
terval quotes, the end-of-interval trading volume, the total trading volume over the interval, the 
total trade size over the interval, and the total number of transactions over the interval. When a time 
interval does not contain observations, the most recent recorded observation is used. Finally, in the 
spirit of Boffelli and Urga (2015), the first record of each day is excluded from the sample, because 
it could reflect the adjustment to the overnight information and thus exhibit excessive variability, 
when compared to the other observations in the same day. This resampling procedure is performed 
at different frequencies: 5, 15, 30, and 60 minutes. The aim is to identify the best behaved sample 
to be analyzed, which minimizes volatility clustering, kurtosis and autocorrelation in the midquote 
and transaction price return series.

3.2 Measuring Liquidity in the One-Month-Ahead NBP Forward Market

3.2.1 Measures of spread

The effective half-spread is computed to measure tightness in the market. It can be consid-
ered in absolute basis points, or as a percentage of the midquote. In this study, the percentage effec-
tive half-spread (EHS) is adopted, because percentage measures are more common in the literature 
and permit comparison between different assets (e.g. Chordia et al., 2000). The percentage effective 
half-spread is defined as follows:

= ,τ τ
τ τ

τ

 −
 
 

P MEHS D
M

 (1)

where τP  is the price of the τ th transaction, evaluated at the trading time, τM  is the midquote prevail-
ing at each transaction. τD  is the trade indicator taking values 1 for buyer-initiated transactions, and 
–1 for seller-initiated transactions. In the financial literature (e.g. Goyenko et al., 2009; Foucault 
et al., 2013), this indicator is usually set according to the algorithm by Lee and Ready (1991): A 
transaction is classified as buyer-initiated if its transaction price is closer to the prevailing ask quote 
than bid quote, and as seller-initiated otherwise. If a transaction is priced exactly at the midquote, 
it is buyer-initiated when its price is higher than the price of the previous transaction (“uptick”); 
conversely, it is classified as seller-initiated (“downtick”).

Since the effective half-spread measures both the inventory costs and the asymmetric-in-
formation costs related to the trading process, the percentage realized half-spread (Amihud and 
Mendelson, 1980; Bessembinder and Venkataraman, 2010) is also computed in order to evaluate 
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inventory costs, i.e. the non-informational and temporary component of the effective spread. The 
percentage realized half-spread (RHS) is defined as follows:

1= .τ τ
τ τ

τ

+ −
 
 

P MRHS D
M  

(2)

where 1τ +M  represents the midquote after the transaction, used as a proxy for the post-transaction 
value of the asset. The realized half-spread can also be interpreted as the effective half-spread net 
of asymmetric-information costs, i.e. it excludes both the informational and permanent components 
(Foucault et al., 2013).

Following Goyenko et al. (2009) and focusing on the midquote-change after a transaction 
as a proxy for the permanent price-change, the informational component of the effective spread is 
captured by:

1= = .τ τ
τ τ τ τ

τ

+ −
− 

 

M MPI D EHS RHS
M  

(3)

The measures in Eq.1–3 are thus computed to examine the transaction costs in the one-month-ahead 
NBP forward market, allowing for an assessment of both the inventory and informational compo-
nents. In order to evaluate the relative importance of each component of the transaction costs, the 
econometric approach in Huang and Stoll (1997) is also used in this study and is described below.

3.2.2 Estimating the relative contributions of transaction costs to the spread

The “three-way decomposition” proposed by Huang and Stoll (1997) allows to estimate 
the relative importance of order processing costs, inventory costs and asymmetric-information costs 
in the one-month-ahead NBP forward market. A regression of the log-returns obtained from the 
transaction prices (hereinafter referred to as returns) on the contemporaneous and lagged measure 
of order flow is estimated. This measure is given by the trade indicator tD  defined above, computed 
over a fixed time-interval t, = 1,...,t T , and accounts for the aggregated information impounded in 
the order-arrival over the interval. Following Huang and Stoll (1997), it is assumed to be generated 
by a first-order autocorrelated process, i.e.:

1= ,ϕ η− +t t tD D  (4)

where ηt is a white noise error term 2( . . E( ) = 0, ; E( ) = 0, ; Var( ) = < )η ηη η σ∀ ∀ ≠ ∞t t s ti e t t s . The 
autocorrelation ϕ  implies that investors react similarly to an informative event, thus creating a flow 
of orders on the same direction. By contrast, when inventory risk is considered, a negative autocor-
relation should be observed in the order flow, which stems from adjustments in inventory level and 
induces return-reversals (i.e. positive returns followed by negative returns and vice versa) (Stoll, 
1978; Foucault et al., 2013). Nonetheless, investors may prefer to reduce the impact of large-size 
transactions on prices by executing them through a series of smaller orders. In short, a positive au-
tocorrelation should be observed in the order flow.

Regardless of its sign, this autocorrelation incorporates the predictable component of the 
order flow and only its unexpected component, which contains new information, should be allowed 
to affect the transaction prices. Consequently, based on Huang and Stoll (1997), the relationship 
between order flow and returns is as follows:
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1 2= ( ) ,γ α β γ αγϕ ε− −∆ + + − +t t t t tr D D D  (5)
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 is the return series obtained from the transaction prices tP, 1= −∆ −t t tD D D  and γ  

represents a constant effective spread, i.e. the constant market tightness. Hence, in the spirit of 
Huang and Stoll (1997), by jointly estimating Eq. 4 and Eq. 5, the relative contributions of each 
transaction cost to this spread is measured: α represents the relative amount of spread due to asym-
metric-information costs; β  reflects inventory costs; and (1– α – β ) measures the relative importance 
of order-processing costs. Finally, the error term captures the effects of public information other than 
trades (e.g. macro-economic factors, business cycles). Estimation is carried out using the general-
ized method of moments (GMM) and the Newey-West estimator to accommodate serial correlation 
and heteroscedasticity in the error term.

