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Drilling Down: The Impact of Oil Price Shocks on Housing Prices

Valerie Grossman,a Enrique Martínez-García,a* Luis Bernardo Torres,b and Yongzhi Sunc

abstract

This paper investigates the impact of oil price shocks on house prices in the largest 
urban centers in Texas. We model their dynamic relationship taking into account 
demand- and supply-side housing fundamentals (personal disposable income per 
capita, long-term interest rates, and rural land prices) as well as their varying de-
pendence on oil activity. We show the following: (1) Oil price shocks have limited 
pass-through to house prices—the highest pass-through is found among the most 
oil-dependent cities where, after 20 quarters, the cumulative response of house 
prices is 21 percent of the cumulative effect on oil prices. Still, among less oil-de-
pendent urban areas, the house price response to a one standard deviation oil price 
shock is economically significant and comparable in magnitude to the response 
to a one standard deviation income shock. (2) Omitting oil prices when looking 
at housing markets in oil-producing areas biases empirical inferences by substan-
tially overestimating the effect of income shocks on house prices. (3) The empiri-
cal relationship linking oil price fluctuations to house prices has remained largely 
stable over time, in spite of the significant changes in the Texas’ oil sector with the 
onset of the shale revolution in the 2000s. 
Keywords: Real house prices, Real rural land prices, Panel VAR model with 
exogenous variables, Real oil price shocks, (Non-oil) real income shocks
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1. INTRODUCTION

Texas accounts for a large share of total fossil fuel extraction in the U.S. and is a major 
oil production center globally. While Texas has a large, highly diversified economy, the oil and gas 
industry has left its mark on the state’s economy over many decades by creating hundreds of thou-
sands of high-paying jobs and attracting much CAPEX.1 The oil and gas sector continues to rapidly 
evolve and innovate, with Texas being very much at the forefront of many of the advances that have 
shaped the industry. More recently, the development of enhanced recovery techniques—notably 
hydraulic fracturing (“fracking”) and multi-stage drilling—has helped reach fossil fuel deposits in 

1. Texas is the second largest state economy in the U.S. both in terms of population and output, and its economy is more 
diversified than that of other major oil-producing U.S. states (such as Oklahoma or North Dakota). At its lowest point in 
2002:Q2, Texas accounted for under 19 percent of total U.S. oil production, but its share rose to nearly 36 percent by 2016:Q2 
when our sample ends. The state is also one of the major oil producers in the world (among the top 7 largest producers in 
2016:Q2). 
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shale formations and has massively expanded the stock of proved reserves (notably of shale oil, 
but also of natural gas as a byproduct). For those reasons, Texas is an important testing ground for 
investigating the impact of exogenous fluctuations in real oil prices on the economic outcomes of 
oil-producing regions/countries. 

In this paper, we explore the behavior of real house prices and housing fundamentals in 
response to real oil price shocks in Texas. While housing typically is one of the largest assets on a 
household’s balance sheet (Emmons and Ricketts, 2017), this economically significant relationship 
has received only limited attention in the literature thus far.2 The novelty of our empirical analysis of 
the spillover effects of real oil prices into real house prices lies in that: (a) it exploits the cross-sec-
tional heterogeneity in the degree of oil-dependence across Texas; and (b) it is based on explicitly 
modeling housing demand and housing supply forces (as suggested in Grossman, et al., 2017). 

A broader strand of the literature recognizes that real oil price fluctuations and, to some 
extent, oil price uncertainty have significant effects on overall economic activity (Hamilton, 2008; 
Torres, et al., 2012; Pinno and Serletis, 2013; Csereklyei, et al., 2016; Kehrig and Ziebarth, 2017) 
and influence energy consumption and urbanization over time (Jones, 1999; Gentry, 1994; Medlock 
and Soligo, 2001; Liddle, 2013; Claudy and Michelsen, 2016).3 We contribute to this literature with 
a tractable model of real house prices and a novel dataset to explicitly take account of the effect that 
real oil price shocks have on the demand- and supply-sides of the housing market. 

To empirically explore the relationship between real oil prices and real house prices, we 
develop a new panel dataset covering all 25 Metropolitan Statistical Areas (MSAs) in Texas at a 
quarterly frequency over the 1975:Q1–2016:Q2 period. The panel contains real house prices and 
real personal disposable income per capita for each MSA as well as rural land prices for each MSA’s 
nearby rural land markets. We adopt a block-partitioned panel VARX (pVARX) framework to model 
jointly the time series and cross-sectional variation across Texas MSAs. This empirical model in-
corporates two common factors—U.S. real long-term interest rates and real oil prices, our variable 
of interest—that are largely viewed as exogenous from the point of view of each individual MSA 
and are treated as such in the specification. We also recognize that the response to real oil price fluc-
tuations depends on each MSA’s reliance on oil, assessing that with data on their nearest crude oil 
proved reserves. In doing so, we take into account the impact of technologically enabled oil supply 
shifts since the 2000s coming from tapping into Texas’ abundant shale oil reserves. 

In our findings, we highlight the impact of exogenous and common real oil price fluctua-
tions on local housing prices across Texas’ MSAs. We show the following key results: 

First, the cross-sectional variation in economically viable crude oil reserves across Texas is 
an important part of our identification strategy that provides a rough guide of the value of the crude 
oil reserves underground. The impact of exogenous real oil price shocks varies considerably between 
more oil-wealth-dependent and less oil-wealth-dependent areas—the response of real house prices 
to real oil price shocks more than scales up in MSAs adjacent to areas where the concentration of 
the wealth endowment of crude oil reserves is the highest. Nonetheless, we find that the response of 

2. Boxall, et al. (2005), and, more recently, Muehlenbachs, et al. (2015), Larson and Zhao (2017), and Kilian and Zhou 
(2018) investigate different aspects of the impact of the oil and gas industry on the housing market and on house prices. 
Abhyankar, et al. (2013), among others, explore the impact of oil price fluctuations on financial asset prices focusing instead 
on the relationship between oil price shocks and the stock market. 

3. The aggregate effects of real oil price shocks can have significant production- and expenditure-switching conse-
quences. In oil-producing areas in particular, an oil price increase that leads to a rise in the energy costs of production would 
tend to drag down non-oil production and investment while stimulating oil-related economic activity. To the extent that the 
degree of substitutability for energy is low (at least in the short run), increases in oil prices would tend to bring down aggre-
gate demand while boosting oil-related incomes and consumption demand in oil-producing areas. 
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real house prices (and to a larger extent of real rural land prices) is comparable in magnitude to that 
of a real income shock even among many MSAs that are not heavily oil wealth dependent. 

Second, we provide evidence of significant effects of real oil price shocks on personal dis-
posable income per capita and a pass-through of up to 31 percent onto real rural land prices and 21 
percent on real house prices after 20 quarters mostly among the most oil-dependent MSAs. Shocks 
to real personal disposable income per capita—capturing non-oil-related discretionary real income 
shocks—pull both real rural land prices and real house prices upward, with a sizeable pass-through 
over time (78 percent on real house prices and 76 percent on real rural land prices over the same 
20-quarter horizon). 

Third, our findings indicate real oil price shocks differ from (non-oil-related) discretionary 
real income shocks partly because—while also raising personal disposable income per capita—real 
oil price shocks operate also strongly through supply-side forces in the housing market.4 Hence, 
omitting the spillovers into real house prices from real oil prices tends to bias upward our empirical 
inferences about the effect of discretionary real income shocks. 

Finally, while tapping into shale formations has proven to be a major structural break for 
production in Texas and the U.S., our findings show the dynamic empirical relationship linking real 
oil prices to local real house prices has remained largely stable since the mid–1970s. We interpret 
this as indicating that the shale revolution has been felt in real house prices across Texas MSAs 
mostly because the resulting boom in the wealth endowment of crude oil reserves has shifted, con-
centrating more now around the major shale formations in the state. 

The remainder of the paper is organized as follows. In section 2, we describe our panel 
dataset and lay out the empirical strategy for the paper. Section 3 reports our evidence on the es-
timated (block-partitioned) pVARX model and panel Granger causality test results. We use panel 
techniques to exploit the rich cross-sectional nature as well as the time series dimension of the 
MSA data we have for Texas. We explore the implications of our empirical model and assess the 
robustness of the results in Section 4. The last section of the paper discusses the implications from 
our main findings. 

2. DATA AND METHODOLOGY

We model the dynamics of real house prices and key supply-side—real rural land prices 
(from the nearest rural land markets)—and demand-side—real personal disposable income per cap-
ita—housing market fundamentals on a panel of Texas’ 25 MSAs. We also include two common fac-
tors—U.S. real long-term interest rates and our variable of interest, real oil prices—which operate 
both through the demand- and the supply-side of the housing market but are viewed as exogenous 
and largely determined in integrated financial and global commodity markets. We incorporate the 
cross-sectional variation in oil-dependence among MSAs into our model specification with data on 
the MSAs’ nearest economically viable crude oil reserves. 

