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abstract

This paper discusses a Bayesian approach to analyzing cost efficiency of Distri-
bution System Operators when model specification and variable selection are dif-
ficult to determine. Bayesian model selection and inference pooling techniques 
are adopted in a stochastic frontier analysis to mitigate the problem of model un-
certainty. Adequacy of a given specification is judged by its posterior probability, 
which makes the benchmarking process not only more transparent but also much 
more objective. The proposed methodology is applied to one of Polish Distribu-
tion System Operators. We find that variable selection plays an important role and 
models, which are the best at describing the data, are rather parsimonious. They 
rely on just a few variables determining the observed cost. However, these models 
also show relatively high average efficiency scores among analyzed objects. 
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1. INTRODUCTION

Electricity distribution is a key sector of every economy. In most countries, distribution 
system operators of electricity networks (DSOs hereafter) are natural, usually territorial, monopo-
lies. They are either government-owned or government-controlled in some way. As such they are 
expected to be held accountable for efficient distribution and provision of electricity for the sake of 
the public good. However, being a monopoly does not go along with being efficient. As Hicks (1935; 
p. 8) eloquently pointed out many years ago “the best of all monopoly profits is a quiet life” and ef-
ficiency perishes once a company becomes a monopoly. For this reason, national energy regulatory 
agencies across the world try the “stick and carrot” approach to get DSOs to improve their perfor-
mances. Electricity market reforms, which establish performance oriented regulations, have been 
especially active in Europe due to European integration (see, e.g., Jamasb and Pollitt, 2005; Finon 
and Roques, 2013). For example, in Finland, the Energy Market Authority sets improvement targets 
for DSOs (see Kuosmanen, 2012); Norwegian Water Resources and Energy Directorate is managing 
a revenue-cap system for DSOs in Norway (see, e.g., Kumbhakar and Lien, 2017); Swedish Energy 
Agency, German Bundesnetzagentur and Polish Energy Regulatory Office also adopt performance 
oriented regulations (see, e.g., Agrell et al. 2005; Agrell and Bogetoft, 2007; Energy Regulatory 
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Office, 2015b). These institutions regulate most of Central and Northern European electricity distri-
bution markets and their regulations are based on official performance benchmarks. 

In order to set up a credible regulatory policy, the regulator first needs to know which 
DSOs are performance leaders and which need to be “persuaded” to act more efficiently. This calls 
for an objective and transparent DSO benchmarking framework, and one should stress that due to 
the “stick and carrot” approach, objectivity is of crucial importance here. For example, 76 DSOs in 
Finland filed appeals with the Market Court against the framework put forward by the Finish Energy 
Market Authority (see Finnish Energy Market Authority, 2016; p.22). Cases of failed regulation 
models have also been documented, e.g., in Sweden (Agrell and Grifell-Tatje, 2016), the Nether-
lands (Nillesen and Pollitt, 2007) and Belgium (Agrell and Teusch, 2015). This has occurred be-
cause performance oriented regulations can translate to considerable financial gains and losses. That 
is why the DSOs require credible and objective assessment. All relevant aspects of their business 
conduct should be taken into consideration in the final model. Otherwise, the study may be biased 
towards certain profiles of a DSO operation, and thus the outcome may be discriminative and even 
potentially harmful for the energy distribution industry as a whole. 

In order to build a credible and objective benchmarking-type study of economic efficiency 
several aspects need to be considered (Bogetoft, 2012; Coelli et al. 2003). We can summarize them 
as: (i) the benchmark framework (modelling framework), (ii) estimation technique and (iii) exact 
model specification, exact choice of variables in particular. All these aspects are intertwined with 
each other and should not be considered entirely separately or in any particular order. However, for 
simplicity we can outline the following three steps. First, one needs to set up a general benchmarking 
framework. For example, in order to study efficiency of Polish DSOs, the Polish Energy Regulatory 
Office (ERO hereafter) has decided on a cost minimization criterion based on cost functions. These 
constructs have sound theoretical bases well established in microeconomics and are often used in 
such studies (see, e.g., Farsi and Filippini, 2004, 2009; Farsi et al., 2006; Kopsakangas-Savolainen 
and Svento, 2008; Cullmann and von Hirschhausen, 2008b; Osiewalski and Wróbel-Rotter, 2008–9, 
2012; Filippini et al., 2016; Dimitropoulos and Yatchew, 2017). The framework sets a common, 
intuitive goal for all DSOs to achieve, i.e., cost-effectiveness and it is also used it in this paper.1 

Second, the regulator needs to decide on the estimation approach. In the case of Poland, 
which is the focus of the empirical analysis in this paper, Bayesian approach to Stochastic Frontier 
Analysis (SFA) has been chosen by ERO (Polish Energy Regulatory Office, 2015a; Osiewalski and 
Wróbel-Rotter, 2008–9, 2012). Of course, there are many other approaches. For example, to study 
Polish electricity distribution sector Cullmann and Hirschhausen (2008ab) also use Data Envel-
opment Analysis (DEA), Free Disposal Hull and non-Bayesian SFA. Dimitropoulos and Yatchew 
(2017) use index-based and econometric cost-based methods to study electricity distributors in On-
tario. Kumbhakar and Lien (2017) use input distance functions for DSOs in Norway. Kuosmanen 
(2012) uses StoNED to study DSOs in Finland.2 An extensive survey of contemporary benchmarking 
methods (not necessarily related to cost efficiency) can be found in, e.g., Agrell and Bogetoft (2009), 

1. Cost minimization is an established microeconomic criterion for analyzing economic performance of units with mul-
tiple inputs-outputs. It requires mutually comparable information about costs, which sometimes can be problematic if the 
DSOs have different accounting standards (e.g., in international studies). Of course the regulator may choose a different 
criterion. E.g., concurrently with cost analysis ERO also uses the volume balance difference framework to set tariffs. Other 
studies would rely on production function models. The approach presented in the paper is general and may also be used in 
other studies of efficiency. 

2. Other applications of frontier models in energy economics include, e.g., Filippini and Hunt (2011, 2012) and Llorca 
et al. (2017) who analyze energy efficiency using frontier demand functions and Makridou et al. (2015) who advocate a two-
stage approach based on DEA and multi-criteria decision aiding (MCDA).
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Bogetoft (2012) and Llorca et al. (2016). Bayesian approach to SFA, however, has some advantages 
that we exploit in this paper. In particular, it allows us to formally compare (or pool inference from) 
competing models and obtain exact small sample results. These two features, distinctive to Bayesian 
inference, are especially appealing in the case of an electricity distribution sector because: (i) model 
specification, especially variable choice, may have an impact on the results (see, e.g., Jamasb and 
Pollitt, 2001, 2003; Kuosmanen, 2012); (ii) in some countries, like Poland, the number of DSOs can 
be small (due to mergers and acquisitions over the years there are currently only five DSOs). 

Third, the regulator needs to determine the exact model specification.3 In particular, the 
regulator needs to know which factors determine the cost and should be placed in the cost function 
as explanatory variables. That is, which characteristics of DSOs operation best determine the costs 
they generate. Since Polish DSOs are assessed via their operational costs (OPEX), we can rely on 
the theory of a short-run variable cost function to some extent. It points out three sources of vari-
able costs: (i) scale of production, (ii) level of capital assets and (iii) prices of variable production 
factors if such can be determined.4 This is, however, as far as the theory can guide us. Exact choice 
of explanatory variables (i.e., exact model choice) is up to the researcher to decide, and this aspect 
may have a considerable impact on the benchmarking outcome due to model selection uncertainty. 