3.2.3 Measuring price impact

The three measures of spread described above can explain the cost-components of a single 
small transaction. However, liquidity adjusts to the pressure exerted by large-size transactions and 
imbalances between buyer-initiated and seller-initiated traded volumes (Kyle, 1985; Easley and 
O’Hara, 1987; Hasbrouck, 2009). This adjustment is not captured by the “three-way decomposi-
tion”, since this decomposition only considers the impact of the trade direction on prices. It does not 
allow for inferences on the relationship between traded volumes and prices and the extent to which 
traded-volume imbalances affect the transaction prices, as per the definition of market depth above.

In order to investigate the one-month-ahead NBP forward market depth, a measure of price 
impact is used in this study, which is a slight modification of the one proposed by Hasbrouck (2009). 
It links the returns to the cumulative signed volumes, i.e. the cumulative traded-volume imbalances 
over fixed time intervals. However, differently from Hasbrouck (2009), the physical volume, rather 
than its monetary value, is used. In addition, the estimate is allowed to be time-varying, so that 
changes in the relationship between imbalances and returns can be observed. The price impact 
measure adopted in this study is defined as the time-varying coefficient λn  in the following linear 
regression model:

, , ,= ,λ +n t n n t n tr S u  (6)

where ,
,

, 1

= ln
−

 
  
 

n t
n t

n t

P
r

P
 is the return series from transaction price ,n tP  over a fixed time interval t, in the 

rolling window n; , , , , ,= ( )τ ττ∑n t n t n tS D v v  is the signed square-root of the traded volumes in the 
same interval and rolling window; , ,( )τn tD v  is the trade indicator, , ,τn tv  is the traded volume and τ  
indexes the transactions in the fixed time interval t and rolling window n; ,n tu  is the white noise 
error term, such that 2

, , , ,E( ) = 0, ; E( ) = 0, ; Var( ) = <σ∀ ∀ ≠ ∞n t n t n s n tu t u u t s u . The time-varying 
coefficient λn is estimated using rolling windows of size m over the full sample of size T. Increments 
between successive rolling windows of one unit of time are used, thus leading to = 1− +N T m  esti-
mates of the coefficient λn over the full sample. This measure of price impact is in the spirit of Kyle 

(1985), since its reciprocal, 1
λn

, captures the depth of the market, and also allows for inferences on 

market resilience: the lower the value of λn, the less sensitive the prices to traded-volume imbal-
ances, the higher is the market depth, and its resilience.
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In summary, the measures of spread are used to assess the dynamics of the one-month-
ahead NBP forward market tightness: the effective spread EHS, and its inventory (RHS) and in-
formational (PI) costs components. The “three-way decomposition” is also used, in order to infer 
the relative impact of order processing costs, inventory costs and asymmetric-information costs on 
prices, and thus to provide a more comprehensive assessment of transaction costs in the market. 
Finally, the time-varying measure of price impact λn is estimated to investigate the evolution of the 
one-month-ahead NBP forward market depth, and make inferences about the pressure exerted by 
trading activity on prices and market resilience.

3.3 Deseasonalizing and Detrending Liquidity Measures

Given the seasonality and trend that can be observed in the time series, it is important 
to ensure that predictable market activity variation affecting the variables in a similar way are re-
moved. In other words, the focus of the analysis is on the irregular component (the residual series). 
Following Chordia et al. (2005), the raw time series y is regressed on a set of adjustment variables, 
X, which in this study are: 11 month-of-the-year dummies (February–December); 4 day-of-the-
week dummies (Tuesday–Friday); a time-trend. In order to standardize the estimated residuals, the 
following regression is computed:

2ˆ( ) = ,γ +log u X v  (7)

and the adjusted time series to be analyzed is:

ˆ
= ,

ˆ( / 2)γ
 

+  
 



uy a b
exp X

 (8)

where a and b are set so that raw and adjusted sample means and variances are the same. Conse-
quently, units of measurement of original and adjusted time series are the same.

3.4 Preliminary Data Analysis

Descriptive statistics of the series resampled at different frequencies (5, 15, 30 and 60 
minutes) are reported in Table 1. Number of observations (N in column two) and observations per 
day (n in column three) are in the top of Panel (a), along with the average ask and bid indicative 
quotes (in pence/therm), and the corresponding midquotes (columns four, five and six). Standard 
errors are in brackets. The first ( 25M ) and third ( 75M ) interquartile of the midquotes are in column 
seven and eight, respectively. The distribution of the midquote returns, after being multiplied by 210 ,  
is summarized in the bottom of Panel (a). Midquote returns have been obtained from changes in the 

logarithmic midquotes, i.e. 
1

= ln
−

 
 