Our dataset covers the period after the collapse of Bretton Woods in 1971 and the first Arab 
oil embargo—the 1973 oil crisis—starting in 1975:Q1 and ending in 2016:Q2 (including the period 

4. Similarly, the work of Helsley and Capozza (1989) and Hardie, et al. (2000), among others, suggests that rural land 
prices affect land conversion and, therefore, impact urbanization (housing supply) and growth, too. The impact of real oil 
prices on real rural land prices, though, is tied to how mineral rights are owned (Brown, et al., 2016; Brown, et al., 2019; Bos-
lett, et al., 2019; Covert and Sweeney, 2019). Mineral rights severance, which is quite common in Texas but not ubiquitous, 
potentially limits the estimated effect of real oil prices on real rural land values. Our findings, nonetheless, point out that real 
rural land prices are quite sensitive to real oil prices and, in areas heavily dependent on oil wealth, an important supply-side 
channel affecting real house prices. 



62 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

of the shale revolution that took off in the 2000s) with a total of 166 quarterly observations. All the 
nominal series—house prices, rural land prices, real personal disposable income per capita, and oil 
prices—are re-expressed in real terms deflated with the seasonally adjusted quarterly U.S. headline 
CPI series from the U.S. Bureau of Labor Statistics to avoid the confounding effects of inflation 
(Hamilton, 1996). To be consistent, U.S. real long-term interest rates are computed as the nominal 
U.S. long-term interest rate net of long-term expected headline CPI inflation. All the data we use in 
this paper are publicly available.5 

Real house prices ( itRHp ). We employ Federal Home Loan Mortgage Corporation (Fred-
die Mac) house price indexes, as they provide a broad measure of the fluctuations in single-family 
house prices across MSAs. These are weighted, repeat-sales indexes that measure changes in market 
prices using repeat-sales or refinancings on the same physical properties to control for differences in 
the quality of the houses comprising the sample. These indexes are based on mortgage transactions 
on single-family properties with conforming, conventional mortgages purchased or securitized by 
Freddie Mac itself or by the Federal National Mortgage Association (Fannie Mae). We average 
the monthly Freddie Mac series to quarterly frequency and then seasonally adjust them with the 
standard Census X12/X13 procedure. The resulting quarterly nominal house price indexes are then 
deflated with U.S. headline CPI (Figure 1.A). 

Real rural land prices ( itRLp ). Still, we use the rural land prices across Texas’ 33 rural 
land market areas and seven regional land markets computed by the RECENTER at Texas A&M 
University based on transaction values from the Farm Credit Bank of Texas. The RECENTER rural 
land prices are quarterly median values adjusted to a standardized distribution of acreages (without 
distinguishing among the varying uses and conditions of the land), expressed in dollars per acre and 
seasonally-adjusted using a simple four-quarter moving average. While we don’t have urban land 
prices per se, rural land prices provide a quantifiable measure of the opportunity cost of turning ru-
ral land into urban land for urban development across Texas.6 It should be noted that mineral rights 
ownership can be sold separately from land ownership—this is a practice common in Texas, yet 
transactions prices would incorporate the value of mineral rights in those cases where fee simple 
ownership of the land is sold. Still, we use RECENTER rural land prices per acre as the best avail-
able indicator of geographical variation and overall rural land market conditions in Texas (a gauge 
of the costs of developing rural land into urban land). Finally, the RECENTER rural land price series 
are deflated with U.S. headline CPI (Figure 1.B). 

Real personal disposable income per capita ( itRPDI ). Personal disposable income (PDI) is 
a key determinant of housing demand.7 The U.S. Bureau of Economic Analysis reports annual total 

5. We obtain some of the data via the Federal Reserve Bank of St. Louis’ FRED database and the Federal Reserve Bank 
of Dallas’ Database of Global Economic Indicators (Grossman, et al., 2014) or from Haver Analytics. The boundaries of 
Texas’ MSAs and rural land market areas/regions, the geographic location and supplementary information about the major 
oil and gas formations in the state as well as all primary sources and a description of our own calculations are documented in 
detail in the companion online appendix which can be found with the complete dataset at: https://bit.ly/2mlnK6t. 

6. Rural land prices signal land scarcity and are a factor for urban development. The price of urban land, though, is only 
partly a function of the price of rural land and also depends on construction and other costs, the value of accessibility (com-
mute time), and the associated expected future rent increases (Helsley and Capozza, 1989; Hardie, et al., 2000). Nonetheless, 
the existing empirical evidence suggests a statistically significant dynamic relationship linking real land prices to housing 
supply and real house prices (Ozanne and Thibodeau, 1983; Manning, 1988; Potepan, 1996; Clapp, et al., 2001; Ooi and 
Lee, 2006; Hwang and Quigley, 2006; Cunningham, 2006; Davis and Heathcote, 2007; Davis and Palumbo, 2008; Anari and 
Gilliland, 2014; Oikarinen, 2014) which we proxy for in our model with the RECENTER rural land price data. 

7. On the demand-side of the housing market, the real estate literature documents a strong correlation between afford-
ability determinants (income, long-term interest rates) and house prices (Fortura and Kushner, 1986; Mankiw and Weil, 1989; 
Manning, 1986; Quigley, 1999; Case and Shiller, 1989; Case and Shiller, 1990; Hort, 1998; Zhang, et al., 2014). 

https://bit.ly/2mlnK6t
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personal income (including royalties from oil and gas) by MSA and annual personal current taxes 
for the state of Texas. We impute an annual value for each MSA’s current personal taxes proportional 
to the share of personal income accounted for by the MSAs relative to the state’s total. Each MSA’s 
total personal income minus imputed personal current taxes divided by its corresponding annual 
total population from the U.S. Bureau of Economic Analysis is our imputed measure of annual PDI 
in per capita terms. We construct a quarterly indicator of economic conditions in each MSA based 
on the geometric mean of: (a) the MSA’s quarterly total nonfarm employment (seasonally-adjusted) 
from the Texas Workforce Commission/U.S. Bureau of Labor Statistics; and (b) imputed quarterly 
PDI per capita for Texas based on national accounts and population data from the U.S. Bureau of 
Economic Analysis. We use this quarterly indicator by MSA and the standard Chow-Lin method 
to convert each MSA’s annual PDI per capita to a quarterly frequency. The resulting series is then 
deflated with U.S. headline CPI (Figure 1.C). 

Real long-term interest rate ( 10tRDSG ). Real long-term interest rates impact mortgage 
rates, housing affordability, and the demand for housing. Real long-term rates also affect the cost of 
financing for developers and, therefore, the demand of rural land for urban development and ulti-
mately the supply of urban housing. To compute the U.S. real long-term interest rate, first, we use 

Figure 1: Quarterly database for Texas MSAs from 1975:Q1 to 2016:Q2

Sources: U.S. Energy Information Administration, Dow Jones & Company, U.S. Bureau of Economic Analysis, U.S. Bureau 
of Labor Statistics, Texas Workforce Commission, Federal Home Loan Mortgage Corporation (Freddie Mac), Real Estate 
Center (RECENTER) at Texas A&M University/Farm Credit Bank of Texas, Board of Governors of the Federal Reserve 
System, Federal Reserve Bank of Philadelphia, Haver Analytics, and authors’ calculations. 
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the quarterly simple average of the daily 10-year Treasury constant maturity rate (yield in percent 
per annum) from the Board of Governors of the Federal Reserve System (H.15 Selected Interest 
Rates). Second, we construct a consistent long-term inflation expectations series based on the fore-
cast of the annual average rate of headline CPI inflation over the next 10 years from the Federal 
Reserve Bank of Philadelphia’s Survey of Professional Forecasters extended back to 1975:Q1 with 
Blue Chip Economic Indicators survey data and with the Board of Governors of the Federal Re-
serve System FRB/US-model long-term inflation expectations series ZPI10. Finally, the U.S. real 
long-term interest rate is computed by netting out long-term inflation expectations from the 10-year 
nominal yield based on Fisher’s equation (Figure 1.D). 

Real oil price ( tROp ). We use U.S. Energy Information Administration and Dow Jones & 
Company’s data on the West Texas Intermediate (WTI)–Cushing, Oklahoma–crude oil spot price 
(dollars per barrel). The non-seasonally-adjusted series is reported at a monthly frequency and con-
verted to a quarterly frequency by simple averaging. All remaining seasonality is removed by im-
plementing the standard Census X12/X13 procedure on the quarterly WTI oil price series. Then, the 
resulting series deflated with U.S. headline CPI is our main variable of interest (Figure 1.D).8 

Share of Crude Oil Proved Reserves by MSA ( −it POResShare ). We take account of the 
cross-sectional variation on oil-wealth-dependence by MSA and capture its geographical shifts over 
time with data on proved crude oil reserves. Specifically, we use annual data from the U.S. Energy 
Information Administration on crude oil (black oil, excluding lease condensate) proved reserves 
by Railroad Commission of Texas (RRC) district (excluding offshore), expressed in thousands of 
barrels (bbl). Proved reserves as of December 31 of the report year are the estimated quantities of 
all liquids defined as crude oil which geological and engineering data demonstrate with reasonable 
certainty to be recoverable in future years from known reservoirs under existing economic and op-
erating conditions. We convert the annual series to a quarterly frequency using the quadratic sum 
interpolation method and re-express the series in millions of barrels (bbl) per day (b/d). Finally, we 
compute the nearest crude oil proved reserves by MSA apportioning the reserves on the adjacent 
RRC districts. We incorporate the share of each MSA’s adjacent reserves over total onshore Texas 
reserves into the model expressed in percentages and instrumented by means of lags ( 1≥P )—spe-
cifically, we set 8=P  quarters (Figure 2). 