In the first official cost efficiency studies of Polish DSOs, commissioned by ERO, Osiew-
alski and Wróbel-Rotter (2008–9, 2012), considered as many as 31 potential explanatory variables 
delivered by ERO. These variables characterize the scale of economic activity and technical situ-
ation of the DSOs. Naturally, it is unreasonable to “throw” all variables into one statistical model 
and there are more than two billion different model configurations to choose from (2K = 231, where 
K is the number of potential explanatory variables). Furthermore, Osiewalski and Wróbel-Rotter 
(2008–9) have found that different choices of explanatory variables (thus different models) can lead 
to different results of the cost efficiency benchmark. Eventually, a selection of seven model variants 
has been chosen with a conclusion that the “third step” requires further research in order to bring 
more objectivity and transparency. The literature of the subject has addressed many issues relevant 
to DSO regulation, like possible frontier heterogeneity (e.g., Farsi et al., 2006; Filippini et al. 2016; 
Kumbhakar and Lien, 2017) or comparison of different modelling techniques (e.g., von Hirschhau-
sen et al. 2006; Cullmann and Hirschhausen, 2008ab; Kopsakangas-Savolainen and Svento, 2008; 
Filippini et al. 2016). Unfortunately, although the discussion about variable choice and its impact on 
the results is reoccurring (Jamasb and Pollitt, 2001, 2003; Kuosmanen, 2012; Llorca et al. 2016), the 
authors are not aware of any DSO study that would formally and objectively address the problem 
of model selection uncertainty. As a result, model specification, especially regarding the choice of 
explanatory variables, is usually fixed throughout the study and not disputed or challenged in any 
formal way. Therefore uncertainty related to model selection is ignored. 

3. To some extent this is dictated by the estimation technique. E.g., non-parametric methods require fewer assumptions 
about the functional form of the model than parametric methods. This, however, comes at the cost of considerably larger 
data requirements; see Simar and Wilson (2008). Furthermore, Bayesian techniques used in this study require us to specify 
probability distributions for all unknown quantities of the model, not just latent variables. The reader should know, however, 
that unless these prior distributions are unrealistic and strongly against information in the data their impact on the results is 
usually negligible. 

4. Prices of variable factors, like price of labor, can be particularly troublesome to obtain if DSOs are territorial monopo-
lies. E.g., for DSOs in Poland, which are territorial monopolies there is no industry-average salary in their respective regions 
to consider—they are the industry. In such cases the regulator may want to a priori exclude price information from the model 
to prevent potential rent extraction from the management. This way DSOs which are paying too high wages (relative to 
others) can be penalized by the regulator. 
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Bayesian inference has long known techniques required to mitigate this problem; see 
Osiewalski and Steel (1993). Bayesian inference pooling, more commonly known today as Bayes-
ian model averaging (BMA), is a statistical  method that allows us to formally pool inference about 
any quantity of interest (e.g., efficiency scores, model parameters, or their functions) from different 
models. Alternatively, if one is interested in choosing only one particular model among many, a 
closely related Bayesian model choice (or selection, BMS) can be performed. Bayesian model se-
lection or averaging, however, requires us to know marginal data density values for all models under 
consideration. Since Bayesian estimation of SFA models is quite complex (due to latent variables) 
this is an especially challenging task. Fortunately, recent developments by Pajor (2017) have made 
it possible to precisely estimate the required marginal data densities in at least some SFA models. 
This makes Bayesian model comparison (model selection or inference pooling) a tangible option to 
consider when analyzing cost efficiency of DSOs. 

Our contribution to the literature is twofold. First, we propose a fair, credible benchmark-
ing process, in which validity of a given model specification, and thus its contribution to the joint 
results, is formally judged based on information in the data. This is particularly appealing for the 
electricity distribution sector, where policy makers (and “takers”) have much at stake and possibly 
conflicting interests. Generality of our approach is also an added value. It can be easily applied 
to other benchmarking criteria (e.g., technical efficiency) as well as other services utilities where 
similar regulatory needs and conflicting interests arise (e.g., distribution of natural gas). Second, we 
contribute to the discussion about the use of SFA for benchmarking DSOs. Cost efficiency analysis  
in the electricity distribution sector is quite dependent on the model choice, and bad choices may 
lead to bad policies. Apart from selecting a proper set of relevant explanatory variables, the reg-
ulator should decide if DSOs have a control over prices (i.e., “quiet life” of a monopoly) or if 
they can be treated as price takers (i.e., operate in a fair competitive market). This is likely to be 
country-specific and have an impact on the benchmark outcome. Furthermore, we find that only a 
handful of models contribute significantly to the joint results and that the “policy-driven” models 
(which provide more “desirable” results to particular stakeholders) are marginalized due to very low 
posterior probabilities. 

The paper is structured as follows. In Section 2, we present Bayesian Stochastic Frontier 
Analysis used in the empirical study. In Section 3, we outline Bayesian model selection and aver-
aging techniques and how the recently developed class of Corrected Arithmetic Mean Estimators 
of the marginal data density value is adopted in the DSO cost efficiency analysis framework. In 
Section 4, we describe an empirical study, which analyzes cost models and cost efficiency rankings 
of business units of a Polish DSO. Section 5 concludes with a discussion. 

2. BAYESIAN STOCHASTIC FRONTIER ANALYSIS

The method used to estimate cost efficiency in the Polish electricity distribution sector is 
based on Bayesian Stochastic Frontier Analysis (BSFA hereafter) for panel data; see Koop et al. 
(1994b, 1997), Fernández et al. (1997), and Osiewalski and Steel (1998). Let us consider the fol-
lowing basic SFA model for panel data:

β ε β= + = + +it it it it i ity x x u v¢ ¢

 (1)

where ity  is the cost (in logs), itx¢  is a k-element vector of independent variables (functions of outputs, 
fixed assets, prices etc.), β  is a vector of model parameters, i (i=1,...,n) and t (t=1,...,T) are object 
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and time indices. The composed error ε it contains a “standard” symmetric random disturbance with 
mean 0 (vit) and one nonnegative, which reflects inefficiency (ui). This relatively simple model with 
time invariant inefficiency has been finally accepted and used by Polish ERO because (i) it has 
performed exemplary at explaining the Polish data given the Bayesian criterion used and (ii) it suits 
ERO’s research needs (DSOs benchmarking). The reader should know, however, that the model can 
be easily extended to better fit particular needs for regulatory benchmarking and policy-making. 
First, if the time frame of the analysis is long enough the regulator may also consider inefficiency 
variation over time (εit=uit+vit); see, e.g., Osiewalski and Steel, 1998; Makieła, 2017). Second, the 
regulator may wish to consider other forms of cost functions, which are not necessarily linear in 
respect to the parameters (Koop et al., 1994a; Wróbel-Rotter, 2007). Third, the regulator may want 
to incorporate heterogeneity in the frontier, e.g., via individual effects as in true random-effects 
models (TRE; εit=uit+vit+αi; see Greene, 2005ab; Farsi et al., 2006; or Makieła, 2017 for its Bayesian 
counterpart). Fourth, the regulator may also want to decompose “total” inefficiency ( itu ) into tran-
sient inefficiency (e.g., itz ) associated with yardstick regulatory policies and persistent inefficiency 
(ξi), which is more suitable for benchmarking (Filippini et al., 2016; Kumbhakar and Lien, 2017). 
Models which incorporate four stochastic components (εit=ξit+zit+αi+vit) are currently known as 
generalized true random-effects (GTRE) models. Bayesian GTRE models are presented in Tsionas 
and Kumbhakar (2014) and later discussed in Makieła (2017). Finally, it may be important for the 
regulator to know if it is fair to benchmark DSOs based on differences in their cost efficiency. Re-
striction ui = 0 (thus: εit= vit) leads to a Bayesian “non-SF” model assuming full relative efficiency of 
analyzed DSOs. If this simple specification is far more likely than (1) in view of the data then the 
regulator should either conclude that all DSOs perform equally well or consider criteria for measur-
ing DSOs performance other than cost-effectiveness. 