 

t
t

t

Mm
M

, where tm  is the midquote return at time = 1,2,...,t T , tM  

is the midquote in column six, and T is the number of observations in column two. The first four 
moments are in columns two to five (Mean, S.D., Skewness and Kurtosis). The first lag of the auto-
correlation function 1ρ  is in column six. Columns seven and eight show, respectively, the Ljung-Box 
statistics (L-B) for the null hypothesis of serial independence and the ARCH test for the null hypoth-
esis of homoscedasticity at the 50th order of lags. This order accounts for a time window spanning 
from 4 hours (data resampled at 5-minute frequency) to one week (Monday–Friday, at 60-minute 
frequency). In Panel (b) of Table 1, the descriptive statistics of the trading variables (top) and the 
distribution of transaction price returns (bottom) are shown. Number of observations and observa-
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tions per day are in columns two and three, respectively. The average volume (1,000 therm/day), 
trading size (million £) and transaction price (pence/therm) observed in each interval are shown 
in columns three to five along with their standard errors (in brackets). The first ( 25P ) and third (

75P ) interquartile of the price series are in columns seven and eight. The first four moments of the 
price returns multiplied by 210  are in columns two to five. The first-order autocorrelation function, 
the Ljung-Box statistics and the ARCH tests are in columns six to eight. Price returns have been 

obtained from changes in the logarithmic transaction prices, i.e. 
1

= ln
−

 
 
 

t
t

t

Pr
P

, where tr is the price 

return at time = 1,2,...,t T , tP is the transaction price and T is the number of observations.
Resampled midquote and price return series show high skewness and kurtosis, which how-

ever reduce with the resampling frequency. That is, higher skewness and kurtosis are observed in the 
data resampled at 5-minute frequency (21.14 and 2,176 of midquote returns, respectively; 18.85 and 
1,873 of price returns), when 121 observations per day are recorded, compared to the data resampled 
at 60-minute frequency and 11 daily observations (5.851 and 174.7 of midquote returns; 5.412 and 
160.2 of price returns). ARCH effects are rejected at 1% significance level, while serial correlation 
appears to be significant mainly at lower frequencies (30 and 60 minutes). Therefore, the focus of 
subsequent analyses is on 60-minute resampling, because this frequency minimizes leptokurtosis 
and asymmetric effects and leads to a sample of size T=11,638 observations, or 1,058 trading days 
and 11 observations per day.

The NBP transaction prices and midquotes at 60-minute frequency are depicted in Fig-
ure 2. A doubling of prices and midquotes (Figure 2, (a)–(b)) is observed between May 2010 and 

Table 1: Descriptive statistics of the resampled quotes and trading variables at different 
frequencies
Panel (a): Quotes 

Sample N n Ask Bid Midquote M25 M75

5 mins 128,018 121 57.05(8.96) 56.95(8.97) 57.00(8.97) 52.50 64.90
15 mins 43,378 41 57.05(8.96) 56.95(8.97) 57.00(8.97) 52.50 64.90
30 mins 22,218 21 57.05(8.96) 56.95(8.97) 57.00(8.97) 52.50 64.90
60 mins 11,638 11 57.05(8.96) 56.95(8.97) 57.00(8.97) 52.52 64.90

Midquote returns 
Sample Mean S.D. Skewness Kurtosis ρ1 L-B(50) ARCH(50)

5 mins 0.0002 0.180 21.14 2,176 0.005 59.01 0.480
15 mins 0.0007 0.313 11.83 696.8 –0.002 79.40* 1.803
30 mins 0.0013 0.442 8.384 349.7 0.004 68.78* 4.251
60 mins 0.0026 0.626 5.851 174.7 0.019 84.61** 7.736

Panel (b): Trading variables 

Sample N n Volume Size Price P25 P75

5 mins 128,018 121 21.62(87.24) 0.01(0.05) 57.00(8.97) 52.55 64.90
15 mins 43,378 41 63.79(159.9) 0.04(0.10) 57.00(8.97) 52.55 64.90
30 mins 22,218 21 125.5(237.7) 0.07(0.14) 57.00(8.97) 52.55 64.90
60 mins 11,638 11 237.8(351.4) 0.14(0.21) 57.00(8.97) 52.55 64.90

Price Returns 
Sample Mean S.D. Skewness Kurtosis ρ1 L-B(50) ARCH(50)

5 mins 0.0002 0.183 18.85 1,872 0.006 49.89 0.677
15 mins 0.0005 0.318 10.96 627.9 0.006 74.26* 2.427
30 mins 0.0011 0.451 7.668 313.2 –0.004 82.42** 4.799
60 mins 0.0022 0.631 5.412 160.2 0.002 83.93** 7.502

N = number of observations; n = number of observations per day.
In brackets are the standard errors. ***, ** and * denote significance level at 1%, 5% and 10%, respectively.
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December 2013, and a significant drop is noticeable since January 2014. The increase is more pro-
nounced in the period from the second half of 2012 to the first quarter of 2013, and may be linked 
to natural gas demand-supply imbalances in the UK and Continental Europe, a Norwegian supply 
disruption, low storage levels, and sustained cold weather in the UK, mainly evident in March 2013 
(EC, 2013; Timera, 2013). Subsequently, the increasing availability of liquified natural gas (LNG) 
from international markets and the slump in international coal prices are likely to have contributed 
to reductions in natural gas demand since the second half of 2013, thus leading to declining one-
month-ahead NBP forward prices. The return series based on transaction prices and midquotes (Fig-
ure 2, (c)–(d)) show volatility clustering, excess kurtosis and heteroscedasticity, which are typical 
of financial time series and thus support our adoption of measures from the financial literature. An 
increase in the volatility of the return series can be observed during 2014.