This indicator shows great disparity across Texas MSAs with much of the crude oil re-
serves concentrated in parts of the state—notably around the Eagle Ford and the Permian Basin. 
The series also highlights two large structural shifts since 1975:Q1—first, the gradual and ongoing 
decline of East Texas’ (Houston, Longview, Tyler) share of crude oil reserves since at least the 
mid–1970s and, second, the significant boost from shale oil to MSAs adjacent to the Eagle Ford 
(Victoria, San Antonio) and the Permian Basin (San Angelo, Midland, Odessa but less so around 
Lubbock) since the late 2000s. 

8. We recognize that in many parts of Texas the role of natural gas prices could be equally important. Historically, oil and 
natural gas prices moved together even though their market structures are different. However, the relationship between them 
broke down over the shale revolution period (Brown and Yücel, 2008). The development of enhanced recovery techniques 
suitable for the Barnett Shale (Fort Worth basin in North Texas) in the late 1990s contributed to a substantial expansion in 
proven natural gas reserves in the 2000s—yet shale gas production gains were limited by the drag on U.S. natural gas prices 
from the resulting pent-up supply of shale gas. Eventually the oil and gas industry shifted its focus towards shale oil sup-
ported by the rising oil prices (and declining natural gas prices) of the late 2000s which made the efforts to tap into shale oil 
profitable and encouraged further technological improvements and efficiency gains. Natural gas production and shale gas in 
particular continue to be very important for Texas even now partly as a byproduct itself from the ongoing boom in shale oil 
production. We leave the exploration of the role of natural gas—and more recently of shale gas—for future research. 
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Figure 2: Share of nearest proven crude oil reserves by Texas MSA from 1975:Q1 to 2016:Q2

Sources: U.S. Energy Information Administration, the Texas Railroad Commission, Haver Analytics, and authors’ 
calculations. 
Notes: The shares plotted in this figure are lagged eight quarters. 

2.1 Stationarity of the Data

We index the N panels of the cross-section (MSAs) as 1,  2, , N= …i  and the time periods 
(quarters) as 1,  2, ,= …t T . The real house prices ( itRHp ), the real rural land prices ( itRLp ), the real 
personal disposable income per capita ( itRPDI ), and the real oil prices ( tROp ) are all re-expressed 
in log-levels and multiplied by 100 to obtain percentages when expressed in first differences. We 
label them itlnRHp , itlnRLp , itlnRPDI , and tlnROp , respectively. The real U.S. long-term interest rate 
( 10tRDSG ) is retained as-is, expressed in percentages and at an annualized rate. 

We consider a battery of panel unit root tests to establish the stationarity properties of the 
data. The Fisher-type tests (Choi, 2001), the Levin, et al. (2002) test, the Breitung (2000) test, and 
the Im, et al. (2003) test that we use all share the null hypothesis that all the panels contain a unit 
root. The tests are based on an autoregressive model specification akin to the fundamental Aug-
mented Dickey-Fuller (ADF; Dickey and Fuller (1979, 1981), Said and Dickey (1984)) regression 
with a maximum number of lags which we set to four. The Fisher-type test implements a univariate 
unit-root test—either the ADF test or the Phillips and Perron (1988) test (PP test)—for each panel 
individually, and then combines the p-values from the individual tests to produce an aggregate. In 
contrast, all the other tests are constructed using the full panel rather than a combination of univari-
ate tests. If the number of panels N is fixed, then the Fisher-type tests are asymptotically consistent 
against the alternative that at least one panel is stationary. 

The Breitung and the Levin-Lin-Chu (LLC) panel tests assume that all panels have a com-
mon autoregressive parameter in the fundamental ADF regression. The Breitung and LLC tests are 
recommended for small-sized and moderately-sized panels (as is our case) against the alternative 
hypothesis that all the series are stationary. Breitung and Das (2005) also show that the Breitung 
test is optimal when all panels have the same autoregressive parameter, although it also has power 
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in the heterogenous parameter case. The Im-Pesaran-Shin (IPS) panel test relaxes the assumption 
of a common autoregressive parameter for all panels and allows explicitly for heterogeneity across 
panels (even with serial correlation in the error terms). The alternative hypothesis for the IPS test is 
that there is at least one panel that is stationary—that is, some (but not all) of the panels may display 
unit roots. 

Table 1 reports the p-values achieved for all panel unit root tests: the Fisher-type ADF and 
PP tests, the Breitung test, the LLC test, and the IPS test. We reject the unit root null in favor of 
stationarity when the p-value is less than or equal to a specified statistical significance level (0.01 
(1%), 0.05 (5%), and 0.1 (10%)). When the p-value is larger than the specified significance level, we 
fail to reject the null and this suggests that the data is consistent with a unit root. All our evidence is 
summarized in Table 1. 

Table 1: Panel unit root tests for Texas MSAs
Tests (P-values)

Fisher-Type Tests Panel Unit Root Tests

Variable
Deterministic 

Terms Panel ADF PP
Breitung 
(2000)

Levin, et al. 
(2002)

Im, et al. 
(2003)

Endogenous Variables
• ΔlnRHpit Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
• ΔlnRLpit Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
• ΔlnRPDIpit Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
Exogenous Variables
• ΔlnROpt Const. 1 0.00*** 0.00*** — — —
• RDSG10t Const. 1 0.49 / 0.12 0.56 / 0.21 — — —
• RDSG10t Trend 1 0.03** / 0.18 0.10* / 0.35 — — —
• ΔRDSG10t Const. 1 0.00*** 0.00*** — — —

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Reported 
p-values correspond to the lowest p-value achieved among competing specifications including from zero lags up to four lags. 
The deterministic terms included in the specification are either panel-specific fixed effects (Const.) or panel-specific linear 
time trends (Trend). For each test, we report the range of p-values in the following order: the full sample (1975:Q1–2016:Q2) 
followed by the subsample going from 1975:Q1 till 2001:Q4 (unless they both coincide up to rounding on the second decimal 
point). The results for the subsample going from 1975:Q1 till 2008:Q4 are similar to those of the subsample reported in Table 
1 and available upon request. 

We investigate the panel of all 25 MSAs in Texas and find that the first differences on real 
personal disposable income per capita (∆ itlnRPDI ), real rural land prices (∆ itlnRLp ), and real house 
prices (∆ itlnRHp ) are all stationary when including panel-specific fixed-effects. In other words, the 
empirical evidence in Table 1 strongly supports the stationarity hypothesis of those three endoge-
nous variables in first-differences. This finding holds true over the full sample from 1975:Q1 till 
2016:Q2 and is robust for the 1975:Q1–2001:Q4 subsample which excludes the shale revolution 
period entirely and also for the 1975:Q1–2008:Q4 subsample which excludes only the shale oil 
production boom that followed. 

We also find empirical support for the stationarity of the common exogenous factors. First 
differences on real WTI oil prices (∆ tlnROp ) are stationary based on standard univariate ADF and PP 
tests. The evidence on the real U.S. long-term interest rate ( 10tRDSG ) including a trend component 
is rather weak across tests and sample/subsample periods. We choose to include first differences of 
the real U.S. long-term interest rate ( 10∆ tRDSG ) in our benchmark model instead as the evidence of 
stationarity is shown to be a lot stronger and more robust in this case. 
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2.2 Empirical Framework

For our econometric analysis, we adopt the panel VARX (pVARX) framework with exog-
enous explanatory variables and fixed effects first proposed by Holtz-Eakin, et al. (1988). Classical 
ordinary least square equation-by-equation estimation methods for panel models with fixed effects 
do not produce unbiased estimates due to the well-known Nickell (1981) bias. One approach to deal 
with this bias is to use generalized method of moments (GMM) estimators instead (Hansen, 1982), 
as we do here. We use the GMM estimator proposed by Anderson and Hsiao (1982) and popularized 
by Love and Zicchino (2006) and Abrigo and Love (2016), among others. 

Our dataset permits a fully balanced panel-specification across panels (that is, across the 25 
Texas MSAs) over the full sample period from 1975:Q1 to 2016:Q2 as well as for the two subsamples 
of 1975:Q1–2001:Q4 and 1975:Q1–2008:Q4. Given the stationarity results from Table 1, we define 
the vector of endogenous local housing market variables as ( ) , ,= ∆ ∆ ∆it it it itY lnRPDI lnRLp lnRHp  
and the vector of exogenous common factors as ( ), 10= ∆ ∆t t tX lnROp RDSG . 

We treat real oil prices and real long-term interest rates (the common factors) as exog-
enously given from the perspective of how local Texas housing markets operate. We model the 
dynamics of the ( )1 2×  vector of common factors tX  with a simple one-panel pVAR model of order 
p given as: 

{ }1 1 2 2 ,   1,2, ,− − −= Ψ + Ψ +…+ Ψ +Γ + ∀ ∈ …t t t t p p tX X X X t T , (1)

where the ( )2 2×  matrices 1 2, , ,Ψ Ψ … Ψ p and the ( )1 2×  matrix of intercepts Γ are parameters to be 
estimated. The scalar p indicates the number of lags which we set to be bounded at 4≤p . By as-
sumption, the innovations satisfy that: [ ] 0, [ ]′= = Ωt t t  E  E , and [ ] 0′ =t s E  for all >t s. 