The approach discussed in this paper can be applied to other benchmarking criteria, tech-
nical efficiency in particular (for Bayesian models with multiple-output production frontiers see 
Fernández et al., 2000, 2005). Although technical efficiency is in fact a component of cost efficiency, 
its measurement uses different data and is based on different variables and exogeneity assumptions.

We now return to the model in (1) and describe its full Bayesian specification. Let y, X and 
u be the vectors and matrices containing all ity , itx  and iu  respectively. Since inefficiencies are by 
construction unobservable, and thus treated as latent variables, (1) leads to the following Bayesian 
SF model:

2 2 2

1 1

( , , , , | ) ( , , ) ( |(| ) , )β σ ϕ β σ ϕ ϕ β σ− −

= =

 
= + 

 
∏ ∏

n T

v v i N it it i v
i t

p y u X p p u f y x u
 

(2)

where 2(. | , )Nf a s  denotes the density function of the Normal distribution with mean a and variance 
s2; 2 2( , , ) ( ) ( ) ( )β σ ϕ β σ ϕ− −=v vp p p p  is the full prior distribution for β  (parameters of the cost func-
tion), 2σ −

v  (inverse of variance of itv ; precision of itv ) and ϕ  (parameter of iu ). For the symmetric dis-
turbance we assume 2 2

0 0( ) ( | 0.5 ,0.5 )σ σ− −=v G vp f n a , where (. | , )Gf w z  is the density function of the 
gamma distribution with mean w/z and variance w/z2. Hyper-parameters ( 0 0,a n ) are set a0 = n0 = 10–4, 
which yields a very flat prior on 2σ −

v . For the inefficiency term we set ( | ) ( |1, )ϕ ϕ=i G ip u f u . This 
reflects a distribution of iu , conditional on parameters, which is exponential with mean and standard 
deviation 1/ϕ . We assume 0( ) ( |1, ln( ))ϕ ϕ= −Gp f r , where 0r  is the prior median of the efficiency 
score exp(–ui),  and we set 0r =0.7 throughout the study, which implies a weakly informative prior 
on ϕ  (see, van den Broeck et al., 1994). This type of model is well known in the SFA literature and 
usually referred to as the normal-exponential model because the symmetric disturbance is assumed 
to be normal and inefficiency is exponential. The regulator may choose other types of BSFA models, 
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with different assumptions as regards inefficiency (half-normal, gamma etc.). However, relative dif-
ferences in efficiency scores are likely to be marginal (van den Broeck et al., 1994; Greene, 2008b; 
Makieła, 2014). The presented settings for hyper-parameters provide weakly informative priors to 
allow the data to freely and strongly influence the posterior distribution. Furthermore, since we deal 
with a microeconomic DSO cost function and wish to perform Bayesian inference pooling we set 
an informative prior on β, which is p(β) = fN(β|b,Σ) with k-element vector b of prior mean and a k × k 
diagonal prior covariance matrix Σ.5

Empirical results discussed in Section 4 are based on the Cobb-Douglas form of the short-
run variable cost function. Thus all the coefficients in β, except the intercept, are elasticities of 
variable cost with respect to its determinants. The Cobb-Douglas function can be treated as either a 
global cost function (traditional and simplistic), or the first-order local approximation of any smooth 
cost function expressed in terms of logs of original economic variables. Its simplicity as well as 
good economic and mathematic foundations make it a reasonable reference function in an empirical 
analysis. Since we have also considered the translog cost function, the second-order approximation 
(see Christensen et al.,1971; Koop et al. 1994b, 1997; Greene, 2008a), we address its prior specifi-
cation as well.6 Taking all this into account, the prior on β is set as follows: 

•  All parameters grouped in β are independent.
•  Variables that characterize fixed capital (assets) of a DSO—their parameters have prior 

means 0 and prior standard deviations 0.5.
•  Variables that characterize production of a DSO—their parameters have prior means 

equal to the number of variables that represent production of a DSO to the power of –1 
(i.e., the sum of prior means equals 1) and each prior standard deviation is 0.3.

•  The intercept—has prior mean 0 and prior standard deviation 10.
•  (Optional) variables that are related to observable prices of variable factors of produc-

tion—their parameters have prior means that are equal to one plus the number of ob-
served prices to the power of –1 and each prior standard deviation is 0.3. We assume 
that there is one unobserved price, constant over analyzed units. This unobserved price 
is formally used to impose homogeneity of the cost function with respect to all prices 
(Marzec and Osiewalski, 2008). 

•  (Optional) when translog cost functions are considered, parameters of all variables that 
are related to the second-order terms in the approximation of the unknown cost function 
have prior mean 0 and prior standard deviation 0.5. 

The last two elements are treated additionally (as indicated in brackets “optional”), which means 
that in the empirical study they have been considered more as possible extensions rather than stand-
alone models. The above prior on β allows us to “subtly” account for microeconomic regularity 
conditions as we do not wish to input strong prior knowledge about the cost function parameters for 

5. If all unknown quantities in the model have informative priors then Bayesian inference pooling and model selection 
can always be performed. Assigning probability distributions to all relevant unknown characteristics of the model (not just to 
the random disturbance and the inefficiency component, but to the parameters as well) is the “technical”—or rather formal, 
mathematical –difference between Bayesian and non-Bayesian SFA. This additional complexity is the price we pay for a 
strict, probabilistic treatment of all relevant model characteristics. 

6. The two functions, Cobb-Douglas and translog, have a long history of applications in econometric analyses and they 
are also used in this study. Of course, the regulator may wish to experiment with other, theoretically important functional 
forms, which are less popular in the empirical literature (see, e.g., Diewert, 1971; Magnus, 1979; Diewert and Wales, 1987; 
Koop et al., 1994a; Wróbel-Rotter, 2007). 
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electricity distribution sector. Such treatment seems particularly appropriate for electricity distribu-
tion because the definition of a cost function may not be as simple as in other sectors. 

Inference about specific parameters or latent variables (inefficiencies) is made by deriving 
their marginal posterior distributions. In doing so, we eliminate the remaining unobserved quantities 
in the model (integrate them out), which are not the subject of our inference. The Bayesian model 
in (2) is too complex to obtain marginal posterior distributions through analytical integration. The 
conditional distributions, however, are analytically tractable and we can use Gibbs sampling, a Mar-
kov Chain Monte Carlo (MCMC) class algorithm, to simulate samples from the joint posterior and, 
thus, from the marginal posteriors (see, e.g., Koop et al. 1994b, 1997, 1999; Osiewalski and Steel, 
1998; Makiela 2014). For every model considered in the study we run 1 000 000 Gibbs cycles with 
initial 100 000 discarded (sampler’s burn-in phase). 