The trading activity in the one-month-ahead NBP forward market is summarized in Figure 
3. The number of transactions in the 60-minute intervals and by day of the week (Monday–Friday) 
is depicted in chart (a). It is higher when the market opens (8:00–10:00) and in the hour preceding 

Figure 2: NBP transaction prices and midquotes at 60-minute frequency

Figure 3: Trading frequency
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the business day’s closure (16:00–17:00). Therefore, the frequency of no-trading, i.e. the number of 
times where no transactions are recorded in the 60-minute intervals, was considered by day of the 
week, and its in percentage was computed (chart (b)). On average, this frequency is 49% between 
16:00 and 17:00, i.e. at the end of the business day. Its value increases to 54% on Fridays. This 
finding is in line with financial markets, where lower trading activity is observed at lunchtime and 
before trading closure (e.g. Covrig and Melvin, 2002). Consequently, the subsequent analysis is 
constrained to the trading window 8:00–16:00, which results in T=10,580 observations.

The daily trading activity is shown in Figure 4. The number of transactions per day, over 
the full sample (chart (a)), indicates decreasing trading activity since May 2013. A seasonal pattern 
is also observed: transactions per day are greater from September to November and during the win-
ter (January to March), and are likely to reflect weather-dependencies in the natural gas demand. 
Figure 4, chart (d) shows the daily trading volume (in 1,000 Therm/day) and its variance, which 
increase, most noticeably from May 2013 onwards. Together, charts (a) and (b) indicate increasing 
physical trade size, which is likely to be driven by changes in trading behavior and market composi-
tion. As predicted by market microstructure theory, both trading activity and return volatility appear 
to contribute to liquidity. Given the trends and seasonalities observed, the time-varying behavior of 
liquidity in the period is analyzed in the next section.

4. RESULTS

4.1 Evolution of Measures of Spread in the One-month-ahead NBP Forward Market

4.1.1 On the distribution of the measures of spread in the one-month-ahead NBP forward market

Descriptive statistics of the daily average percentage effective half-spread (Eq. 1), measur-
ing the one-month-ahead NBP market tightness, are presented in Table 2, along with the inventory 
and informational components of this spread (Eq. 2 and Eq. 3). Daily averages were computed as 
time-weighted average of the intraday measures, through multiplying each intraday measure by the 
relative time it was observed during the day. For each measure, mean, standard deviation (S.D.), 

Figure 4: Daily trading activity
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lower quartile (Q25), median, upper quartile (Q75) and skewness from the empirical distributions are 
shown in columns two to seven. The first-order autocorrelation coefficient is in column eight. The 
number of observations (N) is in the last column. The distributions are asymmetric and positively 
autocorrelated. On average, daily transaction costs in the one-month-ahead NBP forward market 
are 0.311% and split between a transitory and non-informational component of 0.171%, given by 
the measure of spread RHS, and a permanent and informational component of 0.140%, given by 
the measure PI. That is, on average, inventory costs represent 55% (0.171/0.311) of the transaction 
costs, the remaining 45% is due to asymmetric information. The t-test statistic for comparing the 
means of the measures RHS and PI is significant at 5% significance level. Similarly, non-parametric 
sign test statistics for the equality between the respective medians and interquartiles are significant 
at 5% level. Consequently, there are differences between the distributions of inventory and informa-
tional costs, thus implying distinct behaviors of the different components of transaction costs in the 
one-month-ahead NBP forward market.

The deseasonalization described in Section 3.3 is summarized in Table 3. It can be ob-
served that the measures of spread tend to be higher from April to October and lower from Novem-
ber to March, thus implying greater transaction costs and lower liquidity in the summer than in the 
winter. This seasonal behavior of the measures tallies with the previous observation on monthly 
behavior in Figure 3, thus further highlighting the weather-dependent seasonal component of li-
quidity in the one-month-ahead NBP forward market that resembles the observed pattern of trading 
activity. Furthermore, the measures of spread are higher on Mondays relative to other trading days. 
Finally, a significant negative trend is found in the time series, thus implying that transaction costs 
decrease in the period.

4.1.2 On the distribution of seasonally adjusted measures of spread

Descriptive statistics of the seasonally adjusted daily measures of spread are presented in 
Table 4. Higher asymmetry is observed in the distributions of the measures of spread relative to 
their non-adjusted series, as implied by their skewness (column seven). This is mainly evident when 
considering the effective spread EHS and its inventory component RHS.

Monthly median values of the unadjusted and seasonally adjusted measures of spread are 
reported in Figure 5. Overall, compared to the unadjusted measures, the adjusted measures of spread 
unveil an increase in transaction costs in the one-month-ahead NBP forward market during 2014 
(charts (d)–(f)). Furthermore, the adjusted measures are higher during the winter, especially when 
considering the effective spread (EHS ) and its inventory component (RHS ), and appear to be more 
volatile in 2014 than in previous years.

Parameter estimates of the adjustment regressions of the daily trading volume and number 
of transactions are presented in Table 5. Monthly effects are significant and imply lower and more 
volatile trading activity in the summer. Trading activity appears to be lower on Mondays relative 
to rest of the week, that is when the measures of spread are higher (Table 3). Finally, a significant 

Table 2: Descriptive statistics of the daily measures of spread
Measure Mean S.D. Q25 Median Q75 Skewness ρ1 N

EHS 0.311 0.222 0.164 0.243 0.388 2.056 0.589*** 1,058
RHS 0.171 0.185 0.064 0.129 0.241 2.300 0.378** 1,058
PI 0.140 0.146 0.062 0.113 0.184 1.737 0.258** 1,058

N = number of observations.
***, ** and * denote significance level at 1%, 5% and 10%, respectively.
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and negative trend is found in the daily volume and number of transactions, thus tallying with the 
evidence from the measures of spread.