We posit that the dynamic relationship between the endogenous variables across MSAs, 
{ } 1=

N
it iY , is subject to shifts due to the exogenous fluctuations in the common factors, tX , that is, due 

to fluctuations in the real oil price and/or the real long-term interest rate. We then adopt the canon-
ical (homogeneous) pVARX model of order q including MSA-specific fixed effects and exogenous 
variables tX  in order to describe the dynamics of the endogenous variables { } 1=

N
it iY , i.e., 

{ } { }
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where itY  is the ( )1 3×  vector of dependent endogenous variables by MSA; tX  is the ( )1 2×  vector of 
exogenous covariates; and iu  and ite  are ( )1 3×  vectors of MSA-specific fixed-effects and idiosyn-
cratic errors, respectively. The ( )3 3×  matrices 1 2, , ,… qA A A  and the possibly time-varying ( )2 3×  
panel-specific matrices 1 2, ,...,

  

it it qitB B B  are to be estimated. The lag order of the pVARX specification 
in (2) is bounded at 6≤q . By assumption, the innovations satisfy that: [ ] 0, [ ]′= = Σit it ite e eE  E , and 

[ ] 0′ =it ise eE  for all >t s. Moreover, the innovations in (1) and (2) are uncorrelated with each other as 
well (contemporaneously and at all leads and lags). 

The inclusion of MSA-specific fixed effects in (1)-(2) allows us to take care of all (time-in-
variant) location-specific characteristics not explicitly accounted for in the specification. We model 
the cross-sectional and time series variation of the matrices 1 2, ,...,

  

it it qitB B B  in (2) as reflecting vary-
ing degrees of oil-wealth-dependence across Texas MSAs. In turn, we assume that there is no 
cross-sectional variation or time-dependence on the sensitivity to real long-term interest rates of 
the endogenous variables of model (2). We describe the sensitivity to real oil price fluctuations 
across MSAs with varying degrees of oil-dependence as an interaction between oil price changes 
and the share of pre-existing proved crude oil reserves (reserves that are economically viable at a 
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given point in time). We favor this data as a gauge of the potential oil-related wealth of a given area 
because it is less subject to change with current real oil price changes than actual production would. 
The share of crude oil reserves across local areas largely depends on the geology of the terrain which 
is exogenously given—although shifting patterns can arise in the share of crude oil reserves over 
extended periods of time (Figure 2) due to depletion of existing reserves (East Texas) and technolog-
ical advancements (notably the shale oil boom in the Eagle Ford shale and the Permian Basin). We 
instrument oil-wealth-dependence using pre-existing shares of crude oil reserves adjacent to each 
MSA lagged eight quarters ( −it POResShare , 8=P ).9 

We define a transformed vector of exogenous variables ( ,−= ⋅∆


t ti it POResShare nROpX l
∆RDSG t10 ) (with 8=P ) to incorporate the interaction between real oil prices in first differences 
and the pre-existing share of nearest crude oil reserves. The lagged share of crude oil reserves  
( −it POResShare ) is divided by 100 to re-express it in units rather than percentages. Then, we esti-
mate a simplified variant of the canonical model (2) where we replace the exogenous component 

1{ }− =

 q
t j jit jX B  with 1{ }− =

 q
it j j jX B  where the corresponding ( )2 3×  matrices 1 2, , ,… qB B B  are the re-de-

fined coefficients to be estimated. We explore the presence of structural breaks in the coefficients 
1 2, , ,… qB B B  resulting from the onset of the shale revolution in the 2000s—although, in a preview 

of our later discussion of the findings, the evidence does not provide much support for the hypothe-
sis that these coefficients are unstable over our sample period. 

We estimate the pVARX model in (1)-(2) by blocks. The procedure involves first trans-
forming the data with the forward mean-differencing transformation—the so-called Helmert trans-
formation—introduced by Arellano and Bover (1995) in order to remove the panel fixed-effects. The 
Helmert transformation subtracts the average of all available future observations which we denote 
with a superscript H .10 Since past realizations are not included in this transformation, the Helmert 
transformed variables remain valid instruments. Stacking observations over panels and then over time, 
the GMM estimator for (1)-(2) is generically given by  

1 )((   ( ) () ( )   −′ ′′ ′= H H H HC G Z W Z G G Z W Z Y .  
The exogenous block in (1) implies (( ) , 10 )−= ⋅∆ ∆H H H

it it P t tG OResShare lnROp RDSG , Git
H =

1 2[ , ,..., ]− − −

  H H H
it it it pX X X , and 1 2[ , ,..., ]′ ′ ′ ′= Ψ Ψ Ψ pC . The vector of ≥m p instruments Z contains m lags 

of the two exogenous variables. Similarly, the local housing market block in (2) is characterized 
by ( , , )= ∆ ∆ ∆H H H H

it it it itG lnRPDI lnRLp lnRHp , 1 2 1 2[ , ,..., , , ,..., ]− − − − − −=H H H H H H H
it it it it q t t t qG Y Y Y X X X , and � �C

1 2 1 2[ , ..., , , ..., ]′ ′ ′ ′ ′ ′q qA A A B B B . The set of instruments Z  in this case includes the q lags of the two exoge-
nous variables as well as ≥n q lags of the three endogenous variables in model (2). We use Hansen 
(1982)’s robust conforming weighting matrix  W . The lags of the Helmert transformed variables 
selected for inclusion in the model (p and q, respectively) are instrumented by lags of the variables 
in levels (that is, untransformed). In our analysis, we set the number of instruments to be 4=m  for 
the exogenous variables in (1) and 6=n  for the endogenous variables in (2), respectively. 

The block-partitioning aspect of our estimation strategy is aimed at imposing block-spe-
cific restrictions on the dynamics of the model. First, we use distinct sets of instruments for the 
endogenous local housing variables and for the exogenous common factors in order to achieve more 

9. The contemporaneous real oil price shocks propagate for at most four quarters and ought to be uncorrelated with (and 
unpredictable based on) any prior information—including that from the lagged (eight quarters or more) shares of proved 
crude oil reserves adjacent to each MSA. Similarly, the contemporaneous shocks from (2) can only propagate for at most six 
quarters and, therefore, should be uncorrelated with the lagged (eight quarters or more) shares for the same reason. 

10. For any given variable itg , the corresponding Helmert transformation H
itg  is given by git

H = 

1

1  
1 = +

−  − − + − 
∑T

it inn t

T t g g
T t T t

. 
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efficient GMM estimates. This also implements a more parsimonious strategy that limits the prob-
lem of lag proliferation in the instruments and the specification (Roodman, 2009). 

Second, our specification also establishes that the propagation of exogenous real oil price 
shocks (and shocks to real long-term interest rates) into local real house prices occurs only through 
the spillovers estimated via fluctuations in the exogenous variables as shown in the pVARX form in 
(2). Furthermore, the partitioning also allows us to impose cross-equation restrictions on the dynam-
ics of the model preventing developments in local housing markets across Texas MSAs from having 
a spurious impact on the real U.S. long-term real interest rate or on globally-determined real oil 
prices. We argue that those restrictions provide a plausible description of the relationship between 
local real house prices and real long-term interest rates and global oil prices. 

Finally, the proposed partitioning introduces restrictions on the variance-covariance matrix 
of the shock innovations that permit us to identify shocks to real oil prices and real personal dispos-
able income per capita that are exogenous through an appropriate Cholesky ordering on the local 
housing market block and the common factors block in (1)–(2).11 This ensures that the innovations 
of the housing variables are uncorrelated with the innovations on the common factors. As an impor-
tant corollary, this identification scheme is also useful to better understand what makes real oil price 
shocks different from real personal disposable income per capita shocks—that are orthogonal to real 
oil price shocks—in how they impact the dynamics of local real house prices (and their demand- and 
supply-side determinants). 

3. MODEL ESTIMATION

To explore the effects of exogenous real oil price shocks on real house prices, taking stock 
of the cross-sectional heterogeneity within Texas, we use the two-block model given by (1)–(2). In 
this section, we discuss the selection of the appropriate lag structure for the model, and then proceed 
with the estimation results. We also explore the stability properties of the estimated model. Our 
benchmark specification in (1)–(2) is estimated using the full sample, but we also consider two alter-
native specifications. First, we consider the case where we impose zero-restrictions on the matrices 

1 2, , ,… qB B B  in order to investigate how omitting real oil price fluctuations alters our perception of 
the dynamics in the local real estate block of the model (that is, in (2)). Second, we re-estimate the 
model with two subsamples that exclude the onset of shale gas and oil in the early 2000s and the 
heyday of the shale oil boom in Texas since the late 2000s to assess the hypothesis of parameter 
instability in the model due to the shale revolution. 

3.1 Model Selection

We choose the optimal lag order and moment condition separately for each block of the 
model given by (1)–(2). For systems that are just-identified or overidentified (that is, whenever 

4≤ =p m  and/or 6≤ =q n ), the overall coefficient of determination (CD) can be computed to eval-
uate the proportion of variation explained by the pVARX model (Abrigo and Love, 2016). For 
overidentified systems (that is, whenever 4< =p m  and/or 6< =q n ), apart from the overall CD, 
we can also deploy Andrews and Lu (2001)’s set of moment and model selection criteria for GMM 

11. We should note here that the exogenous real oil price shocks in our framework do not necessarily have a structural 
interpretation and likely reflect a varying combination of global supply and global demand shocks. However, given that the 
propagation of these shocks goes through fluctuations in the real price of oil, these reduced-form exogenous shocks still help 
us assess the response of real house prices to the mix of demand and supply shocks that drives real oil price fluctuations. 
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estimation based on Hansen’s (1982) J-statistic. These are viewed as the counterpart of well-known 
maximum likelihood-based model selection criteria: MBIC can be viewed as the GMM counterpart 
of the Bayesian information criteria (BIC), MAIC as the counterpart of the Akaike information 
criteria (AIC), and MHQIC as the counterpart of the Hannan-Quinn information criteria (HQIC). 