3. MODEL COMPARISON AND INFERENCE POOLING IN BAYESIAN 
STOCHASTIC FRONTIER MODELS

Consider m sampling models defined over the same data space Y:

: | | , ,    1,( ) ( ) , ,θ λ η= = …j j j j jM p y p y j m
 

(3)

where ∈y Y  is the matrix of observations being modelled (observed DSOs costs in logs). The vec-
tor of unobserved quantities (i.e., model parameters and inefficiencies) ( , )θ λ η= ∈Θ = Λ×j j j jH  is 
made up of vector λ, which groups quantities common to all models (e.g., inefficiencies, the inter-
cept etc.) and vector η j, which groups quantities specific to model jM  ( 1,2,...,=j m). By defining m 
marginal densities ( ) ( ),θ λ η=j j j jp p  we get m Bayesian models: 

( ) ( ) ( ), | ,    1, , .θ θ θ= = …j j j j j jp y p y p j m
 

(4)

Formal model comparison (given the observed data) in Bayesian inference is based on posterior 
probabilities; see, e.g., Osiewalski and Steel (1993). To acquire those probabilities we use the well-
known Bayes formula:

1

( ) ( | )
( | ) ,

( ) ( | )
=

=
∑

j j
j m

k kk

p M p y M
p M y

p M p y M
 

(5)

where

( ) ( )( | ) | ,  ( )   1, , , θ θ θ
Θ

= = = …∫
j

j j j j j j jp y M p p y p d my j
 

(6)

is the marginal data density  (also known as integrated likelihood or marginal likelihood, MDD 
hereafter) in model jM  and p(Mj) is the prior probability of model jM . Thus we see that the pos-
terior probability p(Mj | y) of model jM  is determined by the product of the prior model probability 
and MDD, which is a natural Bayesian measure of model fit. MDD itself is an average of Lj(θj;y) =  
pj(y | θj), the usual likelihood values if latent variables are not present, weighted by the marginal (or 
prior) density of θj. Using posterior model probabilities the regulator can: 

i)  select one particular model for DSOs cost efficiency analysis with the highest posterior 
probability; this procedure is known as Bayesian model choice (or selection) and it 
comes intuitive when one model clearly dominates over others; 



38 / The Energy Journal

All rights reserved. Copyright © 2018 by the IAEE.

ii)  pool inference about quantities common to all models (in vector λ; e.g., inefficiency 
scores from different models); this procedure is known as Bayesian inference pooling 
or Bayesian model averaging; it is especially appealing when, e.g.,  the regulator wants 
to make inference about inefficiency scores common to all models and there is no model 
that clearly dominates; the method amounts to calculating a pooled density which is a 
weighted average of densities of vector λ from individual models; the weights are equal 
to each model’s posterior probability p(Mj | y), i.e.:

1

( | ) ( | ) ( | )λ λ
=

=∑
m

j j
j

p y p M y p y
 

(7)

In order to perform Bayesian model selection or inference pooling the regulator needs to 
know two elements for all analyzed models ( 1,2,...,=j m): their prior probabilities—p(Mj)—and 
marginal data density (MDD) values—pj( y). As far as choosing p(Mj) is concerned, it is up to the 
researcher, or in this case the regulator, to determine prior probability of each competing model 
(e.g., rank model adequacy based on theoretical considerations or possible policy implications). If 
all models are viewed equally likely a priori they can be assigned equal probabilities:

1( )  .=jp M
m  

(8)

Alternatively, if two models have equal explanatory power as measured by pj( y)—MDD—accord-
ing to the Ockham Razor rule we should prefer the simpler one. Thus, following this principle we 
can a priori penalize over-parametrized models (Osiewalski and Steel, 1993): 

( ) 2−∝ jl
jp M

 
(9)

where lj denotes the number of parameters in model Mj. Both approaches based on (8) and (9) are 
discussed in the empirical section of the paper. 

In practice selecting prior probabilities is trivial and it is relatively easy to trace their impact 
on posterior model probabilities. What has been the reason for lack of Bayesian model selection and 
inference pooling in BSFA is the precise calculation of the MDD value—pj( y). SFA models contain 
latent variables, which makes their MDD values especially challenging to estimate precisely.7 Often 
in such cases, MDD values are acquired using the Harmonic Mean Estimator—HME (Newton and 
Raftery, 1994)—based on some MCMC scheme, e.g., Gibbs sampler. However, as Lenk (2009) 
points out, numerical implementation of this estimator is “upwardly pseudo-biased” (Lenk, 2009, 
p. 952). This means that HME overestimates the real value of MDD, especially in more complex 
models and when sample size is large; for details see Pajor and Osiewalski (2013–2014). Lenk’s 
proposal to account for this pseudo-bias has been first applied to models with thousands of latent 
variables by Osiewalski and Osiewalski (2013, 2016). In the first application of corrected HME to 
Bayesian SFA models, Makieła (2014) has shown that differences in MDD estimates between HME 

7. There is a notion circulating among some researchers that it is fast and easy to precisely approximate MDD in SF 
models because they have a closed-form likelihood that one can use. This is not entirely correct. First, these are only “approx-
imately” closed-form solutions, meaning that the likelihood function itself requires some numerical approximation to obtain 
its values. Second, even if the likelihood can be easily evaluated anywhere in the parameter space, its averaging with respect 
to the prior density requires numerical integration as the second step of the procedure. Third, we use an approach which is 
one-step, formally correct, very easy and numerically efficient when the number of latent variables is not very large. If the 
number of latent variables is considerable then the above-mentioned two-step procedure would be preferable. 
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and corrected HME can be considerable. In this research we have also considered HME and found 
that the estimator can be very unstable in some models, particularly in the highly dimensional ones.8 
The difference sometimes can be even up to orders of magnitude, which given the fact that some 
models are close to each other makes the model ranking unstable. Correcting HME does not fully 
mitigate the problem. The correction factor is relatively stable and as a result the corrected HME 
inherits HME’s instability in those models. To sum up, the problem with using (corrected) HME in 
a study such as this one is its stability in some models. If the regulator is fine with excluding those 
models (on the assumption that they may not play any major role in inference pooling anyway) then 
HME can be used. However, we want to use all models proposed by the regulator and the DSOs 
experts, and thus move away from HME. 

Also building on Lenk (2009) and Pajor and Osiewalski (2013–2014), Pajor (2017) has 
shown a way to adjust (or correct) Arithmetic Mean Estimators (AME) of MDD. This relatively 
straightforward method amounts to “trimming” the space of parameters in order to remove regions 
of relatively low likelihood. The adjustment procedure usually is based on Monte Carlo—Impor-
tance Sampling (MC-IS) and it has proven to perform exceptionally well in comparison to other 
methods (Pajor 2017). Also, an important feature of so-called CAME estimators is that they can be 
applied to models with latent variables, such as SFA, especially if the number of latent variables is 
not very large. We have found this class of estimators to be particularly useful as it provides stable 
estimates of MDD in the DSOs cost efficiency analysis. In this paper CAME estimator has been 
implemented as follows:

•  We “trim” parameter space based on minimum-maximum values using accepted draws 
of each parameter (or latent variable) in the MCMC scheme. 