The seasonally adjusted series of the daily number of transactions and trading volume are 
shown in Figure 6. Data are displayed by year and by month. Especially in 2014, the series highlight 
a reduction in trading activity, that is when an increase in the measures of spread is observed, and 
thus the transaction costs are higher, as highlighted above.

4.1.3 On the association between measures of spread and trading activity

Table 6 presents the Spearman’s rank correlation coefficients between changes in the sea-
sonally adjusted measures of spread and trading activity. The non-parametric Spearman’s rank coef-
ficient has been used since it allows for possible non-linear dependencies between variables, while 
minimizing the effect of extreme values (Gibbons and Chakraborti, 2003). Correlation is high and 
positive between changes in the effective spread (EHS) and its inventory component RHS (0.533), 
and between changes in the effective spread and its informational component PI (0.421); correlation 
is negative between changes in the inventory component and informational component (–0.394). 
Furthermore, the correlation is positive between changes in the inventory component and number of 
transactions and trading volumes (0.107 and 0.135), and negative between changes in the informa-
tional component and number of transactions and trading volumes (–0.113 and –0.114).

Overall, the distributions of the individual measures of spread and their dynamics sug-
gest seasonality and decreasing transaction costs in the period analyzed, and imply improvements 
in market tightness. Nonetheless, the bivariate correlations indicate that the two components of 
the effective spread, which represent the inventory costs and the asymmetric-information costs, 
behave idiosyncratically. Hence, the different transactions costs may have distinct impacts on the 
one-month-ahead NBP forward market tightness, depending upon their relative contributions to the 
effective spread, and have implications when considering the pressure exerted by trading activity 
on prices.

4.2 Interpreting the Relative Contribution of Transaction Costs

Parameter estimates of the three way-decomposition model defined by Eq. 5–6 are re-
ported in Table 7. The estimated constant spread amounts to 0.237% throughout the period (γ ); 
asymmetric-information costs represent 14.7% of the spread (α); inventory costs account for 50.5%  
( β ) while the order-processing costs contribution (1 – α – β) is 34.8%. Coefficients are significantly 
different from zero and imply that inventory costs are the largest component in transaction costs. 
The Wald test for the null hypothesis of β  greater than α is not rejected (p-value 0.0364 ) thus sup-
porting the findings in Table 4.

Results in Table 7 also highlight positive autocorrelation in the order flow (ϕ=0.269). Not-
withstanding that inventory effects should lead to negatively autocorrelated orders, a positive serial 
correlation is consistent with the expectation that investors tend to split large-size orders, which 

Table 4: Descriptive statistics of the seasonally adjusted daily measures of spread
Measure Mean S.D. Q25 Median Q75 Skewness ρ1

EHS 0.311 0.222 0.173 0.262 0.393 3.089 0.397***
RHS 0.171 0.185 0.078 0.145 0.237 3.236 0.156***
PI 0.140 0.146 0.059 0.112 0.196 1.895 0.189***

N = 1,058. ***, ** and * denote significance level at 1%, 5% and 10%, respectively.
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requires correspondingly large inventory levels, by executing them in different sequential orders 
at a single price to reduce price impact. As argued by Huang and Stoll (1997), when the estimated 
autocorrelation is lower than 0.5, the impact of asymmetric-information costs is attenuated, and 
the adjustment of prices ascribed to inventory costs is increased. Consequently, the estimated coef-
ficient ϕ can be an upper bound for the autocorrelation in order flow. In all, the results of the three 
way-decomposition model highlight the importance of inventory costs in the one-month-ahead NBP 
forward market.

Table 5: Parameter estimates of the adjustment regressions of the daily trading activity
 Trading volume Number of transactions 

Coeff S.E. t-Stat Coeff S.E. t-Stat

Intercept 8.031*** 0.800 10.039 4.648*** 0.660 7.042

Month Feb 0.065 0.090 0.726 0.122* 0.067 1.809
Mar –0.147 0.094 –1.564 –0.161*** 0.084 –1.912
Apr –0.283*** 0.088 –3.211 –0.231*** 0.065 –3.545
May –0.399*** 0.103 –3.888 –0.380*** 0.072 –5.314
Jun –0.530*** 0.101 –5.236 –0.577*** 0.084 –6.907
Jul –0.593*** 0.095 –6.231 –0.570*** 0.076 –7.516

Aug –0.469*** 0.097 –4.821 –0.543*** 0.079 –6.915
Sep –0.324*** 0.095 –3.420 –0.375*** 0.077 –4.861
Oct –0.175* 0.092 –1.890 –0.235*** 0.069 –3.396
Nov –0.079 0.092 –0.866 –0.168** 0.077 –2.171
Dec –0.726*** 0.114 –6.367 –0.847*** 0.102 –8.340

Day
Tue 0.265*** 0.044 6.014 0.169*** 0.035 4.806
Wed 0.195*** 0.048 4.073 0.100** 0.045 2.229
Thu 0.207*** 0.048 4.307 0.119** 0.040 2.941
Fri 0.089* 0.050 1.792 0.027 0.039 0.699

Trend –0.0003*** 0.00006 –4.490 –0.0006*** 0.00006 –10.785

Adjusted-R2 0.20 0.35
F – stat 17.7 36.2
Prob(F – stat) 0.000 0.000
S.E. of regression 0.51 0.43
Sum squared resid 271.1 195.4
LogLikelihood –780.9 –607.6
Durbin – Watson stat 1.70 1.66

N = 1,058. ***, ** and * denote significance level at 1%, 5% and 10%, respectively.

