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abstract

This study analyzes the efficiency of household-level energy consumption using 
a rich microdata set of homes within the United States. We measure efficiency 
by extending a cost-minimization model that treats the total amount of energy 
services produced as latent or unobserved due to technological differences in 
household consumption. The empirical strategy consists of applying latent class 
modeling to cost frontier analysis, which helps to identify heterogeneous subsets 
of units that require the fewest energy resources. Our estimates of efficient units 
form an empirical cost frontier of best practices within each subset. In order to un-
derstand the determinants of household-level energy efficiency, we condition the 
cost frontier analysis on numerous physical, climate-related, and socio-economic 
characteristics of the household. We find that state-level energy building code reg-
ulations, on average, induce a one-to-four percent marginal increase in household 
energy consumption.
Keywords: Energy efficiency, energy rebound effect, household energy 
consumption.
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1. INTRODUCTION

Energy efficiency and related demand management policies help mitigate the impacts of 
climate change by reducing the use of fossil fuels and reducing the energy sector’s vulnerabilities to 
climate change impacts. Over the past forty years, federal and state-level energy efficiency policies 
(or standards) have been applied to household appliances, the corporate average fuel economy, elec-
tric demand-side management programs, weatherization assistance, and building codes. The U.S. 
residential sector accounts for approximately 21 percent of total primary energy consumption and 
20 percent of domestic carbon dioxide emissions (Energy Information Administration (EIA), 2015). 
Building construction codes and standards regulate the energy efficiency of newly constructed 
homes or commercial buildings and the energy efficiency requirements specific to renovations, 
major refurbishments, and the enlargement of buildings. Such codes generally provide minimum 
building requirements for heating and cooling systems and for any construction or renovations to the 
housing envelope that leads to energy savings (Aroonruengsawat et al., 2012).

The present study analyzes the determinants of household-level energy use and how effi-
cient each household uses energy compared to a sample of similar homes within the United States. 
Examining the within-sample efficiency of usage is important as past studies have found that house-
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holds with similar demographic and economic characteristics, located in the same geographic re-
gion, differ considerably in their energy use (Newman and Day, 1975; DOE, 1981a,b; Socolow, 
1978).

Given the variation in energy use between households, our paper provides a method to 
explore the relationship among social, economic, behavioral, and physical factors that determine 
the pattern and levels of household energy consumption. To this end, we draw on elements from two 
branches in the economics literature—the energy efficiency gap and the analysis of the determinants 
of household-level energy efficiency.

This study differs from the recent economic literature associated with analyzing energy 
efficiency, as our research is not based on a quasi-experimental method or field experiment (Allcott, 
2013; Fowlie et al., 2015). A behavioral or experimental framework to examining household energy 
efficiency is often described as a “bottom-up approach,” whereas a neoclassical economic model 
is often described as a “top-down approach.” Bottom up implies that the empiricist does not neces-
sarily make any prior assumptions about a household’s behavior or response to a policy, but instead 
simply observes the response of a treated household in comparison to a similar but non-treated 
household. Top down, on the other hand, implies that the empiricist formulates prior assumptions 
about household behavior; such as, the household agent is rational and seeks to minimize costs or 
produce its energy services efficiently (Orea et al., 2015).

Despite the readers preconceived notions of a behavioral versus a neoclassical approach, 
each separate framework contains various assumptions, which lead to differing strengths and weak-
nesses. The current research makes no attempt of arguing in favor of one approach over the other. 
Instead, we view the separate frameworks as the flip side of the same coin—in terms of analyzing 
the behavioral response associated with household-level energy efficiency gains—and we proceed 
by analyzing this phenomenon using a neoclassical approach.

Relative to our neoclassical approach, this study offers five unique contributions to the liter-
ature. One, we use a unique data set obtained from the 2009 U.S. EIA’s Residential Energy Consump-
tion Survey. The survey contains responses from over 12,000 households across the U.S. providing 
an incredibly rich cross section of disaggregated data. Two, we develop a theoretical model that 
demonstrates that a household’s energy consumption is affected by the types of energy technologies 
used within the household. However, the households’ energy technologies are not directly observed 
within the available data, so we use a data-driven method to identify subsets or classes of housing that 
consume similar levels of energy, arguably based on similar types of household energy technologies. 
We demonstrate that by dividing the sample into classes, the model offers more accurate measures of 
efficiency of energy consumption (within each household). Four, the modeling approach allows us 
to estimate a household-by-household efficiency index of consumption. Five, we condition the cost 
frontier analysis on a set of other covariates that would potentially affect a household’s energy effi-
ciency of consumption, including geographic location, climate zones, and several other household 
characteristics such as home size and residential makeup.

Our findings imply that the sample contains two unique technological classes (or groups) 
and that the estimated efficiency indexes for each class is statistically different from the other class 
and the overall sample. Based on these insights, we proceed by examining the cost frontier estimates 
by assuming heteroskedasticity within the inefficiency term, and then explore the marginal effects of 
residential energy building code policies on household-level (in)efficiency of energy consumption.

Our estimates suggest a relatively small but highly statistically significant (partial) energy 
rebound effect, where the energy code policies, on average, lead to an increase in residential energy 
consumption. These findings are similar to that of Levinson (2016), who found no evidence that 
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California homes, constructed since the State instituted its building energy codes, use less electricity 
today than homes built before the codes came into effect. Our findings offer insights to future build-
ing energy code policy formulation based on economic analysis, in contrast to engineering analysis, 
of the efficiency of residential energy consumption.

1.1 Residential energy efficiency policies in the U.S.

Energy efficiency requirements for new buildings, including residential homes, are import-
ant because such requirements determine the building sector’s energy consumption for far longer 
than other end-use sectors (Laustsen, 2008). Improvements in a building’s energy efficiency are 
much easier, and more cost effective, to implement in the planning stage; whereas, improvements 
after the initial construction phase are generally more costly. In 1978, California became the first 
state in the U.S. to adopt state-level energy requirements in its building codes (EPA, 2015). Today, 
forty states and the District of Columbia have some form of residential-energy building codes. A 
heat map of current U.S. states, with residential energy code requirements, is provided in Figure 1. 
(The term “IECC” in the figure refers to the International Energy Conservation Code, which pro-
vides standards and metrics for energy conservation and efficiency code requirements). Such codes 
arguably offer a range of benefits including lower energy use, reduced energy costs, reduced pollu-
tion emissions, stronger local economies, improved energy resource reliability and improved health 
(EPA, 2015). The Department of Energy (DOE) (2014) estimates that from 1992 to 2012 such codes 

Figure 1: State Residential Energy Code Status, 2016

 Source: BCAP (2016)
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led to approximately 4.2 quads (4215 British thermal units (BTUs)) in cumulative energy savings 
and $44 billion in cost savings to consumers. The same DOE report suggests that current building 
energy codes could potentially save a total of 46 quads (46015 BTUs) of energy through 2040, which 
is approximately equal to one year’s consumption of energy within the U.S. residential sector.

While the U.S. residential housing sector has become more energy efficient over the past 
two or three decades, the EIA (2012) also reports that the overall size of new U.S. housing builds 
has been increasing over the past couple of decades. Figure 2 demonstrates the upward trend in the 
average size of a newly built home (measured in square feet) in the U.S. from 1970 through 2010. A 
larger space within a home often implies greater demands for heating and cooling needs, however, 
larger homes often tend towards adopting additional energy efficiency features. Given all these 
factors, whether there is a net increase or decrease in energy consumption is an empirical question.

2. RELATED WORK

2.1 The energy efficiency gap and energy efficiency analysis

Despite the purported savings associated with energy efficiency investments, McKinsey 
and Company (2007) claims that the U.S. has over $100 billion in energy-saving opportunities that 
have been left unrealized. In other words, U.S. households have figuratively “left free money laying 
on the ground” by not realizing considerable energy and financial-saving opportunities associated 
with the adoption of energy efficiency retrofits and/or technologies.