•  We take the multivariate Normal distribution as the importance sampling distribution in 
the MC-IS scheme. We set the mean vector and covariance matrix equal to the posterior 
mean vector and posterior covariance matrix based on accepted draws from the MCMC 
scheme. The reason behind this is that due to the number of parameters and latent vari-
ables (inefficiencies) in SFA models it is important for the sampling mechanism to take 
into account the covariance structure. 

We have found that such an implementation scheme significantly improves the numerical perfor-
mance of the CAME estimator (i.e., fewer runs and less time required for the simulation to stabilize 
at the sought-after MDD value). Traditionally one would use multivariate Student distribution as 
an importance sampling distribution. However, we have found that (dependently on the degrees of 
freedom) its implementation takes more time to compute than the multivariate Normal case while 
yielding very similar results (up to the second decimal point). Apart from that, we have also experi-
mented with Gamma distribution for latent variables but this has turned out to be the least effective 
sampling mechanism in terms of computation speed (also eventually yielding similar results). To 
our knowledge this is the first application of CAME estimator in BSFA literature.

To sum up, it should be noted that formal model comparison and inference pooling is a 
distinctive feature of Bayesian inference. No other approach allows us to formally (in a probabilis-
tic sense) make such comparisons or pool inference about quantities common to all models under 
consideration. 

8. It should not be taken as a rule that HME is unstable in more complex models. As it has later turned out these are 
particularly bad models with very low posterior probabilities as measured by the more precise CAME estimator. 
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4. COST EFFICIENCY ANALYSIS OF A DSO IN POLAND

The Polish electricity distribution sector has been very dynamic over the last few decades, 
especially in terms of mergers and acquisitions. There are currently five electricity distribution sys-
tem operators (DSOs) in Poland: PGE, Tauron, Energa, Enea and RWE. The DSOs have been oper-
ating in their current form only since 2008. For the first official benchmarking analysis (2001–2006) 
there were 14 DSOs and during communism in Poland there were even up to 49 small DSOs, one for 
each administrative district at that time (Voivodeship). The biggest DSO, PGE, operates in eastern 
and parts of central Poland. It has eight territorial business units which cover almost half of Poland’s 
territory. The second biggest DSO, Tauron, operates in the southern Poland and is made up of 11 
business units. It is also the largest electricity retail supplier. Energa is the third biggest DSO cover-
ing northern and parts of central Poland. It consists of six business units. The fourth largest is Enea, 
which covers most of western Poland with its five units. RWE (currently Innogy Stoen, no unit 
breakdown) distributes electricity in the Warsaw Metropolitan Area. All five DSOs are regulated 
by the Polish Energy Regulatory Office (ERO) based on government’s energy policy described in 
“Strategy for Regulating Distribution System Operators in 2016–2020” (Polish Energy Regulatory 
Office, 2015b). Cost efficiency analysis is a significant part of this regulatory policy. 

The study presented in this section has been commissioned by one of Polish DSOs in order 
to analyze cost efficiency of its territorial business units. The study implements methodology de-
scribed in Sections 2 and 3 and it has been carried out in two stages as requested by the DSO. Stage 
one uses panel data from the DSO’s territorial business units over the period of two subsequent 
years. Stage two considers three subsequent years of their operation.9 The separate stages have been 
done for two reasons. First, the DSO needed to have preliminary analysis before the full dataset (for 
three years) was made available in order to better prepare its experts. Second, formal model com-
parison makes little sense for different data (two and three years).

The DSO has provided two sets of data: (i) information on variable costs of its business 
units (its natural log being the dependent variable) and (ii) a dataset that describes their operation 
characteristics (their natural logs being the potential explanatory variables). The variable cost mod-
eled in the study is defined as operational cost, which is made up of costs of payroll and social 
security plus other benefits, costs of external services, costs of consumption of materials and energy, 
taxes and charges and other costs by type. It has been constructed in accordance with regulations 
set by the Polish Energy Regulatory Office (2015a); the same definition is used by ERO to study 
cost efficiency of all Polish DSOs. Furthermore, the DSO has provided information on 34 different 
characteristics of its operation (see Table 1). These characteristics represent potential explanatory 
variables and describe differences in its business units’ operation in terms of scale, technical prop-
erties, quality and observed wages10 (variable x34). Naturally this list is too long for a reasonable 
econometric model to be built. Ideally, in econometric modelling we want each explanatory variable 
to describe a unique portion of information (about the dependent variable), which is not related to 
information already described by other explanatory variables in the model. Unfortunately, in the 
case of electricity distribution industry this is next to impossible to achieve. Many of the DSO’s 
characteristics are intertwined with each other, often at a technical level (e.g., number of electric 

9. Due to disclosure agreement with the DSO we do not provide its name, exact timeframe of the analysis or the total 
number of business units that were actually analyzed. Results for six business units are presented in this paper, which is 
representative. 

10. Wages are given as unit’s total salary expenses (with overheads) divided by the number of job posts (full time equiv-
alents); outsourced services are centrally managed by the DSO so they are not considered here. 
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energy converters vs. number of electric stations). Table 2 shows a matrix of empirical correlation 
coefficients between the 34 variables. We see that many characteristics are very highly correlated 
with each other. This means that supposedly different lists of variables can lead to very similar 
models because these variables carry similar information. Thus, one of the main goals of this study 
has been to find (using Bayesian techniques; see Section 3) the sets of explanatory variables that are 
relevant in describing the variable cost and to make pooled inference about cost efficiency of the 
DSO’s business units based on them.

The study groups competing models into two scenarios. All models of the first scenario 
exclude information about price of labor (wages), while models of the second scenario include it. 
The reason for such treatment is that accounting (or not) for the observed wage differences across 
the DSO’s business units leads to two fundamentally different types of models as regards cost ef-
ficiency interpretation. Models without wage information (first scenario) assume that the business 

Table 1: List of potential explanatory variables (operational characteristics) 
 Code  Name of a characteristic 

 x1 1 Total EHV and HV line length per one circuit 
 x2 1 MV overhead line length per one circuit 
 x3 1 MV cable length per one circuit 
 x4 1 Total LV line length per one circuit 
 x5 1 Total LV overhead line length per one circuit  + the length of LV overhead service wires 
 x6 1 Total LV cable length per one circuit + the  length of LV undeground service wires 
 x7 1 The number of HV substations 
 x8 1 The number of MV/MV and MV/LV substations 
 x9 1 Total power of EHV/HV and HV/MV transformes 
 x10 1 Total power of MV/MV and MV/LV transformers 
 x11 1 The number of transformers 
 x12 2 The number of meters in the HV customer group 
 x13 2 The number of meters in the MV customer group 
 x14 2 The number of meters in the LV commercial customer group 
 x15 2 The number of meters in the LV residential customer group 
 x16 2 Volume of electricity supplied to the HV customer group 
 x17 2 Volume of electricity supplied to the MV customer group 
 x18 2 Volume of electricity supplied to LV commercial customer group 
 x19 2 Volume of electricity supplied to LV residential customer group 
 x20 1 Average peak load 
 x21 2 Energy received from other DSOs (HV, MV, LV) + energy received from TSO (EHV) 
 x22 1 DSO’s area of operations 
 x23 2 Inverse of System Average Interruption Duration Index (SAIDI ^–1) 
 x24 2 Inverse of System Average Interruption Frequency Index (SAIFI ^–1) 
 x25 2 Inverse of time to connect a new customer (^–1) 
 x26 1 Total MV line length per one circuit 
 x27 1 Total LV line length per one circuit  + the length of LV service wires 
 x28 1 Total number of substations 
 x29 1 Total power of transformers 
 x30 2 The number of meters in the LV customer group 
 x31 2 Total number of meters 
 x32 2 Volume of electricity supplied to the LV customer group 
 x33 2 Total volume of electricity supplied 
 x34 3 Average salary 