Figure 6: Seasonally adjusted daily trading variables
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4.3 Assessing the impact of trading activity on prices

The measure of price impact λn in Eq. 6 is estimated over 60-minute intervals to assess the 
pressure exerted by traded-volume imbalances on the one-month-ahead NBP forward prices. Pa-
rameter estimates of the adjustment regressions accounting for seasonalities and trends in the returns 
and traded-volume imbalances series are presented in Table 8 and illustrate the intraday patterns. 
Both series are stationary and tend to be higher in the morning and lunchtime, thus suggesting a 
positive association between them. Seasonally adjusted returns and traded-volume imbalances are 
used to estimate the time-varying measure of price impact λn, which is shown in Figure 7, chart (a). 
Confidence intervals, based on Newey-West robust standard errors, are also depicted in the figure. 
The measure indicates a positive correlation between returns and imbalances, which gradually de-
creases over the period up to March 2014. This correlation increases and becomes more volatile in 
the subsequent period.

When compared with the cumulative traded-volume imbalances over the rolling windows 
(chart(b)), a negative correlation between price impact and traded-volumes imbalances can be in-
ferred. That is, the decrease in the price impact tallies with increasing and positive traded-volume 
imbalances, which denote greater buyer-initiated traded-volumes relative to the seller-initiated and 
are mainly evident up to July 2013. Conversely, an increase in price impact occurs during 2014, 
when these imbalances reduce and higher transaction costs are also observed in the market (Figure 
5).

5. DISCUSSION

Drawing from the financial market microstructure literature, this study was designed to 
capture tightness, depth and resilience of the one-month-ahead NBP forward market from May 
2010 to December 2014, thus making a comprehensive assessment of its liquidity in the period. As 

Table 6:  Association between changes in measures of spread and trading activity: Spearman’s 
rank correlation coefficients

EHS RHS PI No. of Trans. Trading Volume 

EHS 1
RHS 0.533*** 1
PI 0.421*** –0.394*** 1
No. of Trans. –0.003 0.107*** –0.113*** 1
Trading Volume 0.031 0.135*** –0.114*** 0.729*** 1

N = 1,058. ***, ** and * denote significance level at 1%, 5% and 10%, respectively.

Table 7: Parameter estimates of the three way-decomposition of the spread
Coeff S.E. t-Stat

γ 0.237*** 0.007 34.06
α 0.147* 0.086 1.703
β 0.505*** 0.087 5.820
φ 0.269*** 0.037 7.248

Adjusted-R2 0.13
S.E. of regression 0.59
Durbin – Watson stat 1.98

N = 1,058.
***, ** and * denote significance level at 1%, 5% and 10%, respectively.
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a whole, measures of spread showed an improvement in market tightness, since a negative trend 
was observed in the period. Considering the daily percentage effective half-spread, market tightness 
was on average 0.31% which, given its standard deviation reported in Table 4, is consistent with the 
regulator’s estimate in the same period (0.22%, based on bid-ask spread, Ofgem (2016)). However, 
the bid-ask spread, as highlighted above, is mainly associated with inventory costs (Roll, 1984; 
Stoll, 1989) and can understate transaction costs in OTC markets, where the bid and ask quotes are 
non-binding and based on the dealers’ trading orders and expressions of interest. Furthermore, the 
bid-ask spread does not permit assessments of the different components in transaction costs (order 
processing, inventory and asymmetric information), nor inferences on the depth and resilience of 
the market.

According to the measures of spread in this study, inventory costs and asymmetric-infor-
mation costs were on average 0.171% and 0.140% in the period (RHS and PI in Table 4, respec-
tively). The inventory costs are therefore consistent with Ofgem’s bid-ask spread, with 99% level 
of confidence, which still only captures one component in transaction costs. In addition, estimates 

Table 8:  Parameter estimates of the adjustment regressions of returns and traded-volume 
imbalances

Returns Traded-volume imbalances

Coeff S.E. t-Stat Coeff S.E. t-Stat

Intercept –0.005 0.027 –0.204 –0.106 2.570 –0.041

Month Feb 0.005 0.027 0.186 2.508 3.017 0.831
Mar 0.030 0.027 1.125 2.200 2.618 0.840
Apr –0.042 0.030 –1.372 –6.212** 3.001 –2.070
May –0.019 0.026 –0.731 –2.260 2.774 –0.815
Jun 0.022 0.026 0.837 –2.279 2.672 –0.853
Jul 0.006 0.026 0.211 –1.118 2.516 –0.444

Aug 0.020 0.025 0.791 –0.823 2.736 –0.301
Sep 0.056 0.036 1.561 –0.464 2.798 –0.166
Oct 0.050* 0.029 1.753 –1.346 2.626 –0.513
Nov 0.030 0.023 1.297 0.446 2.533 0.176
Dec 0.001 0.025 0.026 –2.854 2.267 –1.259