Our key findings from this battery of tests are reported in Table 2 below. Based on the ove-
ridentified model selection criteria by Andrews and Lu (2001), a first-order pVAR is the preferred 
model for the exogenous block in (1) since this has the smallest MBIC, MAIC, and MHQIC. The 
p-value of Hansen’s (1982) J-statistic fails to reject the joint null hypothesis that the instruments are 
valid instruments, i.e., uncorrelated with the error term. Therefore, we retain 4 =m  and adopt 1=p  
for equation (1). We would reach a similar conclusion had we used the long-term real interest rate in 
levels with or without a trend instead in this block of the model. 

Table 2: Lag selection criteria: Hansen’s (1982) J-statistic and Andrews and Lu (2001)

Lag IV CD
J-statistic
P−value MBIC MAIC MHQIC

Local Housing Block
q = 1 n = 6 0.59 / 0.61 0.00 / 0.00 259.40 / 185.31 542.06 / 447.84 441.80 / 352.58

2 n = 6 0.63 / 0.66 0.00 / 0.00 159.37 / 140.83 385.50 / 350.85 305.29 / 274.64
3 n = 6 0.66 / 0.70 0.00 / 0.00 66.23 / 31.87 235.83 / 189.39 175.67 / 132.23
4 n = 6 0.74 / 0.76 0.00 / 0.00 –18.10 / –13.45 94.96 / 91.57 54.86 / 53.46
5 n = 6 0.75 / 0.77 0.00 / 0.00 –18.76 / –8.81 37.78 / 43.70 17.72 / 24.64
6 n = 6 0.77 / 0.75 — — — —

Common Factors
p = 1 m = 4 –0.09 / –0.09 0.21 / 0.26 –42.85 / –40.97 –8.35 / –9.35 –22.37 / –22.16

2 m = 4 –0.10 / –0.10 0.72 / 0.78 –33.61 / –32.34 –10.61 / –11.26 –19.96 / –19.79
3 m = 4 –0.02 / –0.03 0.72 / 0.30 –17.40 / –13.69 –5.90 / –3.15 –10.58 / –7.42
4 m = 4 0.24 / 0.26 — — — —

Notes: The table reports the three selection criteria proposed by Andrews and Lu (2001): MBIC, MAIC, and MHQIC. The 
Hansen’s (1982) J-statistic on the validity of overidentifying restrictions is reported indirectly in terms of p-values. The 
overall coefficient of determination (CD) that accounts for the variation explained by the model is also included. For each, 
we report the values for the full sample that ends in 2016:Q2 followed by the values for the subsample going from 1975:Q1 
to 2001:Q4. The results are fairly similar for the subsample that ends in 2008:Q4 (available upon request). We only report 
here the findings for the common factor specification where the U.S. real long-term interest rates are given by ΔRDSG10t. The 
results using the level (RDSG10t) with and without a time trend are available upon request, but qualitatively point to the same 
lag and instrument (IV) specification.  

For the local housing markets block specified in (2), the smallest MBIC, MAIC, and MH-
QIC values for overidentified models are obtained when we set q to be equal to 5. However, for all 
overidentified specifications where 6<q , the p-value of Hansen’s (1982) J-statistic rejects the joint 
null hypothesis that the instruments are valid. The overall CD reaches its highest value whenever 
just-identified and 6= =q n . We therefore retain 6 =n  and adopt 6=q  for equation (2). We should 
note that these model selection results are robust whether we consider the full sample or the sub-
samples that exclude the onset of shale gas or the later shale oil boom period. 

3.2 Model Estimation

We fit a first-order pVAR for the exogenous common factor block in (1) and a sixth-or-
der pVARX specification with exogenous common factors interacted with the pre-existing share of 
crude oil reserves for the local housing market block in (2). Our findings on the first-order pVAR 
used to estimate the dynamics of ( ), 10= ∆ ∆t t tX lnROp RDSG  over the full sample and the subsa-
mple that excludes the shale revolution (1975:Q1–2001:Q4) are reported in Table 3. Table 4 docu-
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ments the estimation of the local housing market block in (2) over the full sample period (column 
(A)), for the subsample that excludes the period of the shale revolution (column (B)), and for an 
alternative specification estimated over the full sample that sets the local housing market spillovers 
from real oil prices to zero (column (C)).12 

As seen in Table 3, the evidence suggests there is little explanatory power for the lagged 
common factors on the equation for the real long-term interest rate in first differences. The alterna-
tive specifications that consider the real long-term interest rate in levels with and without trend also 
tend to validate the hypothesis that the real long-term rate is well-described as a unit-root process 
without any spillovers. As a result, we retain the variable 10∆ tRDSG  in our preferred benchmark 
specification of the model. The findings in Table 3 also indicate that real oil prices in first differences 
appear to follow a simple first-order autoregressive process. All of this implies that changes in the 
real long-term interest rate are purely transitory and show neither own-persistence nor significant 
spillovers from real oil prices, while the growth rate in real oil prices displays some degree of 
own-persistence that we need to take into account in our subsequent empirical analysis.13 

Table 4 provides the full set of estimates for the pVARX(6) model for the local housing 

market block in (2). The coefficient estimates for the subsample that excludes the shale revolution 
period (column (B)) are fairly similar to those we obtain over the full sample (column (A)). Hence, 
this evidence suggests that, once we account for the interaction of real oil price fluctuations with 
the share of pre-existing crude oil reserves, the shale revolution has not led to significant parameter 
instability—a structural break—in the dynamic relationship linking real oil prices to real house 

12. The findings in Table 3 and Table 4, when we exclude only the shale oil boom years starting in 2009:Q1, are similar 
to those reported here and available upon request. The results in Table 4 are robust if we replace 10∆ tRDSG  in the vector of 
exogenous common factors with the level of the long-term interest rate and a time trend ( )10 ,tRDSG t  instead. 

13. The pVAR(1) model given in (1) is, in practice, like estimating a VAR(1) process for the exogenous common factors. 
The GMM estimates we report here are also very similar to the OLS (seemingly unrelated regressions) estimates and to the 
conditional maximum likelihood estimates of the VAR(1) specification. 

Table 3: pVAR(1) model of the exogenous common factors
ΔlnROpt ΔRDSG10t

1975:Q1–2016:Q2 1975:Q1–2001:Q4 1975:Q1–2016:Q2 1975:Q1–2001:Q4

ΔlnROpt 0.24*** 0.26*** 0.00 0.01*
ΔRDSG10t–1 1.01 1.36 0.05 0.03

ΔlnROpt RDSG10t

1975:Q1–2016:Q2 1975:Q1–2001:Q4 1975:Q1–2016:Q2 1975:Q1–2001:Q4

First Alternative Specification

ΔlnROpt–1 0.25*** 0.27*** 0.00 0.00
RDSG10t–1 0.17 –0.07 1.00*** 1.00***

Second Alternative Specification

ΔlnROpt–1 0.31*** 0.30*** 0.00 0.00
RDSG10t–1 –2.05 –0.18 0.98*** 0.87***
t –0.08 –0.00 –0.00 –0.01

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. GMM estimates 
for the benchmark pVAR(1) are reported for the full sample (1975:Q1–2016:Q2) and for the subsample that excludes the 
shale revolution (1975:Q1–2001:Q4). The results for the subsample ending in 2008:Q4 are similar to those reported here and 
available upon request. The first alternative specification only satisfies the stability condition for the full sample. Initial weight 
matrix: Identity. GMM weight matrix: Robust. Instruments: lags(1/4) for (ΔlnROp ΔRDSG10) and, alternatively, lags(1/4) for 
(ΔlnROp 10RDSG ) with or without the deterministic time trend. 



72 / The Energy Journal

All rights reserved. Copyright © 2019 by the IAEE.

prices. In Table 4, we also consider a scenario whereby spillovers from real oil prices into real 
house prices are omitted (column (C)). The direct implication of this assumption is that real oil price 
shocks do not have any direct effect on real house prices. We find that this particular omission tends 
to bias somewhat our coefficient estimates and, therefore, also our empirical inferences about the 
propagation of shocks (notably because it magnifies the response elicited by fluctuations in personal 
disposable income per capita). 

Our coefficient estimates in all three scenarios (columns (A), (B), and (C)) reported in 
Table 4 suggest that the estimated spillovers from lagged real rural land prices on real personal 
disposable income per capita and real house prices are rather modest. Moreover, the impact of 
real oil price fluctuations interacted with pre-existing crude oil reserves appears weak and mostly 
statistically insignificant. All of this indicates that real rural land prices—proxying for supply-side 
factors in the housing market—play only a limited role in the transmission of real oil price shocks 
into real house prices. 