Note: EHV is extra high voltage (above 200kV; 220kV or 400kV); HV is high voltage (60kV–200kV; mostly 110kV); MV 
is medium voltage (1kV–60kV; mostly 15kV); LV is low voltage (below 1kV; mostly 230V); TSO is transmission system 
operator; second column: 1 means that a variable represents a characteristic of capital assets; 2 that a variable represents a 
characteristic of production (quantity or quality); 3 that a variable is a price indicator; apart from “average salary” the list of 
characteristics (definitions and order on the list) is as determined by the Polish Energy Regulatory Office. 
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Table 2: Correlation coefficients between potential explanatory variables 

Note: Based on empirical Pearson correlation coefficients between natural logs of characteristics x1 to x34. High and very 
high coefficient levels have been marked. 
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units have some control over the price of hired labor and that wages should not be treated as exoge-
nously determining cost. Any variation in observed labor costs, which are due to differences in mean 
wages between units, are exhibited in their cost efficiency scores. This is because the DSO’s busi-
ness units are assumed to have control over wages, and thus those that pay more for their labor are 
deemed less cost-effective. This scenario is also often the case when a fair market price is difficult 
to determine due to DSOs territorial monopoly. Models that include information on wages (second 
scenario) assume that business units are “price takers”, i.e., they have no influence on the observed 
wages. Hence, labor price is regarded as a justified determinant of their costs—one that they have no 
control over (i.e., it is beyond the decision making process of the management). We do not wish to 
comment on which scenario (with wages or not) is more suitable to describe situation on an energy 
distribution market. This may be very country-specific and it is up to the regulator to decide. As a 
rule of thumb, however, one may assume that the more centralized an energy market is, the more the 
first scenario seems a better fit. In this study a comparative analysis of the two scenarios allows us 
to show what share of the observed cost generated by the DSO’s business units would be justified if 
wages were equal among all objects and time (i.e., what would happen to the cost efficiency ranking 
if salary levels where fixed and centralized by the DSO management).

The models finally used are based on a Bayesian stochastic cost frontier model with 
Cobb-Douglas (CD) cost function. Initially, in stage one we have also considered translog spec-
ifications, time trend and more flexible SFA assumptions as regards inefficiency modelling. Mod-
els with translog functions have been dropped due to considerably lower marginal data density 
(MDD) values in comparison to their simpler Cobb-Douglas counterparts. We have considered time 
trend as a possible explanatory variable to account for neutral technical change or price inflation  
( ln / ,  1,2β = ∂ ∂ =time y t t ). Again, however, the analysis has revealed that simpler, “static” models 
with no time trend are significantly better at explaining the data due to considerably higher MDD 
levels. The analysis has also indicated that the BSFA models with (in)efficiency components con-
stant over time significantly outperform “richer” models with (in)efficiencies varying over time, as 
measured by the MDD value. Furthermore, since we are only interested in benchmarking and we 
analyze units of one particular DSO there is no reason to impose any heterogeneity in the frontier, 
e.g., via standard individual effects or decompose inefficiency into transient and persistent compo-
nents as in Kumbhakar and Lien (2017). For the above reasons, all models reported are based on 
specification given in (2). We should note that the outcome of preliminary analyses performed in 
stage one seems intuitive especially due to small number of observations over time (T=2 in stage 
one T= 3 in stage two). 

4.1. Stage One of the Cost Efficiency Analysis

As mentioned, the study has been performed in two stages. Stage one has been mostly 
designed as an introductory study, one which would allow the authors and the DSO experts to bet-
ter prepare for the second stage once the full dataset (for three years) is made available. It has also 
allowed the authors to perform a series of preliminary analyses briefly described in the previous 
paragraph. The final number of models considered at this stage was 37: (i) 10 models for the first 
scenario and (ii) 27 models for the second scenario (see Table 3). These models were proposed by 
various participants involved in the study—the authors as well as the DSO experts—and they were 
based on various sources, e.g., (i) authors experience, (ii) DSO’s managerial expertise, (iii) desk re-
search or (iv) by means of purely statistical analysis of the data (e.g., Principal Component Analysis, 
statistical tests and reductions of the “full” model—model 0). The variety of sources was intentional 
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for two reasons. First, the authors wanted to make the model proposition process as inclusive as 
possible for the DSO experts. Second, for the proposed BSFA framework it is really not that rele-
vant how a given model is proposed as long as it does not violate general principles of a short-run 
microeconomic variable cost function, i.e., it contains at least one variable that represents output 
and one that is a measure of capital assets (fixed inputs). This is because Bayesian model selection 
and inference pooling techniques marginalize (via MDD values) models that are bad at describing 
the data anyway. 

Table 4 shows MDD values (in decimal logs), mean efficiency scores and the total number 
of explanatory variables in each model from stage one. We see that the data clearly prefer only a few 

Table 3: Model variants considered in the analysis

Note: Each column labelled from 0 to 38 represents a different model specification as regards the list of explanatory variables. 
Value “1” in the table indicates that a given variable represents a characteristic of capital assets; “2” that a variable represents 
a characteristic of production; “3” that a variable is a price indicator; Label “Y” (Yes) in row “St.2” indicates that  a model has 
been used in stage two; models 8 and 12 have been used only in stage two .
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parsimonious models with no more than 5–6 explanatory variables. This seems particularly interest-
ing since previous studies about Polish electricity distribution sector would either use more models 
with much larger list of explanatory variables (Osiewalski and Wróbel-Rotter, 2008–9, 2012), or 
take combinations of several pre-selected explanatory variables and use various modelling tech-
niques (e.g., Cullman and von Hirschhausen, 2008b). We also find that the best models show very 
high, relative to other models, average cost efficiency scores despite having a small number of 
variables and parameters. 

Table 4:  Marginal data density values, 
mean efficiency scores and the 
number of explanatory variables 
in each model

Note: Results obtained in stage one; MDD stands for 
marginal data density in decimal log; ”(p)” next to model 
code indicates that this model contains information 
about wages.
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Figure 1 shows models’ posterior probability rankings for the two scenarios in stage one. 
As mentioned in Section 3, prior model probability has a straightforward impact on the posterior 
model probability. For this reason in stage one the authors and the DSO experts have agreed on two 
rankings based on priors in (8) and in (9). Solid bars present posterior model probabilities based on 
a uniform prior (i.e., equal prior probabilities for all models); doted bars present posterior model 
probabilities according to Ockham Razor as in (9). Based on this we can say that:

•  In the first scenario posterior model probability ranking is dominated by only one 
model—model 10. Dependently on the assumed prior model probability structure, the 
model has 0.8 or 0.94 of the posterior probability mass. The model has not only a rela-
tively high MDD but is also quite parsimonious. Thus if we were to follow the rule of 
Ockham Razor we could make inference solely based on this model. 