Day
Tue –0.041* 0.022 –1.848 –0.330 1.498 –0.220
Wed –0.016 0.022 –0.740 1.350 1.512 0.893
Thu –0.024 0.021 –1.137 –0.273 1.458 –0.187
Fri 0.010 0.022 0.451 1.994 1.488 1.377

Hour
8.00 –0.043 0.033 –1.306 5.999*** 2.2.047 2.931
9.00 0.071** 0.028 2.519 4.127** 1.830 2.255
10.00 0.053** 0.027 1.955 5.133*** 1.574 3.260
11.00 0.024 0.016 1.470 2.047 1.450 1.412
12.00 0.020 0.017 1.201 2.050 1.335 1.536
13.00 0.026* 0.015 1.732 3.152** 1.330 2.370
14.00 0.022 0.016 1.352 1.567 1.518 1.033
15.00 0.010 0.021 0.462 –0.134 1.625 –0.083

Trend –0.002 0.002 –0.891 –0.030 0.158 –0.188
Adjusted-R2 0.003 0.003
F – stat 2.11 2.2
Prob(F – stat) 0.001 0.001
S.E. of regression 0.63 43.5
Sum squared resid 4191.1 20008406
LogLikelihood –10116 –54929
Durbin – Watson stat 2.00 1.70

N=10,580. ***, ** and * denote significance level at 1%, 5% and 10%, respectively.
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of inventory costs are greater than asymmetric-information costs, thus implying that over 50% of 
the one-month-ahead NBP forward market’s tightness is due to inventory costs. This finding is sup-
ported by the “three-way decomposition” of the spread, which also allows for inferences on the or-
der processing costs. In all, this decomposition suggests that inventory costs and asymmetric-infor-
mation costs represent 50.5% and 14.7% of the transaction costs (α and β  in Table 7, respectively), 
with the remaining 34.8% being attributable to order processing costs (1 – α – β ). These results are 
relevant, since inventory costs reflect the availability of immediate liquidity in the market and have 
a temporary effect on prices (Stoll, 1978). Moreover, they are important for short-term portfolio 
rebalancing and dynamic hedging strategies (Dupuis et al., 2016): the higher the inventory costs, 
the lower the immediate liquidity, the more expensive is to find a counterparty when in need to ad-
just a position. These findings imply differences in microstructure between one-month-ahead NBP 
forward market and stock market since, in the latter, inventory costs represent a much lower com-
ponent of the spread when compared to the asymmetric-information costs, and are thus neglected in 
transaction cost evaluations (Engle and Neri, 2010).

Trading activity may induce traded-volume imbalances in a market, which exert pressure 
on prices. In this study, this pressure was captured by the time-varying price impact measure λn, 
which allowed for an assessment of both depth and resilience of the one-month-ahead NBP forward 
market over the period 2010–14. This measure underscored a positive and dynamic correlation 
between returns and traded-volume imbalances, which has been also observed in financial markets 
(e.g. Payne, 2003) and cannot be inferred from measures of spread. A decreasing price impact was 
observed in the period 2010–13, and this decrease was coupled with increasing and positive trad-
ed-volume imbalances. These imbalances imply higher buyer- than seller-initiated traded volumes, 
in other words, buying pressure. In short, high market depth is observed in this period. Price impact 
increased in 2014, tallying with decreasing traded-volume imbalances, thus implying lower depth 
in the market at the time. These observations confirm that market liquidity is dynamic. Moreover, 

Figure 7:  Time-varying measure of price impact λn and traded-volume imbalances over the 
rolling windows*

* Rolling windows of size m=5,000 have been considered over the sample T=10,580, leading to N=5,581 estimates of the 
measure.
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response to shocks vary in the period studied and thus, in assessing price impact, a time-varying 
approach is needed in order to capture changes.

During 2010–13, an annual 5% drop was observed in the European Union natural gas de-
mand compared to the 2010 level (Source: Eurostat, http://ec.europa.eu/eurostat/data/database). In 
parallel, a wave of liquefied natural gas (LNG) moved towards the UK, in particular during 2010–12 
(Heather, 2015). The oversupply of natural gas in the European market and the consequent premium 
of oil-linked contracts over hub prices in Continental Europe became incentives to buy from hubs, 
in anticipation of higher hub prices driven by increasing crude oil price during the period. These cir-
cumstances may explain the decrease in λn and the simultaneous increase in buying pressure during 
2010–13, and are consistent with comments by Hartley (2015). During 2013–14, NBP saw a drop 
in physical deliveries, in favor of the TTF hub (EC, 2015), and a progressive shift of trades from the 
OTC to the exchanges. The drop in NBP prices during 2014 (Figure 2), has been attributed to the 
steady decline in international coal prices and the increase in flow of LNG to Europe, and may have 
added pressure to the market, thus explaining the high price impact in a time of low traded-volume 
imbalances. This interpretation would be consistent with the decreasing number of transactions and 
the simultaneous growth in traded volumes (Figure 4), and with higher effective spread and inven-
tory costs (Figure 5, chart (d)–(e)) at that time, thus denoting lower liquidity and a positive link 
between effective spread and price impact. In summary, while the spread informs about the costs 
of each transaction, the price impact λn reveals the cost of trading large volumes in a given time-in-
terval. This latter cost plays a key role in forward trading and exhibits dynamics that are likely to 
reflect market conditions.