Are there indeed significant windfalls of unrealized financial and energy savings for U.S. 
households or are McKinsey and Co.’s projected savings overstated? In general, the economics 
literature seems to indicate that there are savings to be gained, but the savings are less than esti-
mates based on engineering analysis. Herein lies the problem—energy efficiency estimates, includ-

Figure 2: Newer Homes Trending Larger in the U.S., 1970–2010

 Source: EIA (2012)
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ing those offered by McKinsey and Co., are generally based on engineering analysis, not economic 
analysis. Joskow and Marron (1992) describe many factors that contribute to the overstatement of 
program effectiveness—namely, rebound effects (further explained below) and other confounding 
factors. In the context of building code policies, the engineering analysis generally presumes that 
energy building codes (or standards) will be enforced, the calculated engineering savings will be 
realized, and there is no behavioral response (Levinson, 2016).

There are two interrelated branches in the economics literature that address the gap be-
tween engineering and economic cost analysis. The first branch explores the “energy paradox” or 
the “energy efficiency gap.” This framework tries to address what could be causing the paradox, 
where energy-efficient technologies offer a reduction in financial costs and a reduction in environ-
mental damages associated with energy use. Yet, these same technologies are not adopted by house-
holds to the degree that appears justified. There have been a number of different explanations offered 
including market failure, information asymmetry, myopia, cognitive limitations, loss aversion, and 
systematic biased beliefs (Gerarden et al., 2015; Allcott, 2013; Anderson and Newell, 2004; Da-
vis et al., 2014; Gillingham et al., 2012; Greene et al., 2013; Jaffe and Stavins, 1994; Newell and 
Siikamäki, 2014; Sallee, 2013).

The second branch in the literature examines the economic determinants of energy effi-
ciency in the context of relating building codes to energy savings. For example, Aroonruengsawat 
et al. (2012) estimate that U.S. energy building codes saved, on average, two to five percent in res-
idential electricity consumption in 2006. Jacobsen and Kotchen (2013) also find that the increased 
stringency in Florida’s energy code in 2002 led to a four percent decrease in household electricity 
consumption. While the above studies highlight the relationship between building codes and energy 
costs, questions remain regarding the economic magnitude of real world returns on energy efficient 
investment. Based on a randomized controlled evaluation of the Federal Weatherization Assistance 
Program in Michigan, Fowlie et al. (2015) find that although participating households’ energy con-
sumption declined by 10 to 20 percent on average, the savings were approximately 60 percent less 
than the savings predicted by the engineering models. Another study shows that adding additional 
insulation in a home’s attic provides household energy saving of 10 percent, on average, but the 
return on investment is smaller than the engineering estimates (Metcalf and Hassett, 1999).

Despite fairly progressive building energy codes in California, Chong (2012) finds that 
newer constructed homes, on average, exhibit a higher level of response to changes in higher tem-
peratures than a comparable sample of older homes in Southern California. In other words, home-
owners of newer homes turned down the thermostat in response to periods of higher outdoor tem-
peratures by a greater percentage than did older homes, leading to higher energy consumption. 
Similarly, Levinson (2016) argues that newly constructed or renovated homes, built after Califor-
nia’s building codes were enacted, use no less energy than homes built before the codes were estab-
lished. Given the claim by the California Energy Commission (2013) that it has saved the State’s 
residents more than $74 billion in reduced electricity bills since 1997, the findings of Levinson and 
Chong are especially thought provoking and highlight the importance in distinguishing between 
costs calculated through engineering and economic analysis.

Our results confirm the findings of earlier studies, such as Baxter et al. (1986), Chong 
(2012), and Levinson (2016), that household demographic composition and building vintage are 
important determinants of household-level energy consumption and efficiency. In addition to de-
mographics and building characteristics, we control for climate-related factors that affect household 
demand for energy services.
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Similar to Baxter et al. (1986), this study contributes to the literature by examining a the-
oretical cost frontier of energy services to gain insights into how households consume energy. To 
our knowledge, the works by Baxter et al. (1986) (followed more recently by Orea et al. (2015) 
and Filippini and Hunt (2012)) are the only studies that have used production theory (and stochas-
tic frontier analysis) to better understand household-level energy usage. Our current research im-
proves upon the original work by using significantly more observations and analyzing the efficiency 
of household energy consumption with a latent class, cost frontier analysis. Our approach differs 
slightly from recent works including Chong (2012) and Levinson (2016), who examined household 
electricity consumption, after controlling for the vintage of the home and other characteristics. Our 
particular methodology, examining the overall technical (in)efficiency of energy usage, is simply a 
different approach to better understand the determinants of within-sample energy efficiency.

2.2 Households as productive units

Households, like firms, are economic agents in which members of the household carry 
out the production of goods and services (Becker, 1981; Ironmonger, 2000; Pollak, 2003). Goods 
and services produced by households include accommodations, meals, childcare, etc. And simi-
lar to firms, households use labor and (human) capital as its factors of production. Becker (1981) 
established two foundational (economic) assumptions regarding household production—behavior 
maximization and market equilibrium.

We assume that a household’s energy consumption is treated as a derived demand (i.e., 
electricity is not demanded in-and-of-itself, but rather for the services it provides), and that energy 
is an input in the provision of a range of household services. For example, electricity or natural gas 
can be used to provide indoor heating and cooling, hot water heating, and lighting, among other 
uses. We also maintain one of the foundational assumptions established by Becker (1981), in which 
households seek to maximize utility through their consumption of energy services. Since energy is 
a derived demand, households do not necessarily seek to consume the most energy possible in order 
to maximize utility, but rather, households demand for energy is constrained by the costs of provid-
ing such services (Scott, 1980). If a household’s utility is derived from its accumulation of lifetime 
wealth, then this notion of cost minimization is compatible with a household’s utility derived from 
wealth maximization (or accumulation).

We treat the household’s dwelling unit (and its inherent energy using equipment) as the 
fixed factor(s) of production, and the household’s input of fuels (electricity or natural gas) are 
treated as variable factors. The household is capable of reducing its energy consumption on the 
intensive and extensive margin. Along the intensive margin, the household can reduce its consump-
tion by simply modifying its monthly energy usage in the short run, such as adjusting the thermostat 
for indoor heating or cooling. Along the extensive margin, the households can reduce consumption 
by investing in a more energy efficient technology (e.g., purchasing a tankless water heater) or by 
retrofitting its home with more energy efficient windows or insulation, which arguably reduces fuel 
consumed per each unit of service output in the long run.

The firm’s (or household’s) production process is defined as technically efficient if it is 
producing the maximum output for a given set of inputs. However, the same definition of efficiency 
holds for a production process that uses the minimum level of inputs to produce a given set of out-
puts. Technical efficiency is related to the concept of productive (or allocative) efficiency, where 
firms (or households) minimize costs for a given level of output (Varian, 1992).
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The productive efficiency of a firm can be measured by the ratio of its output to inputs 
(Farrell, 1957; Lovell, 1993). As an illustration, consider the efficiency frontier diagram in Figure 
3 based on the original work of Baxter et al. (1986) and Farrell (1957). The measure on the vertical 
axis is a hypothetical amount of one input (such as natural gas). Similarly, the measure on the hor-
izontal axis is a hypothetical amount of the other input (such as electricity). (Figure 3 is purely for 
illustrative purposes and is not based explicitly on the data observed within the current study). In 
Figure 3, the efficiency frontier measures the relative amount of a particular energy service provi-
sion, such as home heating and cooling, given the limited set of inputs. Stated differently, the fron-
tier explores the least inputs required to consume a comparable level or unit of said energy service. 
The former is concerned with the absolute amount of energy service provision, whereas the latter 
is concerned with the efficiency of consumption (or production) of the same service provision. (For 
the time being we will abstract away from “allocative inefficiency,” in which a household could 
potentially save costs by reallocating its inputs from one input to the other; however, we will return 
to the discussion of allocative inefficiency later in the study).