•  In the second scenario posterior model probability ranking is no longer that dominated 
by one particular model. Of course, model 38 does take a large portion of the posterior 

Figure 1: Model posterior probabilities in stage one

Note: Left chart: models without labor prices (scenario one); right chart: models with labor prices (scenario two); solid bars: 
posterior probability based on a uniform prior; doted bars: based on Ockham Razor.
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probability mass, but there are several other models in the ranking (22, 25, 27, 29, 30, 
34, 35) that cannot be entirely ignored. The model ranking changes dependently on the 
assumed prior model probability. If we assume a uniform prior (solid bar) the ranking 
is relatively even. If we consider Ockham Razor (doted bar) there are only two (38, 35), 
maybe four (38, 35, 34, 30) models we should be really concerned with in Bayesian in-
ference pooling (i.e., efficiency estimates from those models will significantly contribute 
to the final results). 

We find that inference pooling based on the two scenarios leads to similar cost efficiency 
rankings and indicates a relatively high average cost efficiency of DSO’s business units, which is 
0.889 (with an average posterior standard deviation 0.072) for models without wages (first scenario) 
and 0.902 (0.079) for models with wages (second scenario). However, in models without wages the 
gap between the leader and the least efficient unit is almost twice the size as in models with wages. 
On the one hand, looking at this result from the first scenario’s perspective wages can be viewed as a 
potentially good determinant of efficiency differences. On the other hand, given the second scenario 
wages can be viewed as a relevant determinant of variable cost differences. 

4.2. Stage Two of the Cost Efficiency Analysis

Stage two of the analysis builds on the results from stage one. Since many models analyzed 
in stage one have turned out to be highly inadequate in view of the data, the following simple criteria 
have been used to “trim” the list of models under consideration in stage two:

•  In the second scenario we take those models that have increased their posterior proba-
bility in relation to the uniform prior. Since we have 27 models in this scenario, for the 
second stage we consider those, for which posterior probability is above 1/27 in stage 
one. These are models: 38, 22, 27, 30, 29, 25, 14, 35, 34.

•  In the first scenario if we take the above mentioned criterion for models without wages 
we end up with only one model—model 10. For this reason the authors and the DSO 
have decided to take the best three models, i.e., 10, 7, and 5. Since models 7 and 5 are 
quite “parameter-rich” their simplified versions have been constructed and introduced 
into stage two of the study: model 12, which is a more parsimonious version of model 7, 
and model 8, which is a more parsimonious version of model 5 (see Table 3). 

•  We also retain model 0 as a baseline—a model that indiscriminately contains all 34 
characteristics. This, however, should not be viewed as a justification for building such a 
model. Apart from the fact that the model is numerically challenging to estimate it is also 
among the worst models in the study. 

This gives a total of 15 models: five models in the first scenario, nine models in the second scenario 
and model 0. These models have been treated in stage two as a priori equally probable, regardless 
of the number of parameters (i.e., we have used a uniform prior). Details regarding each model 
specification are provided in Table 3 (label “Y”).

Stage two of the study also extends the analytical framework. The first stage has con-
cluded that pooled inferences from both scenarios give similar cost efficiency rankings. However, 
models with wages provide cost efficiency scores, which are much more even (less variation). So, 
once wages are accounted for, is there any heterogeneity left, as regards cost-effectiveness of those 
objects? Since SFA models assume inefficiency terms by construction (via latent variables) simple 
statistical testing cannot provide a satisfactory answer. Fortunately, we can use exactly the same 
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Bayesian techniques to extend the current framework in a way to provide a straightforward, probabi-
listic answer to this research question. Each SFA model considered in stage two has been assigned its 
simplified “non-SF” counterpart with no latent variables representing inefficiency differences; see 
Section 2. In those models ui = 0, which means that cost efficiency exp(–ui) is equal one by default 
for all objects. Hence, these models assume, by construction, that all objects are relatively equally 
efficient and thus there is no inefficiency component, i.e., no heterogeneity as regards cost-effec-
tiveness. This yields additional 15 models to consider. Fortunately, since these Bayesian models are 
relatively simple, their marginal data density computation is trivial to calculate in comparison to 
Bayesian SFA models. 

The idea behind this procedure is quite simple. If under equal prior model probabilities 
non-SF models obtain significantly higher posterior probability mass in comparison to SFA models, 
then indeed differentiating cost-effectiveness of the business units may, or even should be ques-
tioned. Furthermore, we can pool inference on cost efficiency also from non-SF models, which 
assume that all objects are equally (and thus relatively fully) efficient. The final cost efficiency 
ranking built this way not only takes into account uncertainty of the model as regards the choice of 
explanatory variables but also uncertainty of modelling efficiency variation in general. 

Figure 2 shows posterior probabilities of each model in the first scenario (no wages, top-
left chart). Model 10 is still the most likely one (its posterior probability being 0.713) with a new 

Figure 2: Model posterior probabilities in stage two

Note: top-left chart: models without labor prices (scenario one); top-right chart: models with labor prices (scenario two); 
bottom charts: comparison between SFA and non-SF models in scenario one (left) and scenario two (right).
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SFA model 12 (simplification of model 7) taking most of the remaining probability mass. Simpler 
non-SF Bayesian models are clearly not favored by the data in this scenario. The sum of their proba-
bility mass is just 0.077 whereas SFA models take as much as 0.923; see Figure 2, bottom-left chart 
(scenario one). As a result non-SF models have little effect on inference pooling and the resulting 
efficiency scores remain virtually unchanged (Table 5). 

Inclusion of non-SF specification makes a difference in the second scenario, in which in-
formation on observed wages has been used. Posterior probability is 0.59 for non-SF models vs. 
0.41 in favor of SFA specifications; see Figure 2, bottom-right chart (scenario two). In this case 
three models clearly dominate the ranking, two of which are non-SF (Figure 2, top-right chart). 
Table 5 shows the final efficiency ranking in the second scenario that takes into account both SFA 
and non-SF models by weighting the scores based on posterior model probabilities. We see that as a 
result the final scores are significantly closer to one (i.e., full relative efficiency) and the difference 
between the efficiency leader and the least efficient unit is even smaller than it has been previously 
anticipated in stage one.

Conceptual differences between the two scenarios—models with and without wages—re-
veal that taking the observed wages as a justified determinant of variable cost significantly decreases 
differences in cost efficiency between DSO’s business units (variation of cost (in)efficiency). At the 
same time it also diminishes the importance of SFA specification as its posterior probability declines 
from 0.92 to 0.41. However, including wages has not marginalized SFA models entirely and it does 
not impact the order of efficiency ranking. 

Table 5:  Posterior means and standard deviations of 
cost efficiency of DSO’s business units based on 
inference pooling 

Note: Results obtained in stage two; “mean” is the posterior mean, “std” is 
posterior standard deviation; “Only SFA models” are results from inference 
pooling only based on SFA models; “SFA and non-SF” are final results based on 
inference pooling that takes both specifications (SFA and non-SF) into account. 
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4.3. Cost efficiency comparison

The choice of explanatory variables is likely to have an impact on efficiency analysis. In 
this section we compare differences between estimated cost efficiencies for the best two SFA models 
from stage two (model 10—scenario one, model 35—scenario two) and models used previously by 
Polish ERO (models 2, 3; see Osiewalski and Wróbel-Rotter, 2008–9, 2012).