Table 4:  pVARX(6) model of local housing variables with spillovers from exogenous common 
factors

ΔlnRPDIit ΔlnRLpit ΔlnRHpit

(A) (B) (C) (A) (B) (C) (A) (B) (C)

ΔlnRPDIit–1 0.29*** 0.24*** 0.31*** –0.10* –0.07 –0.08 –0.06*** 0.01 –0.04***
ΔlnRPDIit–2 0.15*** 0.11*** 0.16*** 0.13** 0.08 0.12** 0.03** 0.04*** 0.03***
ΔlnRPDIit–3 –0.06** –0.05* –0.06** 0.00 –0.11* 0.01 –0.01 –0.02 0.00
ΔlnRPDIit–4 –0.14*** –0.04 –0.15*** –0.04 –0.06 –0.03 0.07*** 0.07*** 0.07***
ΔlnRPDIit–5 –0.09*** –0.10*** –0.09*** –0.02 –0.12* –0.01 0.01 0.01 0.00
ΔlnRPDIit–6 –0.04 –0.05* –0.03 –0.10* –0.20*** –0.11** –0.04*** –0.02* –0.04***
ΔlnRLpit–1 0.01*** 0.01*** 0.01*** 0.11*** 0.14*** 0.11*** 0.00 0.01** 0.00
ΔlnRLpit–2 0.01** 0.01** 0.01*** 0.23*** 0.21*** 0.24*** 0.00 0.00 0.00
ΔlnRLpit–3 0.00 0.01 0.01 0.03 0.05** 0.03 0.00* 0.00 0.00*
ΔlnRLpit–4 –0.01* –0.00 –0.01* –0.42*** –0.40*** –0.41*** 0.00** 0.00 0.00*
ΔlnRLpit–5 0.01* 0.00 0.01** 0.14*** 0.15*** 0.14*** 0.00 0.01 0.00
ΔlnRLpit–6 0.00 0.00 0.00 0.09*** 0.11*** 0.09*** 0.00 0.00 0.00
ΔlnRHpit–1 –0.01 –0.02 –0.03 0.43*** 0.64*** 0.44*** 0.50*** 0.39*** 0.50***
ΔlnRHpit–2 –0.12*** –0.06** –0.15*** 0.15 0.18 0.15 0.20*** 0.26*** 0.18***
ΔlnRHpit–3 0.14*** 0.15*** 0.14*** –0.20* –0.30** –0.22* 0.28*** 0.33*** 0.28***
ΔlnRHpit–4 0.11*** 0.08*** 0.16*** 0.01 –0.13 0.03 –0.23*** –0.24*** –0.23***
ΔlnRHpit–5 –0.04 –0.13** –0.03 0.23** 0.37*** 0.23** 0.04* –0.00 0.05**
ΔlnRHpit–6 –0.06* –0.03* –0.05 0.31*** 0.30** 0.30*** 0.01 0.02 0.02

S_ΔlnROpt–1 0.19*** 0.15** — 0.06 –0.10 — 0.03*** –0.00 —
S_ΔlnROpt–2 0.08** 0.01 — 0.03 0.11 — 0.10*** 0.11*** —
S_ΔlnROpt–3 0.11*** 0.16*** — 0.05 0.11 — 0.02 0.00 —
S_ΔlnROpt–4 –0.07* –0.05 — 0.01 –0.07 — 0.02 0.01 —
S_ΔlnROpt–5 0.10*** 0.27*** — 0.01 0.10 –– 0.04*** 0.07*** ––
S_ΔlnROpt–6 0.04 0.04 — 0.18*** 0.12 — 0.01 0.00 —
ΔRDSG10t–1 –0.40*** –0.33*** –0.36*** –0.08 0.12 –0.04 –0.13*** –0.26*** –0.12***
ΔRDSG10t–2 –0.06 –0.12** –0.03 0.44*** 0.58*** 0.45*** 0.22*** 0.24*** 0.24***
ΔRDSG10t–3 0.15*** 0.14*** 0.17*** 0.64*** 0.69*** 0.63*** 0.11*** 0.21*** 0.12***
ΔRDSG10t–4 0.32*** 0.32*** 0.34*** 0.16 –0.04 0.17 –0.12*** –0.11*** –0.11***
ΔRDSG10t–5 –0.16*** –0.22*** –0.16*** 0.69*** 0.75*** 0.70*** 0.21*** 0.21*** 0.22***
ΔRDSG10t–6 –0.17*** –0.25*** –0.17*** 0.24 0.34* 0.28 –0.11*** –0.19*** –0.11***

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Notice also that 
_  ∆ ≡ ⋅∆S lnROp OResShare lnROp. GMM estimates for the benchmark pVARX model (column (A)), the benchmark model 

excluding the shale revolution (from 2002:Q1 onwards) years (column (B)), and the model excluding spillovers from real oil 
prices (column (C)). The results for the subsample ending in 2008:Q4 are similar and available upon request. Initial weight 
matrix: Identity. GMM weight matrix: Robust. Instruments: lags(1/6) for (∆lnRPDI  ∆lnRLp ∆lnRHp) and, if included, 
lags(1/6) for ( ⋅ ∆OResShare lnROp 10∆RDSG ). 
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In short, our estimates suggest that the shale revolution has had a limited effect on the 
dynamic relationship given in (2); that ignoring the spillovers from real oil prices may lead us to 
overstate the impact of demand-side fundamentals (particularly of  real personal disposable income 
per capita shocks); and that the supply-side channel via real rural land prices appears weaker than 
the demand-side channel primarily through real personal disposable income per capita but partly 
through real long-term interest rates as well. 

Finally, we should point out that we also check the stability condition of the estimated 
block-system in (1)–(2). Hamilton (1994) and Lütkepohl (2005) show that stability requires all 
eigenvalues of the companion matrix of the estimated model to be inside the unit circle. Exploring 
the eigenvalues confirms that the estimates reported in Table 3 and Table 4 are all stable for our 
preferred benchmark. Given that the estimated benchmark model satisfies this stability condition, 
the pVARX specification is invertible and has an infinite-order vector moving-average (VMAX) 
representation including the exogenous variables.

3.3 Panel Granger Causality

Panel Granger causality is based on performing Wald exclusion tests for each equation of 
the underlying pVARX model for (1)-(2). A variable ity  is said to “Granger-cause” another variable 

itg  if, given all the lags for itg , we find that the lags of ity  are jointly statistically significant in the 
equation for itg . The panel VAR-Granger causality Wald test evaluates the null that the coefficients 
of all the lags are zero (the excluded lagged variables do not Granger-cause the dependent variable 
of the corresponding equation) against the alternative that at least one coefficient is not equal to 
zero.14 The Granger causality test results for our benchmark model over the full sample are summa-
rized in Table 5. 

Table 5 shows the p-value is above the conventional statistical significance thresholds for 
the common factor equations in (1). With this evidence, we can say that there is no empirical sup-
port for the hypothesis that real long-term interest rates Granger-cause real oil prices or for the 
hypothesis that real oil prices Granger-cause real long-term interest rates. This is consistent with the 
estimates in Table 3, which also show that the spillovers in the exogenous common factor block of 
the model are statistically insignificant. 

In turn, Table 5 shows that real oil price fluctuations interacted with the share of pre-exist-
ing crude oil reserves—as well as real long-term interest rates—Granger-cause real house prices and 
real personal disposable income per capita across MSAs in Texas. However, real oil price changes 
interacted with the share of pre-existing reserves fail to Granger-cause real rural land prices while 
real rural land prices only weakly Granger-cause real personal disposable income per capita and 
real house prices at the 10 percent statistical significance level. These findings are consistent with 
the results in Table 4, which also shows weak real oil price spillovers into real house prices via real 
rural land values. 

Still, the results in Table 5 clearly show real oil price changes do affect the local housing 
markets in Texas—and house prices in particular—even after we account explicitly for demand-side 
forces like real personal disposable income per capita and supply-side forces like real rural land prices 
that are themselves also affected to some degree by real oil price fluctuations. In addition, our evi-
dence shows most of the variables in the local housing block strongly Granger-cause each other at the  
1 percent statistical significance level. This provides further support for the variables included and 

14. Notice that by construction, given the block-partitioned specification of (1)–(2), the lags of the local variables in 
( ) , ,= ∆ ∆ ∆it it it itY lnRPDI lnRLp lnRHp  do not Granger-cause the exogenous common factors in ( ), 10= ∆ ∆t t tX lnROp RDSG . 
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the pVAR structure adopted here as it clearly helps us capture the dynamic endogenous relationships 
among the variables in ( ), ,= ∆ ∆ ∆it it ititY lnRPDI lnRLp lnRHp  and the role played by the exogenous 
common covariates in ( ), 10−= ⋅∆ ∆



it P t tit OResShare lnROp R SGX D . 

4. EMPIRICAL FINDINGS

In this section, we evaluate the dynamic relationships modeled in (1)-(2) tracing out the 
effects of shocks—particularly shocks to real personal disposable income per capita and to real oil 
prices—on the endogenous local housing market variables. Our block-partitioning of the system 
(1)–(2) already imposes key identifying restrictions and requires that residual innovations  t  and 

ite  for all 1,  2, , N= …i  be uncorrelated at all leads and lags. Apart from that, we rely on a recursive 
structure for our pVARX specification to impose additional identifying restrictions on the residual 
innovations of each block. That is, we orthogonalize the residual innovations of each block with a 
Cholesky decomposition (Sims, 1980). 