Following this hypothetical example, the household energy service provision is for home 
heating and cooling that could require two inputs (natural gas and electricity) and results in one out-
put (temperature control). Figure 3 illustrates the service provision for six hypothetical households 
(H1–H6) distributed as input-per-unit output space. The physical location of each household (in the 
figure) represents its consumption of inputs one (X1) and two (X2). The isoquant, SS', is the inner 
boundary of the input set, reflecting the minimum input combinations that may be used to produce a 
given output vector. Therefore, the curve, which is convex to the origin, illustrates the best practice 
(or cost-minimizing) frontier (i.e., the least amount of inputs consumed per unit of output produced) 
relative to the other households (Coelli et al., 2003). In this particular example, X1 could represent 
the electricity consumed per kilowatt hour and X2 could present the amount of natural gas consumed 
per therm. As demonstrated in the figure, households one (H1) and two (H2) are more efficient than 
household five (H5) as both use fewer inputs per unit of output. Similarly, households two (H2) and 
six (H6) are more efficient than household three (H3). Conversely, households H3, H4, and H5 are 

Figure 3: An efficiency frontier and the relative index of efficiency

 Source: This figure was originally produced by Baxter et al. (1986), and we reproduced it here for illustration.
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inefficient relative to households H1, H2, and H6, as the latter three demonstrate that it is possible to 
produce the same level of output with fewer input resources. The line segment (or curve) connecting 
H1, H2, and H6 forms the efficiency frontier, which represents a best practice (or cost-minimization) 
pattern for this particular service provision.

Based on this diagrammatic example, we can measure the efficiency level of each of the in-
efficient units (H3, H4, and H5) by holding constant the mix of inputs used by these units. Measuring 
efficiency in this regard is equivalent to drawing a line from the origin and through the frontier to 
one of the inefficient units (e.g., unit H5 as illustrated in Figure 3). The point marked as 5′H  represents 
the equi-proportional reduction in inputs, per unit of output, which would bring the housing unit H5 
to the best practices frontier. An index for the relative efficiency of household H5 can be calculated 
as the ratio of the length of line segment 5′OH  to the length of line segment OH5 (Baxter et al., 1986; 
Scott, 1980). The resulting index then represents the efficient proportion of inputs needed for a 
technically efficient service provision (Farrell, 1957). This ratio, 5 5/′OH OH , ranges between zero 
and one where a value of one indicates that the service provision is on the best practices frontier. In 
general, the larger the value, the more productive the household service provision is compared to 
other households with the same energy input mix. In this particular example, we use only two input 
dimensions and one output dimension, but the analysis can easily be expanded to multiple inputs 
and the interpretation would remain the same—i.e., the efficiency index will still vary between val-
ues of zero and one (Farrell, 1957), provided we hold the other factor inputs fixed.

It is worth pointing out that this study does not seek to measure a input distance function, 
as implied by Figure 3 and the example above. Rather, we are interested in measuring the determi-
nants of technical (in)efficiency—i.e., household-level behavior that deviates from the theoretical 
cost-minimizing frontier—in a stochastic cost frontier analysis. The figure and example above are 
purely for illustrative purposes.

2.3 Theoretical model of input-oriented technical inefficiency

We assume that the objective of the household is to produce a given level of energy ser-
vices with the minimum possible costs of inputs. Further, we assume that the household is tech-
nically inefficient in its use of energy—that is, it either produces less than the maximum possible 
output or it uses more inputs than is necessary to produce a given level of output. Therefore, the 
model we present below is an input-oriented measure of technical inefficiency.

Given these assumptions, the cost minimization problem for a representative household is 
given by:

*min s.t. = ( ),η−′ ⋅q f e
x

w x x
 

(1)

where w denotes a vector of input prices, x denotes a vector of energy inputs, q* denotes the latent 
(unobserved) but true consumption (or derived demand) of energy service (outputs), and η denotes 
a input-oriented technical inefficiency term (parameter). The technical inefficiency term is assumed 
to be nonnegative, η ≥ 0, and it measures the percentage by which all the inputs are overused in 
producing some level of output q*. We further assume that the production function is homogeneous 
of degree θ in the energy inputs x, such that if each of the inputs is multiplied by a positive scalar 
factor, c, then it would yield the following:

* = ( ) = ( ) .η η θ− −⋅ ⋅ ⋅ ⋅q f c e f e cx x  (2)
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The first-order conditions (Kumbhakar et al., 2015) for the cost minimization problem are 
given by

1 1

( )
= , = 2, , ,

( )

η

η

−

−

⋅

⋅


j jf e w
j J

f e w
x
x  

(3)

where fj denotes the derivative of the production function with respect to the jth energy input; wj 
denotes the input price associated with the jth energy input; and, J denotes the total energy inputs in 
the house’s provision of energy services.

Given the assumptions outlined above, there are J – 1 first-order conditions, from which we 
can solve for the conditional-factor (or input) demand functions (Kumbhakar et al., 2015):

*= ( , ), = 1, , ,η ψ−⋅ j jx e q j Jw                 (4)

where ψj denotes the input-demand function, associated with the jth energy input as a function of the 
input prices and the latent consumption of energy services. Based on the input demand functions, 
we can derive the cost function of energy services:

*( , ) = .η−⋅ ⋅∑ j j
j

C q w x ew
 

(5)

Equation (5) is a theoretical, frontier cost function, as it provides the minimum costs associated with 
the vector of input prices and the true level of energy demand within the home (Kumbhakar et al., 
2015). We can apply Shephard’s Lemma to the cost function to derive

ln ( ) = = ,
ln ( )

η−⋅ ⋅ ⋅∂ ⋅
≡

′∂ ⋅
j j j j

j
j

w x e w xC S
w C w x

 
(6)

where Sj denotes the cost share of the jth energy resource.
Given the assumptions of cost minimization, we can write the observed, household-level 

of energy costs as a function of the theoretical, cost-minimizing level of energy costs (Kumbhakar 
et al., 2015):

= = ( ) exp( ),η⋅ ⋅ ⋅∑a
j j

j
C w x C

 
(7)

where Ca denotes the actual or observed total costs. Transforming equation (7) by taking its natural 
logarithm allows the equation to be re-expressed as

*ln = ln ( , ) .η+aC C qw  (8)

Based on this equation, we can then derive the efficiency (of some representative household) mea-
sure of consumption as

( )exp( ) = ,η ⋅
− a

C
C  

(9)

where the ratio is bounded between 0 and 1, and the estimation of the efficiency index is numerically 
guaranteed by imposing η ≥ 0 (Kumbhakar et al., 2015). Conversely, we could measure the ineffi-
ciency of consumption (of a representative household) as:

*= ln ln ( , ).η −aC C qw  (10)
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The empirical counterpart to equation (9) is E[exp(–η)|v] (where v is a random noise term 
and E[·] is an expectation operator)—this is discussed further below. By converting the estimated 
technical inefficiency term, –η, into exponential form, the conversion yields a positive estimate 
bounded on the interval [0,1). The positive estimate is often referred to as an (technical) efficiency 
index of household consumption. An estimated index value of one would indicate that a household’s 
actual consumption is equal to the theoretical cost-minimizing level of consumption; or diagram-
matically, the household’s observed level of consumption would be on the cost-minimizing frontier 
(as in Figure 3). Generally speaking, a household’s consumption is more efficient the closer the 
estimate is to one and less efficient the closer the estimate is to zero.