In a non-Bayesian literature it is customary to compare estimates of efficiency from differ-
ent models in terms of their averages, empirical standard deviations and correlations (Table 6). If we 
were to do that as well, we would conclude that the average efficiency is not that much higher in the 
“best” models and that empirical standard deviation is smaller in models 2 and 3. Furthermore, Ta-
ble 6 also shows empirical correlation coefficients between point estimates of individual efficiency 
scores (posterior means) from models 2, 3, 10 and 35. We see that efficiencies are well (0.729) or 
even perfectly (0.994) correlated. Clearly models that are similar in terms of explanatory variables 
lead to highly correlated efficiency estimates; compare pairs of models (2, 3) and (10, 35). 

Given the above, one may conclude that the previously used models (2, 3) are as good or 
even better at explaining the data because (i) they leave less cost variation to be explained by latent 
variables and (ii) their efficiency estimates are relatively well correlated with others. This, however, 
is not entirely correct. Figure 3 shows posterior distributions of 1( )ϕ−−exp , which can be interpreted 
as average efficiency in models 2, 3, 10 and 35. Indeed, posterior means of this parameter are not 
that far away from each other. However, the posterior distributions in models 2 and 3 are much 
more distorted and the tails are pulled significantly more towards lower values. This shows that 
even though these models use more explanatory variables there is considerably more uncertainty as 
regards inference about efficiency. 

To sum up, we should outline two important aspects. First, efficiencies may differ substan-
tially between models. This is not directly evident when analyzing efficiency averages, spread or 
empirical correlations but it becomes clear once we examine the posterior distributions of efficiency 
scores. Second, although the previously used models (2, 3) have turned out to be highly inadequate 

Table 6:  Comparison of cost efficiency 
estimates in four models

Note: Upper part contains empirical correlation 
coefficients between efficiency estimates; mean is 
the posterior mean of average efficiency exp(–φ–1); 
p.std is the posterior standard deviation of average 
efficiency; max/min values denote the highest 
and the lowest posterior mean of efficiency in the 
sample; std is an empirical standard deviation of the 
posterior means in a given model. 
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in this application (very low posterior probabilities) it should not be viewed as a mistake of previous 
Polish DSO studies. These studies were based on different objects and different time frames. We 
only wish to point out that model “copy-pasting” does not seem to work in the case of electricity 
distribution sector and that appropriate list of cost determinants is likely to be dependent on a par-
ticular application.

5. CONCLUDING REMARKS

Efficiency estimates in SFA are not only dependent on the data, but also, to large extent, on 
model specification. That is why the focal point of this research has been to develop a framework 
in which the model specification itself is also determined based on information in the data. The 
cost efficiency benchmarking framework presented in the paper is based on a Bayesian approach 
to stochastic frontier analysis—BSFA. This allows us to incorporate formal Bayesian techniques of 
model selection and inference pooling to mitigate the problem of model selection uncertainty when 
analyzing cost efficiency of Distribution System Operators (DSOs). This is an especially important 
aspect for electricity distribution sector where proper model selection can be particularly difficult. 
However, the proposed approach can also be applied to other energy services utilities whenever 
performance oriented regulations are set as well as to benchmarking and productivity analysis in 
other energy-related issues (e.g., standard production function-based technical efficiency or energy 
efficiency using demand SFA as in Filippini and Hunt, 2011, 2012; Llorca et al., 2017). 

As shown in the empirical section, model choice can have a considerable impact on effi-
ciency ranking. If the regulator makes a bad choice, it may inappropriately penalize efficient DSOs. 
Moreover, it may very well be that efficiency analysis is not warranted by the data if the hypothesis 
of equal (full) relative efficiency cannot be rejected. The presented approach makes it possible to 
compare numerous competing model specifications not only in terms of optimal choice of cost de-
terminants for the cost function, but also to formally judge uncertainty of a given SFA specification 
(time dynamics, inefficiency constant or varying over time—as in, e.g., Das, 2015; frontier hetero-
geneity etc.). All of these aspects can be incorporated into the final, pooled inference. 

Figure 3: Posterior distributions of average efficiency exp(–φ–1) in models 2, 3, 10 and 35
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The two scenarios discussed in Section 4 have allowed us to investigate the consequence 
of including price of labor as a justified determinant of variable cost differences. We have found that 
although information on average wages in the DSO’s business units does not significantly impact 
the order of the efficiency ranking, it does decrease differences between cost efficiency scores of 
the analyzed objects and makes the SF specifications less likely. We should stress, however, that 
the two scenarios are fundamentally different as regards efficiency interpretation. The first scenario 
assumes that DSOs are territorial monopolies and the management has, at least theoretically, control 
over price of labor creation. Of course, the regulator may still want to analyze the impact of wage 
differences on DSO’s cost-effectiveness, but then wages should be treated as potential efficiency 
determinants. The regulator can use Bayesian Varying Efficiency Distribution models (Koop et al., 
1997), which generalize the normal-exponential SF model used in this paper or other, non-Bayesian, 
approaches summarized in Llorca et al. (2016). The second scenario assumes that DSOs pay a fair 
“market price” in their region and thus wage differences should be treated as a justified determinant 
of variable costs, not manifest itself in cost efficiency scores. Which scenario is more suitable for a 
given energy distribution sector is up to the regulator to decide. We do note, however, that the choice 
is likely to have an impact on the posterior probability of SFA specification, as well as the spread of 
efficiency ranking. 

The presented approach makes the benchmarking process not only more transparent but 
also much more inclusive. All participants of the benchmarking study, the regulator, the DSOs, as 
well as the benchmarking experts can propose models they think best describe the data. All these 
models can be included to obtain the final results through inference pooling and the contribution 
each model makes is determined by its posterior probability. A given model’s posterior probability 
answers a simple, yet important question: how likely the model is in view of the data. And of course, 
the best models contribute the most. It takes the model building process away from the stakeholders 
(the regulator, DSOs, the experts), which may have different agendas and “push” their preferences. 
Theoretically, should there be such a need, every possible model specification can be considered 
in a study. Thus, from a technical viewpoint, there is no need for any model proposals or “stages” 
to be made by the DSOs or the regulator. Considering model proposition, however, is much more 
practical due to the numerical effort needed to estimate all possible scenarios. For example, in this 
study, one would need to estimate 17,179,869,184 Bayesian SF models along with their marginal 
data density values. It is important to note that operational techniques of Bayesian model compar-
ison and inference pooling have been already elaborated for regression models with dozens of po-
tential explanatory variables; such models and techniques appear in empirical studies of economic 
growth (Fernández et al., 2001a,b; Ley and Steel, 2009). However, these techniques are based on a 
particular structure of the prior distribution for the parameters and on the Normality assumption for 
the error term of the regression equation. While the form of the prior distribution is relatively easy 
to change in our cost efficiency framework, the assumption of Normality is simply inadequate as it 
excludes SF models from the start (SF models have composed errors). Further research is needed to 
generalize the BMA techniques proposed in the literature.

It is worth noting that Bayesian model selection and inference pooling have also turned 
out to be very useful because they vividly show one important aspect—quality trumps quantity. 
We have found that no matter how many models experts from the regulator or the DSOs propose, 
no more than a few significantly contribute to the final results. This effectively discourages the 
participants from researching models, which would provide more “desirable” results (in their view) 
because such policy-driven models practically marginalize themselves through very low posterior 
probabilities.
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