The Cholesky decomposition is not unique and critically depends on the ordering of the 
variables in each block—what we do here is to impose a plausible ordering with which to recover 
block-exogenous shocks to real personal disposable income per capita and to real oil prices. This is 
useful because we are particularly interested in disentangling the effects of discretionary real income 
shocks that are otherwise orthogonal to real oil prices from the effects of real oil price shocks. Here: 
(a) for the exogenous common factor block, our Cholesky identification assumes that real oil price 
shocks can impact real long-term interest rates contemporaneously but not the other way around; 
and (b) for the local housing market block, we assume that real house prices can respond contempo-
raneously to real rural land price shocks and to real personal disposable income per capita shocks, 
real rural land prices respond contemporaneously to real personal disposable income per capita 
shocks but not to real house price shocks, and real personal disposable income per capita responds 
contemporaneously only to its own shocks.15 

15. We also consider an alternative ordering whereby real rural land prices respond contemporaneously to both real 
personal disposable income per capita and real house prices, while real house prices only respond contemporaneously to 
real personal disposable income per capita shocks. The results we obtain are largely unchanged, and available upon request. 

Table 5: Panel Granger causality tests
Equation Excluded Variables Chi-square Statistic Degrees of Freedom Prob > Chi-square

ΔlnRPDIit ΔlnRLpit–1,..., ΔlnRLpit–6 18.27 6 0.01***
ΔlnRPDIit ΔlnRHpit–1,..., ΔlnRHpit–6 36.06 6 0.00***
ΔlnRPDIit S_ΔlnROpt–1,...,S_ΔlnROpt–6 45.50 6 0.00***
ΔlnRPDIit ΔRDSG10t–1,..., ΔRDSG10t–6 111.17 6 0.00***
ΔlnRLpit ΔlnRPDIit–1,..., ΔlnRPDIit–6 11.00 6 0.09*
ΔlnRLpit ΔlnRHpit–1,..., ΔlnRHpit–6 68.64 6 0.00***
ΔlnRLpit S_ΔlnROpt–1,...,S_ΔlnROpt–6 9.00 6 0.17
ΔlnRLpit ΔRDSG10t–1,..., ΔRDSG10t–6 51.61 6 0.00***
ΔlnRHpit ΔlnRPDIit–1,..., ΔlnRPDIit–6 91.02 6 0.00***
ΔlnRHpit ΔlnRLpit–1,..., ΔlnRLpit–6 11.78 6 0.07*
ΔlnRHpit S_ΔlnROpt–1,...,S_ΔlnROpt–6 67.82 6 0.00***
ΔlnRHpit ΔRDSG10t–1,..., ΔRDSG10t–6 235.24 6 0.00***
Common Factors
ΔlnROpt ΔRDSG10t–1 0.53 1 0.47
ΔRDSG10t ΔlnROpt–1 1.32 1 0.25

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Notice that 
_  ∆ ≡ ⋅∆S lnROp OResShare lnROp. The panel Granger tests reported are computed as Wald tests of the excluded variables for 

the benchmark pVARX model by blocks given by (1) and (2). The test statistics are computed based on the full sample 
estimates for the benchmark specification reported in Table 3 and Table 4.  
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Because common factors are included as common exogenous covariates in the local hous-
ing market system in (2), identified innovations to real oil prices obtained from the estimated system 
in (1) can propagate into (2) interacted with pre-existing crude oil reserves and affect the dynamics 
of the local housing market variables. The same can be said of exogenous innovations to the real 
long-term interest rate estimated with the common factors system in (1). Also, we should note that 
fluctuations in the common factors propagate into the housing block in (2) with a lag of at least one 
quarter under our timing assumptions. 

4.1 Impulse Response Functions

Real oil price shocks as well as real personal disposable income per capita shocks tend to 
dissipate fairly quickly, as seen in the impulse response functions (IRFs) plotted in Figure 3. Real 
oil price shocks, however, are an order of magnitude larger than exogenous shocks to real personal 
disposable income per capita (that are orthogonal to real oil price shocks in our benchmark specifi-
cation). This difference in the magnitude of the impact of each shock is consistent with the fact that 
real oil prices are also similarly more volatile unconditionally than real personal disposable income 
per capita is in the data. Moreover, the dynamic responses of the (non-oil) discretionary real income 
shocks and the real oil price shocks that we have identified (and illustrated for the full sample in 
Figure 3) are robust to: (a) alternative orderings of the variables in the local housing block (keeping 
the assumption that real personal disposable income per capita responds contemporaneously to own 
shocks alone), and (b) to a subsample that excludes the period since either the onset of the shale 
revolution or the shale oil boom years. 

Figure 3: Real personal disposable income per capita shocks vs. real oil price shocks

Notes: The IRFs reported are computed for the benchmark pVARX model by blocks given by (1) and (2). The estimates are 
based on the full sample 1975:Q1–2016:Q2 whose estimates are reported in Table 3 and Table 4. The confidence intervals for 
the IRFs are estimated using 500 Monte Carlo simulation and bootstrap resampling methods. 

Hence, the questions are: (a) how do exogenous shocks to real oil prices and to personal 
disposable income per capita propagate into local housing markets?; and (b) has the relationship 
between real oil prices and real house prices remained stable as shale oil upended the oil and gas 
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industry in the 2000s? Figures 4.A and 4.B provide us with a broad overview of the propagation 
mechanism of (non-oil) discretionary real income shocks and real oil price shocks across Texas. 

Figure 4: Real personal disposable income per capita shocks vs. real oil price shocks

Notes: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks given 
in (1)-(2) and its corresponding cumulative IRFs. The estimates are from the full sample as given in Table 3 and Table 4. Panel 
A reports the point-estimate of the cumulative IRF of real personal disposable income per capita in response to exogenous 
real income shocks and to real oil price shocks propagated into the local housing block under the benchmark estimates for 
equation (1). Panel B similarly reports the cumulative IRFs on real house prices and real rural land prices propagated in 
response to real income shocks and real oil price shocks. 
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We label the median of the distribution of the share of pre-existing crude oil reserves across 
Texas MSAs (which comes at an average of 0.8 percent over the full sample) as low oil-dependence, 
the upper quartile of the distribution (at an average of 3.0 percent) as moderate oil-dependence, and 
the 90-percentile of the distribution (at an average of 18.7 percent) as high oil-dependence. As can 
be seen from Figure 4.A, the point-estimate response of real personal disposable income per capita 
to a real oil price shock is rather modest for local MSAs of low or moderate oil-dependence. For 
the most oil-dependent areas, in turn, the estimated real oil price shock shifts real income upward 
over the medium term (3–5 years) by approximately the same order of magnitude as the estimated 
exogenous (non-oil) real income shock (albeit its impact is more gradual during the first year). 

The evidence in Figure 4.A suggests the income effects of real oil price shocks display 
strongly non-linear features. Indeed, real income effects boosting housing demand are shown to 
be modest in most local areas except those around which most of the pre-existing proved crude oil 
reserves in the state are concentrated. The impact of an exogenous real oil price shock on the long-
term real interest rate is quite limited, although not trivial (increasing long-term real rates by about 
17 basis points over the medium term). The implication of all of this is that real oil price shocks 
operate on the demand-side of the local housing market predominantly through their impact on 
personal disposable income per capita—most heavily in local areas strongly tied to oil—and less 
so through the concurring small increases of the long-term real interest rate which induce only a 
modest tightening of financial conditions. 

Figure 4.B shows that exogenous (non-oil) real income shocks tend to pull up real house 
prices and adjacent real rural land prices—more gradually for real rural land prices than for real 
house prices earlier on, but by a similar magnitude over the medium term (3–5 years). Interestingly, 
the impact of real oil price shocks on real rural land prices, and to a lesser extent on real house 
prices, is quite significant even in local areas of low or moderate oil-dependence and comparable in 
magnitude with the response triggered by an exogenous (non-oil) real income shock. We recognize 
that the strength of their response to real oil price shocks is partly a matter of scale—real oil price 
shocks are an order of magnitude larger than personal disposable income per capita shocks (as seen 
in Figure 3). 

We interpret the evidence in Figure 4.B as suggesting that real rural land prices are partly 
being pulled up by rising real house prices as the housing demand shifts in response to real oil price 
shocks (particularly so in those local areas more dependent on oil activity where the effects of real 
oil price shocks on incomes can be quite large, as seen in Figure 4.A). The model also suggests that 
real oil price shocks play an important role on the supply-side of housing as well and, in doing so, 
influence the demand of rural land for urban development and drive rural land prices up. 

At this point, we should recall that the rural land price data available to us do not identify 
if mineral rights are included in the land transactions or not. Though mineral severance is quite 
common in Texas, it is by no means ubiquitous. The price for rural land ought to be higher when 
mineral rights are included since the owner of the mineral rights can lease the drilling rights to oil 
companies receiving royalty payments in return (Brown, et al., 2016; Brown, et al., 2019).16 We 
expect the issue with mineral rights, though, to have only a limited impact on our model estimates 
because our benchmark already incorporates what effectively constitutes a proxy for mineral rights 
values—the interaction between oil price changes and the share of pre-existing proved crude oil 
reserves (a measure of the value of the adjacent oil wealth underground). 