3. METHODOLOGICAL APPROACH

Related to Baxter et al. (1986) and consistent with the theoretical approach detailed in 
Section 2, we model the cost minimization for a household’s costs of energy services. Our model 
provides a measure of technical efficiency by evaluating the efficiency of the physical transforma-
tion of resource inputs (such as electricity consumption) to service outputs (such as home heating or 
cooling). Input prices are measured in dollars per unit of measurement; e.g., the price of electricity 
is measured as $US per kilowatt hour and the price of natural gas is measured as $US per therm. The 
total household consumption of energy is measured in British thermal units (BTUs), which provides 
a common metric for the different types of energy resources consumed. A British thermal unit is a 
measure of the energy required to raise the temperature of one pound of water by 1° Fahrenheit—it 
is a general measure of the “heating value” of a particular fuel (Hinrichs and Kleinbach, 2006).

3.1 Empirical model: Production possibility frontier analysis

Historically, there have been two principle methods to estimate a production or efficiency 
frontier—through a stochastic frontier analysis (SFA) or a data envelopment analysis (DEA). The 
stochastic frontier analysis accounts for failures (technical inefficiency) in production optimization 
(Meeusen and van Den Broeck, 1977; Aigner et al., 1977), while the DEA approach is a nonpara-
metric specification of the production frontier and is deterministic. Because the DEA approach is 
deterministic—meaning it does not contain a stochastic or random component—it is generally not 
suitable for a statistical analysis of productive efficiency. However, the SFA approach is more ap-
propriate for use in a statistical or econometric regression analysis.

We estimate the model specified in equation (8) by adding a random noise term v to the 
right-hand side of the equation and defining a particular distribution for both the noise term and the 
technical inefficiency term (details are discussed in subsection 3.2). A non-restrictive way to define 
the cost function outlined above is by using a transcendental logarithm or “translog” specification 
(Christensen and Greene, 1976) on ln C(·) as

*ln = ln ( , ) η+ +a
i i i iC C q viw

* * *
0 , * , , * *

1 1= ln ln ln ln ln ln
2 2

β β β β β+ + + +∑ ∑∑j j i i jk j i k i i iq q q
j j k

w q w w q q

*
* ,ln ln ,β η+ + +∑ j i i i ijq

j
w q v

  
(11)

where we have added a subscript i to the above equation to denote a unit of observation for the ith 
household. As previously mentioned, we do not directly observe the true demand for energy ser-
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vices, q*; nevertheless, we use the term within the translog specification above for illustrative pur-
poses. Looking ahead, we potentially solve this problem through the latent class analysis, where 
homes with similar exogenous attributes will arguably use similar types of energy technologies al-
lowing for a more accurate measure of * = |a

i i gq q  (based on the actual observed level of demand a
iq ) 

for the ith house in the gth class of similar homes. By definition, the cost function above is homog-
enous of degree one in the input prices (Varian, 1992), so we can specify the following restrictions 
to satisfy that condition:

*= 1, = 0 , = 0.β β β∀∑ ∑ ∑j jk jq
j j j

k
 

(12)

The flexibility of the translog specification in (11) allows us to test the below restrictions 
within the model:

Hypothesis one:  No restrictions on the parameters; 
Hypothesis two:  * *= ,∀ig iq q i (No differences in technical efficiencies 
   between classes); 
Hypothesis three: βjk = 0 (Cobb-Douglas production specification); 

Hypothesis four:   **
ln( )1 = 1 = 0
ln( )

β∂
− −
∂ q

C
q

 (Constant returns to scale technology).

3.2 Latent class analysis

Unobserved heterogeneity, where differences across observations are not reflected within 
the data, is problematic within an empirical framework and the solution to dealing with the heteroge-
neity depends on its relationship with the explanatory variables. If the differences in the unobserved 
heterogeneity are not correlated with the explanatory variables, the problem can be accommodated 
through the error term. However, if the differences in the unobserved heterogeneity are correlated 
with the explanatory variables, the resulting estimated parameters will be biased (Griliches, 1957). 
To overcome this problem, it is often necessary to use models that are able to estimate different pa-
rameters for each group. If the number of heterogeneous groups are discrete and we can potentially 
estimate as many technologies as there are groups, then a cluster analysis or latent class model can 
help alleviate the problem (Alvarez and del Corral, 2010).

A cluster analysis is a statistical technique that stratifies the sample into several groups 
based on similarities among the members of each group (Aldenderfer and Blashfield, 1984). Using 
this approach, the cluster analysis would presumably be carried out in an initial step, followed by the 
SFA approach in a separate step. A latent class model, on the other hand, assumes a finite number of 
classes within the underlying data and can be carried out in conjunction with SFA in one single step, 
thereby reducing the potential bias of a two-step estimation procedure (Beard et al., 1991; Orea and 
Kumbhakar, 2004; Greene, 2005; Alvarez and del Corral, 2010; Brown et al., 2014).

Following equation (8), and adding a noise term v to the right-hand side, we can specify 
the latent class approach as

*ln = ln ( , ) ,ε+a a
i i i i gg

C C q w
 

(13)

where εi is a composite error defined as εi = vi – ηi. Otherwise, the superscript a denotes the observed 
total costs of energy services and the observed level of total energy demand; and, the subscript i de-
notes a unit of observation on the ith house. The subscript g denotes a latent class index (g = 1,2,...,G). 
In turn, the vertical bars denote a different model for each class, g.
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Assuming that v is normally distributed (v ⁓ N(0,σ 2v )) and η follows a half-normal distri-
bution (η ⁓ N+(0,σ 2η )), the likelihood function (LF) for each house i within class g is (Greene, 2005; 
Kumbhakar et al., 2015):

2 *

*

|1 1= ln ln( ) ln ln ,
2 2

ε µσ φ
σ σ

 −   − − + + Φ          

i g
ig g

g

LF
 

(14)

where *= ln ln ( , )ε −a a
i i i iC C q w , 2 2 2= ( )ησ σ σ+g g vg , 2 2

* = ( ) /ηµ σ ε σ⋅g i g , and 2 2 2 2
* = ( ) /ησ σ σ σ⋅g vg g. Fur-

ther, the terms ϕ and Φ denote the standard normal density and cumulative distribution function.
The specification in (14) implicitly assumes that the model is composed of homoskedastic 

errors. However, the estimation of stochastic frontier models in the presence of heteroskedasticity, 
if not accounted for, can yield biased parameter estimates (Caudill et al., 1995; Wang and Schmidt, 
2002). Therefore, we chose to forego the classic stochastic frontier estimates, which assume ho-
moskedastic errors, and opted instead for a specification that controls for heteroskedastic errors.

Thus, before proceeding it would be informative to offer just a bit more notation for the 
sake of completeness. Following Caudill et al. (1995) and Kumbhakar et al. (2015), heteroskedastic-
ity can be parameterized by a set of observed variables and associated parameters. Kumbhakar et al. 
(2015) offer the following parameterization (which we followed in our empirical analysis herein):

2
, ,= ( ),η η ησ ⋅i iexp z w¢

 
(15)

2
, ,= ( ),σ ⋅v i v i vexp z w¢

 
(16)

where the vectors zη,i and zv,i may or may not contain the same vector of observed variables, and they 
may also contain all or part of the explanatory variables in xi. The term wη denotes a vector of param-
eters associated with the observed variables. We modeled heterogeneity by specifying an indicator 
variable for states that have rigorous residential building codes (otherwise, the vector of observables 
within zη contains a constant term as well)—this is discussed in further detail below. Moreover, we 
assume 2σ v , the variance of the noise term, is constant.