Overall, the findings have implications for assessments of market quality. Low liquidity 
constrains intertemporal arbitrage between spot and forward markets and increases the pressure ex-
erted by trading activity on prices, thus limiting the opportunity for trading and the development of 
gas hubs (Nick, 2016). Low liquidity may also hamper the flexibility of gas storage facilities. Stor-
age represents a real option, because it offers the immediate opportunity to trade natural gas or to 
wait for better markets conditions, as prescribed by the theory of storage (Fama and French, 1987). 
Felix et al. (2013) argued that storage operators anticipate market liquidity and take this expectation 
into account in their operating decisions: the lower liquidity, the higher the market price, the lower 
is the storage value. Yet, depending upon the market’s depth and resilience, and the relative impor-
tance of each individual component of the transaction costs, liquidity constraints may have short- or 
long-lasting impacts on a market: while asymmetric-information costs have a permanent impact on 
liquidity, inventory costs are more likely to reflect short-term adjustments in the market and reduce 
liquidity temporarily. These dynamics are unrecoverable from the churn ratio, which only captures 
the combined fluctuations of traded-volumes and physical deliveries, and does not allow to discrim-
inate between them, nor to make inferences about their impacts on prices.

The analysis carried out in this study captures the dynamics of market liquidity, after re-
moving the deterministic components of the time series. The importance of deseasonalizing and 
detrending the time series can be inferred from a comparison of unadjusted and seasonally adjusted 
measures of spread in Figure 5. The unadjusted measures suggest a relatively greater role of asym-
metric-information costs (RHS in chart (b)) compared to inventory costs (PI, chart (c)), while they 
appear to understate transaction costs in the market, in particular during 2013–14. Hence, this study 
contributes towards a better understanding of the evolution of liquidity in the one-month-ahead NBP 
forward market. As highlighted by Geman (2007), the properties of the natural gas price series may 
have changed from mean-reverting to random walk since 2000–01. Non-stationarity has been ob-
served in natural gas price series (e.g. Nick, 2016; Asche et al., 2017), thus supporting the adoption 
of financial market microstructure theory and related measures to assess liquidity in energy markets. 
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However, in contrast to financial markets, natural gas markets are characterized by seasonalities, 
which can affect liquidity, as illustrated in this study.

6. CONCLUSIONS

This article extended the perspective of financial market microstructure to investigate li-
quidity in natural gas markets, more specifically in the one-month-ahead NBP forward market. Mea-
sures of spread, the “three-way decomposition” regression model and the modified time-varying 
price impact measure were used to assess market tightness, depth and resilience. The key properties 
of market liquidity were evaluated, and the usefulness of measures and methods from financial 
markets was illustrated in an energy market context. The findings implied a relative greater contri-
bution of inventory costs to tightness in the one-month-ahead NBP forward market, and thus have 
implications for NBP forward trading as well as operational decisions concerning physical assets 
(e.g. storage facilities) in the interconnected European gas (energy) markets.

The three-way decomposition and the measure of price impact helped in linking returns to 
trading activity. In particular, measuring price impact allowed for assessments of how price reacted 
to trading activity in the period studied, thus providing insights into the cost of quickly trading large 
volumes in the market. This knowledge plays a key role in facilitating risk sharing and portfolio re-
balancing, and is unrecoverable from the measures of spread, which can only enable the assessment 
of the cost of individual transactions. Furthermore, the measure of price impact was shown to be 
more informative than the churn ratio, which is traditionally used when assessing liquidity in energy 
markets but does not consider the impact of trading activity on prices. Therefore, the measure of 
price impact in this study can be valuable to investors in natural gas markets, who are risk-averse 
and concerned about liquidity as an instrument to stabilize price fluctuations. Since liquidity implies 
the ability to trade promptly and in reasonable amounts at prices that properly reflect current market 
conditions, this measure can provide insights towards investment decisions at shorter horizons, 
when investors are more concerned about trading costs and price returns contain information on any 
risk premium reflecting market liquidity. Given the complexities of balancing natural gas demand 
and supply, this information is of interest to market players valuing high flexibility in the way they 
can buy and sell the commodity, and cannot be recovered from measures of spread or from the churn 
ratio.

In all, tightness, depth and resilience reflect liquidity, and are also properties of energy 
markets. They describe the extent to which a market may offer sufficient opportunities for trading at 
a manageable cost and with a credible price. Low liquidity may impede trading, thereby making it 
easier for a single player to assume a dominant position, with implications for price fluctuations and 
volatility. In this respect, the observed increase in market tightness during 2014, which was coupled 
with low depth and resilience, decreasing number of transactions and higher variability in average 
volumes, may have signaled high market concentration in the one-month-ahead NBP forward mar-
ket at the time. Under such conditions, the participation of smaller energy companies in the NBP 
trading could be threatened, with possible consequences for competitiveness, investment decisions 
and, overall, market efficiency of NBP and related markets. Therefore, the measure of price impact 
in this study can become valuable to policymakers and regulators when monitoring market quality.

Notwithstanding the contribution of this study, there are limitations to be considered. The 
assessments are restricted to the share of the market, contracts and period examined. Nonetheless, 
the market microstructure perspective adopted also allows for comparisons of liquidity across mar-
kets, venues, and different contract maturities. It can be further explored in future research and 
practice. With greater availability of data following the implementation of EU Directives on market 
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transparency, implications of recent political decisions, changes in the regulatory environment and, 
more broadly, energy trading can be investigated, in order to provide additional insights into the 
evolving European energy markets.
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