16. Not having ownership of the mineral resources underground has been shown to drag house prices down given that 
drilling can damage roads and crop land, and cause water, air, and noise pollution (Boslett, et al., 2019). 
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Indeed, the interaction between real oil prices and pre-existing crude oil reserves takes ac-
count of the mineral-rights-value-channel’s influence on the housing supply separately from that of 
real rural land prices. Our findings therefore support the view that the effects of real oil price shocks 
matter for urban development and partly contribute to the strong response in real rural land prices 
seen in Figure 4.B. Moreover, the evidence shows clear structural differences in the propagation 
of real (non-oil) income shocks and real oil price shocks into real rural land prices and real house 
prices. Accordingly, in oil-producing regions like Texas, we would argue that it would be an error to 
confound real oil price shocks as discretionary real income shocks. 

4.2 The Shale Revolution

Arguably one of the most significant breakthroughs over the past 15 years was the tech-
nological advancement that made extraction of gas and then oil from shale rock formations com-
mercially viable (Wang and Krupnick, 2015). Prior to that, drilling had targeted primarily reservoir 
rock, typically sandstones, to which oil and gas had migrated from the shale rock where it was 
formed from organic matter deposited millions of years ago. Improvements in multi-stage drilling 
and “fracking”—injecting a mixture of water, sand, and chemicals underground at high pressure to 
open small cracks to release the oil and gas—made it viable to tap shale rock for gas, which had 
been expanding since the early 2000s. By 2009, it had become cost-effective to begin extraction 
of shale oil as well. Horizontal drilling—sinking a well straight down, then sideways—exposed a 
much greater area of resource-bearing rock. The latest automated rigs are able to drill long lateral 
sections in horizontal wells, moving to new well sites faster. As a result, drilling and completing 
wells continues to become more cost effective to operate. 

The large amounts of shale oil uncovered during the shale revolution period have turned on 
its head the conventional wisdom that U.S. oil production was inexorably on a declining path, and 
world oil production was nearing its peak. Even after the dramatic fall in oil prices of late 2014, the 
oil and gas industry continues to adapt and thrive under shifting conditions. In a turnaround with few 
parallels in the history of the industry, U.S. crude oil production bounced back from a post-WWII 
bottom of 4.76 million barrels (bbl) on average daily in 2008:Q3 to 10.50 million ten years later. Of 
the additional 5.74 million barrels gained by 2018:Q2, 3.18 million (55.40 percent of the total U.S. 
gains) are accounted for by Texas production (excluding offshore) alone—mostly shale oil coming 
from the Eagle Ford shale (Western Gulf basin of Southern Texas) and the Permian Basin (Western 
Texas). 

We interpret the impact of the shale revolution as a structural break that has ushered in 
a new era where global oil supply appears to be more elastic in response to real oil price fluctua-
tions. The hypothesis here is that new technologies have made it possible to tap into shale oil in a 
cost-efficient way, expanding oil supply significantly in oil-producing areas of Texas and, therefore, 
accentuating the impact of real oil price shocks on real personal diposable income per capita and/or 
on real rural land prices. We adopt a sample splitting approach to assess changes in the propagation 
of real oil price shocks over time. We plot in Figure 5 the response of real house prices to real oil 
price shocks over the full sample (1975:Q1–2016:Q2) and over the subsample period excluding the 
shale revolution (1975:Q1–2001:Q4).17 

We have already discussed the limited effect of the shale revolution on the characteristics 
of the model and the estimates reported elsewhere (particularly in Table 3 and Table 4). As can be 
seen in Figure 5, the impact on real house prices and real rural land prices is somewhat more accen-

17. We find similar results, available upon request, if we only exclude the shale oil boom years (1975:Q1–2008:Q4). 
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tuated in the short term while differences tend to dissipate over the medium term (3–5 years). In the 
end, however, the estimated propagation path for real house prices and even for real rural land prices 
is fairly similar with or without including the shale revolution period. 

4.3 Real Oil Price Shock Spillovers

Real oil price shocks and long-term real interest rates are exogenous common factors in 
the local housing market block in (2). Our premise is that ignoring spillovers from real oil prices 
can bias our inferences about the role that housing demand determinants such as personal dispos-
able income per capita play in the housing market. We explore that hypothesis in Figure 6 where 
we compare the point-estimate propagation of exogenous (non-oil) real income and real oil price 
shocks over the full sample (1975:Q1–2016:Q2) for two alternative specifications: our estimated 
benchmark model in (1)–(2) against an alternative specification that imposes zero-restrictions on the 
matrices 1 2, , ,… qB B B  omitting real oil price spillovers (where we retain the lag q equal to 6). 

The implications of the zero-restrictions on the { }6

1=i iB  matrices are quite stark in Figures 
6.A and 6.B—omitting the spillovers of real oil prices means real oil price shocks get woven into 
real income shock. The consequence of this is twofold: (a) we omit the important role played by real 
oil price shocks on real house prices; and (b) the empirical inferences we draw about real income 
shocks (no longer orthogonal to real oil prices) are accordingly biased. 

First, we observe that omitting the spillovers from real oil prices in (2) amplifies somewhat 
the response of personal disposable income per capita to the estimated real income shocks (Figure 
6.A).

Figure 5: Real house price (level) response to a real oil price (first difference) shock

Notes: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks given 
in (1)-(2) and its corresponding cumulative IRFs. The estimates are from the full sample and the subsample that excludes 
the shale revolution period (1975:Q1-2001:Q4) as given in Table 3 and Table 4. Similar to Figure 4.B, this figure reports the 
cumulative IRFs on real house prices and real rural land prices propagated in response to real oil price shocks. 
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Figure 6:  Real personal disposable income per capita shocks vs. real oil price shocks with and 
without oil spillovers

Notes: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks 
given in (1) and (2) and its corresponding cumulative IRFs using the full sample. The estimates are given in Table 3 and 
Table 4. Panel A reports the point-estimate of the cumulative IRF of real personal disposable income per capita in response to 
exogenous real income shocks and to real oil price shocks propagated into the housing block under the benchmark and under 
the alternative where we preclude any spillovers from real oil prices. Panel B reports the ratio of the cumulative IRF of the 
real house price relative to either the cumulative response of real personal disposable income per capita to real income shocks 
and relative to the cumulative response of real oil prices to real oil price shocks for the benchmark model and the alternative 
without spillovers. 
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Second, omitting the spillovers from real oil prices also accentuates the pass-through of 
the estimated real income shocks into real house prices (Figure 6.B). This upward bias in the pass-
through is apparent in the short term, but it strengthens over the medium term (3–5 years ahead). 
We find similar results when looking at the pass-through of real income shocks into real rural land 
prices. 

Third, the pass-through of real oil price shocks into real house prices in the benchmark 
model reaches about 21 percent after 20 quarters but only among the most oil-dependent areas 
while less than 5 percent for low and moderate oil dependence areas (Figure 6.B). The pass-through 
into real rural land prices and into real house prices is somewhat more robust reaching 31 and 8 
percent, respectively. In turn, the omission of spillovers from real oil prices increases the estimated 
pass-through into real house prices particularly over the medium term (from 78 to 88 percent after 
20 quarters). Simultaneously, this also boosts the real personal disposable income per capita pass-
through on real rural land prices (from 76 to 92 percent after 20 quarters). 

In summary, confounding real oil price shocks and real income shocks by omitting spill-
overs from real oil prices muddies the waters and significantly biases our understanding of discre-
tionary real income shocks—notably it over-estimates the pass-through of real income shocks into 
real house prices and real rural land prices. 

5. CONCLUDING REMARKS

Texas is the leading oil-producing state in the U.S. and one of the largest oil producers in 
the world. With a novel dataset of Texas metropolitan statistical areas’ (MSAs’) housing and rural 
land market data over the period spanning from 1975:Q1 to 2016:Q2, we investigate the dynamic 
relationship between real house prices and real oil price shocks controlling for other MSA-specific 
or common factors—personal disposable income per capita, real rural land prices, real long-term 
interest rates, and pre-existing crude oil reserves underground. 

We adopt a block-partitioned panel VAR framework to investigate the dynamic relation-
ship. We also implement a block-recursive Cholesky decomposition to identify exogenous real oil 
price shocks as well as exogenous non-oil-related real income shocks. Exploiting the significant 
regional heterogeneity across Texas MSAs in our dataset, we find empirical support for the view 
that spillovers from real oil prices play a significant role in local house prices, particularly among 
the most oil-sensitive MSAs. We find that the response of real house prices (and to a larger extent of 
real rural land prices) is comparable in magnitude to that of real income shocks even among many 
MSAs with varying degrees of oil-dependence. 

We argue that in oil-producing areas, real oil price shocks are quite distinct from (non-oil) 
discretionary real income shocks. We show that empirical inferences on real income shocks can be 
significantly biased if the model does not include real oil price fluctuations due to the significant 
role played by spillovers from real oil prices in oil-producing areas. To be more precise, omitting 
the spillovers tends to erroneously suggest that real income shocks induce a larger increase in real 
personal disposable income per capita over the medium term (3–5 years) while increasing their 
estimated pass-through into real house prices (and more so into real rural land prices) by a sizeable 
margin. 

Finally, we also consider explicitly the stability of these empirical relationships in light of 
the historic turnaround that the oil and gas industry in the U.S. (and in particular in Texas) has expe-
rienced since the shale revolution ignited in the early 2000s. Interestingly, we only find rather weak 
evidence that the shale revolution has empirically altered the dynamic relationship between real oil 
prices and real house prices whether we include the years of the shale revolution or not. 
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