Given these assumptions, the likelihood function for house i is obtained as a weighted av-
erage of its likelihood function for each class g, using the prior probabilities of class g membership 
(Greene, 2005; Alvarez and del Corral, 2010):

=1
= ,⋅∑

G

i ig ig
g

LF P LF
 

(17)

where G denotes the total number of estimated classes. We parameterize the probability Pig, of the 
ith house in the gth class, as a multinomial logistic (MNL) (Orea and Kumbhakar, 2004; Alvarez and 
del Corral, 2010):

=1
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(18)

where zi is a vector of exogenous determinants that are used to stratify the sample, and δg is a vector 
of parameters to be estimated. One class is chosen as the reference for the other classes in the mul-
tinomial logistic function.
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Following Greene (2002) and Orea and Kumbhakar (2004), we can define the posterior 
class probability as

=1

( | ) = .
⋅

⋅∑
i ig

G

i ig
g

LF P
P g i

LF P
 

(19)

The posterior class probabilities depend not only on the estimated prior class probabilities (based on 
the estimated parameters, δg, from the MNL model), but also on the parameters from the cost fron-
tier model. Therefore, the latent class model stratifies the sample into several groups even though 
actual sample-separating information is not available (Orea and Kumbhakar, 2004). As illustrated in 
the above expression, the latent class structure uses the goodness of fit of each estimated frontier, in 
conjunction with the prior class probabilities, to identify groups or classes of households.

The log-likelihood function was maximized with respect to the parameter set θg = 
(βg,δg,σ2

ng,σ2
vg) using Stata 14.1 with our own programmed code, which borrows heavily on the Stata 

programs provided by Kumbhakar et al. (2016).
An important issue in estimating these types of models is how to determine the number of 

unobserved classes. Greene (2005) suggests to pre-specify a beginning value of G*, which is at least 
as large as the true G, and test downward with subsequent smaller classes nested within the initial 
specified G* number of classes. Each subsequent specification can be tested against the pre-speci-
fied number of classes by utilizing likelihood ratio tests and/or Information Criteria post-estimation 
diagnostics. Alvarez and del Corral (2010) suggest the following diagnostics:

= 2 ( ) ,− ⋅ + ⋅SBIC log LF G m logn

= 2 ( ) 2 ,− ⋅ + ⋅AIC log LF G m

= 2 ( ) 2 (1 ),− ⋅ + ⋅ + ⋅CAIC log LF G log n

= 2 ( ) 2 ,− ⋅ + ⋅ ⋅HQIC log LF G log logm

where SBIC denotes the modified Schwartz Bayesian Information Criterion, AIC is the Akaike 
Information Criterion, CAIC is the consistent Akaike Information Criterion (Bozdogan, 1987), and 
HQIC is the Hannan and Quinn (1979) Information Criterion. The term LF(G) denotes the value of 
the likelihood function for G groups (or classes); m denotes the total number of parameters used in 
the model; and, n refers to the number of observations within the sample.

The AIC statistic has been criticized for its tendency to favor large models (Brown et al., 
2014); therefore, Bozdogan (1987) developed the CAIC statistic, which in theory provides a con-
sistent measure of the AIC statistic despite the size of the model. Through a series of Monte Carlo 
experiments, Bozdogan (1987) demonstrated that the CAIC performed better than the traditional 
AIC in terms of providing consistent estimates of the statistic. Despite its inconsistency, we report 
the AIC statistic as baseline against the other criterion statistic estimates. The favored model is that 
which provides the lowest values of the four metrics (Alvarez and del Corral, 2010).

Once the class assignment is completed, the efficiency index for each household is com-
puted using the frontier assigned for that class as its reference technology. This method, however, 
ignores all other class probabilities even if the posterior class probabilities are non-zero (Orea and 
Kumbhakar, 2004). Thus, we can potentially avoid arbitrary weighting, and selection of the so-
called reference technology, by using the following method to calculate household efficiency:

=1
ln = ( | ) ln ( ),⋅∑

G

i i
g

EF P j i EF g
 

(20)
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where P( j | i) is the posterior probability, (19), in the gth class for a given household i, and EFi de-
notes the efficiency index measure relative to the reference technology in class g (the EFi term is 
based on equation (9) above). This strategy, suggested by Greene (2002), takes into account technol-
ogies from every class. Our empirical estimates of the efficiency index are based on what Alvarez 
et al. (2006) describe as the “RSCFG specification” (Reifschneider and Stevenson, 1991; Caudill 
and Ford, 1993; Caudill et al., 1995). To calculate the “adjusted” efficiency index (based on partial 
rebound effect) in Table 9, we utilized equation (A7) outlined in Orea et al. (2015, Appendix A).

4. DATA AND DATA ANALYSIS

The data used in this study are from the 2009 Residential Energy Consumption Survey 
(RECS), which was conducted by the EIA (2012). The aim of the survey was to measure annual 
energy consumption from a large national sample of households, as well as to collect data on house-
hold unit characteristics associated with energy consumption. The RECS data set initially contained 
over 12,050 observations; however, after cleaning the survey data, this study resulted in approxi-
mately 12,007 usable household observations. The data set includes household-level expenditures 
and use of various energy resources, as well as numerous physical, social, and economic character-
istics of the household units. The descriptive statistics are displayed in Tables 1–4.

Two sets of variables are needed to estimate the model introduced in Section 3: the vari-
ables for the stochastic cost frontier model (i.e., the total cost and amount of energy consumption, 
the energy input prices, and other controls); and the variables to help determine prior class proba-
bilities.

To calibrate the prior class probabilities, we examine the intensity of household energy 
consumption, where we define intensity as the ratio of total energy consumption to the total amount 
of square feet within the house. We divide the overall sample into initial (pre-specified) class spec-
ifications based on the quantiles of energy intensity. For example, in a two-class model we divide 
the overall sample into two quantiles—a relatively low-intense sample and a relatively high-intense 
sample. We follow this procedure up to a total of eight separate class stratifications. Given that the 
log-likelihood function does not converge for the seven-class (nor the eight-class) model, we limit 
the analysis to six potential classes. The variables used in the prior class probabilities included: a set 
of ten dummy variables representing the Census division where the house was located; a set of five 
dummies representing pre-specified climate regions (cold, hot-dry, hot-humid, mixed-humid, and 
marine); a set of five (pre-specified) American Institute of Architects (AIA) climate zones (based on 
average temperatures from 1981–2010); and, two additional variables representing the number of 
cooling and heating degree days for each observation.

In order to estimate the latent class model, we first address the problem of determining the 
total number of classes. Although the Akaike Information Criterion (AIC) and (Schwartz) Bayes 
Information Criterion (BIC) are the most widely used metrics to identify the number of classes in 
standard latent class models (Orea and Kumbhakar, 2004), we also included the consistent AIC 
(Bozdogan, 1987) and the Hannan and Quinn Information Criterion (HQIC) as additional metrics 
for evaluation. All four statistics provide an overall measure on the goodness-of-fit of the underlying 
data to the corresponding model, and each Criterion puts a penalty on the number of parameters 
used in the model. Based on these metrics, we compare the goodness-of-fit of the six separate 
pre-specified classes. There is no general consensus on the optimal criterion within the latent class 
modelling literature as the individual criteria metrics are derived from different principles and as a 
results have differing properties (Brown et al., 2014). However, as Table 5 highlights, all four crite-
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rion metrics indicate that the two-class model provides the best fit to the data. Based on these results, 
we proceed by using a two-class specification.

We also examine class selection from an energy efficiency perspective. As indicated in Sec-
tion 3, the estimated efficiencies are likely to be biased within the entire sample because stochastic 
cost frontier estimates do not control for latent differences in household technologies. Based on the 
stochastic cost frontier estimates for the different classes, and the sample as a whole, we estimate 

Table 1: Descriptive statistics—energy usage characteristics
Variable   Obs   Mean   Std Dev   Min   Max  

Annual energy consumption data           
 Total costs of energy services ($US)   12,007   2,038   1,174   75   32,012  
 Total output of energy services (million BTUs)   12,007   90.18   54.44   1.89   1,096.08  
 Electricity prices ($US per kilowatt-hour)   12,007   0.13   0.05   0.02   1.73  
 Natural gas prices ($US per therm)   12,007   1.26   0.35   0   3.5  
Annual expenditures on energy resources           
 Electricity ($US)   12,007   1,353   905   50   19,040  
 Natural gas ($US)   12,007   492   578   0   6,355  
Energy building code regulations           
 Meets or exceeds 2012 IECC standards   12,007   0.39   0.49   0   1  
Share of annual energy budget           
 Electricity   12,007   0.68   0.24   0.03   1  
 Natural gas   12,007   0.25   0.24   0   0.92  
Cooling and heating degree days           
 HDD   12,007   4,136   2,260   0   13,346  
 CDD   12,007   1,443   1,021   0   5,357 

Table 2: Descriptive statistics—climate region and locational characteristics
Variable   Obs   Mean   Std Dev   Min   Max  

Building America climate region           
 Very Cold/Cold   12,007   0.33   0.47   0   1  
 Hot-Dry/Mixed-Dry   12,007   0.14   0.35   0   1  
 Hot-Humid   12,007   0.18   0.38   0   1  
 Mixed-Humid   12,007   0.29   0.45   0   1  
 Marine   12,007   0.06   0.23   0   1  
Census division           
 New England   12,007   0.08   0.27   0   1  
 Middle Atlantic   12,007   0.11   0.31   0   1  
 East North Central   12,007   0.10   0.29   0   1  
 West North Central   12,007   0.14   0.35   0   1  
 South Atlantic   12,007   0.19   0.39   0   1  
 East South Central   12,007   0.05   0.22   0   1  
 West South Central   12,007   0.10   0.30   0   1  
 Mountain North   12,007   0.04   0.19   0   1  
 Mountain South   12,007   0.03   0.17   0   1  
 Pacific   12,007   0.17   0.38   0   1  
AIA Climate Zone           
 ≤ 2,000 CDD and ≥ 7,000 HDD   12,007   0.10   0.30   0   1  
 < 2,000 CDD and 5,500–7,000 HDD   12,007   0.20   0.40   0   1  
 < 2,000 CDD and 4,000–5,499 HDD   12,007   0.25   0.44   0   1  
 < 2,000 CDD and < 4,000 HDD   12,007   0.22   0.42   0   1  
 ≥ 2,000 CDD and < 4,000 HDD   12,007   0.22   0.42   0   1  
Metropolitan indicator           
 Indicator for MSA   12,007   0.85   0.35   0   1  
 Indicator for urban   12,007   0.80   0.40   0   1 
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efficiency indexes for each class. The descriptive statistics for the efficiency indexes are listed in 
Table 6. The overall sample mean value of energy efficiency suggests that households consume their 
energy resources relatively efficiently. That is, on average, households consume energy with 86% 
efficiency, relative to the theoretical cost-minimizing frontier. As the entire sample is stratified, the 
average efficiency level increases (incrementally) as predicted—this is arguably due to the fact that 
we are controlling for latent household-level energy technologies within each of the classes. The dif-
ferences in estimated efficiencies between strata (and the sample mean) imply that we can reject the 
hypothesis that there are no differences in technical efficiencies between classes (what we label as 
“Hypothesis two” above). We further tested this hypothesis through a series of (t-tests) mean-com-
parison tests and reject the null hypothesis (no statistically significant difference between the mean 
values) in favor of the alternative. In other words, we find relatively strong evidence of statistically 
significant differences in mean efficiencies between each of the classes. The last estimated mean and 
standard deviation of the efficiency index, labeled in Table 6 as “Posterior two-class,” is based on 
the class-level (posterior probability weighted) efficiency index offered in equation (20).

Casual observation of the differences in the average efficiency estimates may seem eco-
nomically inconsequential; however, consider that the average household (within the sample) con-
sumed approximately 90 million BTUs of energy over a one-year period. A difference in efficiency 
as small as one percent is approximately equal to 0.9 million BTUs of energy consumption. In 2014, 
the average residential lightbulb (converted from kilowatt-hours) consumed about 3,412 BTUs in 

Table 3: Descriptive statistics—physical characteristics of housing
Variable   Obs   Mean   Std Dev   Min   Max  

Characteristics of the home           
 Total square feet of interior   12,007   2,174   1,451   100   16,122  
 Indicator for renter   12,007   0.31   0.46   0   1  
 Year residence was built   12,007   1,971   25   1,920   2,009  
 Number of refrigerators   12,007   1.27   0.51   0   7  
 Av. temperature of thermostat   12,007   70   4   40   90  
Exterior wall type           
 Brick   12,007   0.25   0.43   0   1  
 Wood   12,007   0.19   0.39   0   1  
 Siding (aluminum, vinyl, steel)   12,007   0.34   0.47   0   1  
 Stucco   12,007   0.15   0.36   0   1  
 Composite (shingle)   12,007   0.02   0.12   0   1  
 Stone   12,007   0.01   0.09   0   1  
 Concrete   12,007   0.05   0.21   0   1  
General use of other fuels           
 Natural gas   12,007   0.62   0.49   0   1  
 Heating oil   12,007   0.07   0.26   0   1  
 Liquid petroleum gas   12,007   0.43   0.50   0   1  
 Wood   12,007   0.12   0.32   0   1  
 Kerosene   12,007   0.01   0.12   0   1  
 Solar   12,007   0.01   0.11   0   1  
Demand for energy conservation           
 Well insulated home   12,007   0.36   0.48   0   1  
 Adequately insulated home   12,007   0.44   0.50   0   1  
 Poorly insulated home   12,007   0.19   0.40   0   1  
 Single-paned windows   12,007   0.42   0.49   0   1  
 Double-paned windows   12,007   0.56   0.50   0   1  
 Triple-paned windows   12,007   0.01   0.12   0   1  
 Home energy audit   12,007   0.05   0.22   0   1 
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Table 4: Descriptive statistics—socio-economic characteristics
Variable   Obs   Mean   Std Dev   Min   Max  

Socioeconomic data of occupants           
 Female head of house   12,007   0.47   0.50   0   1  
 Retired   12,007   0.30   0.46   0   1  
 Social security income   12,007   0.08   0.27   0   1  
 Bachelor’s degree   12,007   0.31   0.46   0   1  
 Number of persons residing   12,007   2.67   1.52   1   14  
 Poverty   12,007   0.14   0.35   0   1  
 Married   12,007   0.60   0.49   0   1  
Racial makeup of occupants           
 African American   12,007   0.13   0.33   0   1  
 White/Caucasian   12,007   0.79   0.41   0   1  
 Asian   12,007   0.04   0.19   0   1  
 Hispanic   12,007   0.14   0.35   0   1  
Type of dwelling           
 Mobile home   12,007   0.04   0.21   0   1  
 Apartment building   12,007   0.23   0.42   0   1  
 Single family home   12,007   0.72   0.45   0   1  
Other characteristics           
 Number of bedrooms   12,007   3   1   0   13  
 Use air conditioning   12,007   0.82   0.38   0   1  
 Space heating   12,007   0.96   0.19   0   1 

Table 5: Prior class probability metrics—information criterion results
Model   Number of parms  BIC   AIC   CAIC   HQIC  

2-class model   155   –7484.09   –8644.83   –7327.09   –8255.48  
3-class model   244   –6359.50   –8185.63   –6112.50   –7573.07  
4-class model   333   –5346.76   –7838.28   –5009.76   –7002.53  
5-class model   422   –3883.90   –7040.82   –3456.90   –5981.87  
6-class model   511   –3015.13   –6837.44   –2498.13   –5555.28  

Notes: BIC denotes the (Schwartz) Bayesian Information Criterion; AIC denotes the Akaike 
Information Criterion; CAIC denotes denotes the Consistent Akaike Information Criterion; and, 
HQIC denotes the Hannan-Quinn Information Criterion. The model with the best fit to the data is 
determined by the lowest value (highlighted in bold) of  each metric.

Table 6:  Descriptive statistics of the 
efficiency indexes for the 
different class stratifications

Class   Mean   Std Dev  

2  0.8680   0.0781  
3  0.8705   0.0775  
4  0.8715   0.0779  
5  0.8725   0.0784  
6  0.8715   0.0793  
Full sample   0.8590   0.0786  
Posterior two-class   0.8721   0.3305  

Notes: The final efficiency index calculation is 
based on equation (20).
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one hour (EIA, 2015a). Thus, a three-percent difference in estimate efficiency is roughly equivalent 
to 265 hours (0.9e+6/3412) of lightbulb usage throughout the year.

For the two-class specification, we display the prior and posterior class probabilities and 
other class characteristics, based on averages within the two separate classes. The prior and poste-
rior probabilities are displayed in Table 7.

5. EMPIRICAL RESULTS

In this section we discuss the empirical results for the estimation procedure outlined in Sec-
tion 3. We first estimate the stochastic frontier model using standard ordinary least squares (with-
out restrictions) and estimate the various theoretically-consistent models including the latent-class 
stochastic frontier model, which we posit should provide the least biased estimates of technical 
inefficiency. In addition to providing the estimates from the espoused latent-class stochastic frontier 
model, we examine and measure the potential rebound effects. We will initially omit the condi-
tioning factor estimates when displaying the regression results; however, in the final portion of 
this section we will more closely examine the conditioning factors—i.e., physical and socio-eco-
nomic characteristics of the individual households—to ascertain why some units consume energy 
resources more (in)efficiently than others within the sample or class. However, it is important to first 
briefly explain the variable we used to estimate heteroskedasticity within the (in)efficiency term.

As shown in Figure 1, forty states have some type of energy building code regulations. 
However, fourteen of the states (and the District of Columbia) have more stringent regulations 
than the rest of the country. These fifteen jurisdictions have building code regulations that meet or 
exceed the 2012 International Energy Conservation Code standards. Notably, 2012 falls outside of 
the range of observation for our study, but we assume that if a jurisdiction required rigorous regu-
lations in 2012, then it is likely the jurisdiction was equally as strict three years prior in 2009 (the 
temporal period of our observations). (These jurisdictions include California, Delaware, the District 
of Columbia, Florida, Illinois, Iowa, Maryland, Massachusetts, Michigan, Minnesota, Nevada, New 
Jersey, Rhode Island, Vermont, and Washington.) The descriptive statistics in Table 1 indicate that 
approximately forty percent of our sample falls within one of these jurisdictions.

5.1 Latent-class stochastic cost frontier model results

The parameter estimates for the stochastic cost frontier model are presented in Table 8. 
The table contains the frontier estimates for ordinary least squares (OLS), and the coefficients (and 
standard errors) in the third and fourth column are estimated by maximum likelihood. As a pre-
liminary examination of the data, columns two and three of Table 8 offer the results for the entire 
sample (i.e., we assume the sample is composed of only one homogeneous class). The results of the 

Table 7:  Prior and posterior class probabilities (averages in decimal form) and other average 
class characteristics

             Total energy    
  Number of      Total energy  consumption    
Class  households Prior   Posterior  costs (US$)  (thousand BTUs)  Total square feet 

  6,004   0.5000   0.5226   1,854.20   74.81   2,703.09  
  6,003   0.4999   0.4774   2,221.46   105.55   1,644.14  
Entire sample   12,007   N/A   N/A   2,037.81   90.18   2,173.66 
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MLE (the stochastic cost frontier) specification suggests that state-level energy building codes 
play a role in household energy consumption, as the estimated parameter for the “Regulations” 
(within the variance of the inefficiency parameter, σ2

η) is statistically significant at the one percent 
level. Moreover, the positive estimated sign on the term “Regulations” suggests that building codes, 
counter-intuitively, lead to an increase in total household-level energy expenditures. More specifi-
cally, the average marginal effects of “Regulations” implies that if a household is located in a state 
with rigorous energy building codes, then the house, on average, is likely to increase total energy 
expenditures by approximately three percent. (We explore this argument further below). The OLS 
specification, on the other hand, does not provide separate estimates for the noise term, vi, and the 
inefficiency term, ηi, because OLS implicitly treats εi (the composite error term) as the stochastic 
error (and ignores any potential technical inefficiency). As such, the OLS specification should yield 

Table 8:  Partial effects estimates for the cost frontier analysis (heteroskedastic 
error term)

Parameters   OLS   Full Sample   Class 1   Class 2  

Cost frontier         
 Total consumption   1.02***   1.00***   1.34***   0.01  
  (0.07)   (0.05)   (0.07)   (0.11)  
 Total consumption sq’d   –0.06***   –0.06***   –0.09***   –0.04***  
  (0.01)   (0.01)   (0.01)   (0.01)  
 Elec prices   1.64***   1.47***   1.74***   1.02***  
  (0.14)   (0.09)   (0.12)   (0.15)  
 Nat gas prices   0.56***   0.65***   0.47***   0.74***  
  (0.15)   (0.10)   (0.14)   (0.14)  
 Elec prices sq’d   –0.41***   –0.54***   –0.57***   –0.45***  
  (0.05)   (0.02)   (0.03)   (0.03)  
 Nat gas prices sq’d   –0.15***   –0.19***   –0.13***   –0.23***  
  (0.05)   (0.04)   (0.05)   (0.05)  
 Elec × nat gas prices   –0.04***   –0.03***   –0.03***   –0.02***  
  (0.01)   (0.00)   (0.01)   (0.01)  
 Elec × consumption   –0.17***   –0.19***   –0.21***   –0.14***  
  (0.01)   (0.01)   (0.01)   (0.01)  
 Nat gas × consumption   0.03***   0.04***   –0.03***   0.04***  
  (0.00)   (0.00)   (0.00)   (0.00)  
 Constant   –21.27***   –21.73***     
  (4.71)   (4.24)     

Efficiency estimates         
 σ2

η        
  Regulations  —  0.34***   0.54***   0.12***  
 —  (0.04)   (0.06)   (0.05)  
  Constant  —  –3.20***   –3.68***   –3.10***  
 —  (0.04)   (0.07)   (0.05)  
 σ2

v        
  Constant  —  –4.56***   –4.45***   –4.81***  
 —  (0.04)   (0.05)   (0.06)  
Average marginal effects of Regulations        
 E(η)    0.03   0.04   0.01  

Observations   12,007   12,007   6,004   6,003  
R2   0.92  —    

Notes: Standard errors in parentheses. The super scripted symbols denote the following  p-values: ‘***’ 
p < 0.01, ‘**’ p < 0.05, and ‘*’ p < 0.1. The additional control variables are included in the regression but 
the estimated coefficients of these variables are reported in Table 11 below. All variables are expressed in 
natural logarithms.
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a normally distributed error term. However, the estimated skewness and kurtosis for the OLS model 
is 0.53 and 5.65 (not provided); and, a skewness/kurtosis hypothesis test for normality (i.e., the 
null hypothesis) was strongly rejected at a one percent significance level. The positive value of the 
skewness estimate implies that the error term is skewed to the right, which is consistent with the 
assumption of a cost frontier model (Kumbhakar et al., 2015).

For both specifications, the estimated cost frontiers are increasing in output (consumption), 
electricity, and natural gas input prices, as predicted by theory. The cost frontier implies concav-
ity with respect to the input prices as the second derivatives of the frontier (with respect to input 
prices) are negative in both models. Additional analysis confirmed that both electricity and natural 
gas prices are positively monotonic with respect to the cost frontier. Further, an examination of the 
Hessian matrix reveals that the model satisfies the concavity condition for the input prices.

A reasonable postulate is that if a house is located within a jurisdiction that has stricter 
building code requirements, then it should, on average, lead to greater technical efficiency gains. 
Our analysis of the full sample reveals just the opposite—the estimated coefficient on the effect of 
regulations on technical efficiency is 0.34, which is statistically significant at the one percent level. 
This positive coefficient implies that regulations are leading to an increase in household energy 
costs. However, this estimated coefficient cannot be interpreted directly—the actual impact is based 
on the marginal effect of regulations on inefficiency (Kumbhakar et al., 2015). Based on this insight, 
the calculated marginal effect of regulations, on the mean of inefficiency, is approximately equal to 
0.028. In other words, the estimate implies that stricter building codes, on average, lead to about a 
three-percent overuse of energy resources. The positive estimated effect may suggest a type of en-
ergy rebound effect, wherein the regulations require greater levels of energy efficiency but inadver-
tently lead to households consuming more energy because the effective cost of energy has decreased 
as a result of increased efficiency standards within the home. To get a more accurate depiction of the 
effect of regulations on technical inefficiency, we now turn to the class-level cost frontier analysis 
that should offer less biased estimates of technical inefficiency.

Columns four and five of Table 8 offer the parameter estimates for each of the latent class 
cost frontier models. That is, the data-driven method (outlined in Section 3.2) suggests that the 
underlying sample is best represented by the two-class model. The additional control variables, 
outside of the normal cost frontier variables displayed in the table, are omitted here for ease of 
exhibition, but the additional controls are offered in Table 11. The table contains two parts: the cost 
frontier estimates and the error terms. We do not impose the price homogeneity restrictions on the 
input prices, as we found relatively strong evidence of monotonicity and concavity before. (The 
discerning reader should not interpret this as a rejection of the homogeneity assumption. Rather, 
our maximum likelihood algorithm is complicated enough without having to impose any additional 
restrictions on the maximization problem, so we elected not to impose the homogeneity condition to 
improve computation). As predicted by theory, the estimated cost frontier elasticities are positively 
increasing in output (although, the estimate is only statistically significant for class one), electricity 
prices, and natural gas prices. The estimated technical efficiency term, σ2

η, is highly statistically sig-
nificant in both classes. The differences in estimated (in)efficiency across the classes lends support 
to our hypothesis of the underlying sample being characterized by unobserved heterogeneity.

The estimated cost frontiers also provide a measure of scale economies. Returns to 
scale (RTS) can be estimated, at the sample mean, as one minus the output cost elasticity: 

= 1 ln / ln− ∂ ∂RTS C q, where q denotes the total amount of energy consumption. The RTS esti-
mates for class two, although insignificant, are less than unity indicating the presence of increasing 
returns to scale. The RTS estimate for class one, on the hand, is less than zero indicating the presence 



A Top-Down Economic Efficiency Analysis of U.S. Household Energy Consumption / 21

Copyright © 2018 by the IAEE. All rights reserved.

of decreasing returns to scale. These results imply that, on average, there are other potential gains 
to be had (in energy savings) for households in class two. (We will explore these implications more 
thoroughly in the next subsection.) Neither of the class’s output elasticity estimates exhibit constant 
returns to scale. Therefore, we can reject the constant returns to scale hypothesis (what we label 
above as “Hypothesis four”) for each of the individual classes; however, we cannot reject hypothesis 
four for the entire sample (column four of Table 8).

We can also use the parameter estimates of Table 8 to test a Cobb-Douglas functional spec-
ification (or what we labelled as “Hypothesis three” above). The Cobb-Douglas restriction, to the 
translog cost function specification, is determined by the statistical significance of the coefficient on 
the cross-product of electricity and natural gas prices (or what is labelled in Tables 8 as “Elec × nat 
gas prices”). The Cobb-Douglas restriction can be strongly rejected as the cross-product estimate is 
highly statistically significant for both classes. These rejections imply that a Cobb-Douglas speci-
fication of the cost frontier model is too restrictive to represent the cost function for the underlying 
sample.

As observed above for the full sample, the average marginal effects of state-level residen-
tial energy building codes seems to induce higher energy costs for households in both classes. Such 
codes arguably induce a four percent and one percent increase in energy expenditures for house-
holds within class one and class two, respectively. However, before we accept the average marginal 
effects estimates it would be useful to further explore the potential for rebound effects using this 
particular methodology. In order to examine the rebound effects, we apply our results to a recently 
developed methodology offered by Orea et al. (2015).

5.2 A closer look at the rebound effects estimates

Orea et al. (2015) and Filippini and Hunt (2012) used a similar approach as the current 
study to analyze household energy efficiency. However, Orea et al. (2015) pointed out that a stochas-
tic frontier model approach, to analyzing household energy consumption and efficiency, implicitly 
imposes a zero rebound effect for each household (at least when the efficiency parameter is assumed 
to follow a half-normal distribution). In order to deal with this potential limitation, Orea et al. (2015, 
p. 602) proposed augmenting the efficiency term (η) specification so that it is multiplicative with the 
term (1 – R), where R denotes a scalar parameter that measures the direction and magnitude of the 
rebound effect. Given this definition, the authors were able to develop two specific definitions of re-
bound effects based on the estimated sign of R. That is, if the effect of an improvement in energy use 
is attenuated by a “partial’ rebound effect, then the estimated sign would be defined as: 0 < R < 1. If, 
on the other hand, the effect of an energy efficiency improve is exacerbated then the estimated sign 
should be defined as R < 0. Orea et al. (2015) define the former effect as a “partial rebound” and the 
latter as “super-conservative.” In the context of our study, the idea behind a partial rebound is that 
residential energy building codes lead to technological changes, which reduce the effective price of 
energy resources, and therefore induce increases in energy consumption. (The authors also define 
the case of R > 1, which they define as a “backfire effect;” however, the underlying assumptions 
within the stochastic cost frontier model preclude testing such an effect (Orea et al., 2015, p. 602)). 
Finally, if R = 0, then it implies that there is no rebound effect whatsoever.

In addition to the basic definitions of rebound effects, Orea et al. (2015) outlined the limita-
tions of estimating the augmented efficiency term (discussed in the previous paragraph). Basically, 
the researcher has to a priori restrict the parameters to estimate the augmented efficiency term. A 
discussion of the a priori restrictions is beyond the scope of the current paper; however, the reader 
is referred to Orea et al. (2015, p. 603) for a more detailed discussion of the restrictions. Neverthe-
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less, we produce the varying measures of rebound effects, based on the a priori restrictions, as a 
sensitivity analysis. As we found that state-level residential energy building codes arguably induce 
higher energy expenditures (on average), we limit our analysis to the unrestricted case and the par-
tial rebound effect.

The rebound effect estimates appear in Table 9. As highlighted in the table, households 
within class one consumed energy more efficiently (on average) than did households within class 
two. The unrestricted efficiency index measures suggested that class one households consumed 
their energy services with approximately 88% efficiency (i.e., relative to the cost-minimizing fron-
tier), whereas class two households consumed energy services with approximately 86% efficiency. 
However, the average efficiency (for both classes) dropped by approximately one percentage point 
when using the Orea et al. (2015) adjustments. Furthermore, the “Adjusted” partial rebound effect 
estimate suggests that households in class two consumed their energy services by approximately 
15% (1–0.8524) more than the cost-minimizing frontier.

The results in Table 9 seem to offer further credence to the estimates found within Table 8. 
Specifically, we found that strict building codes seem to induce greater energy expenditures among 
households (holding all else equal). The adjustments in Table 9 also take these regulations into ac-
count, and as demonstrated by the efficiency scores for the restricted effects estimates, the average 
efficiency scores decreased when we control for state-level energy building codes.

5.3 Prior probability estimates and class-specific partial effects estimates

Table 10 offers the prior probability estimates, from (18), which are based on the mul-
tinomial logistic (MNL) regressions. The product of the prior class probabilities and likelihood 
function estimates were used to calculate the posterior probabilities of class membership, based on 
equation (19). The explanatory variables within MNL regression consist of: dummy variables for 
Census divisions; dummy variables for climate regions; dummy variables for AIA climate zones; 
and, heating and cooling degree days. These selected explanatory variables are arguably exogenous 
as they are determined outside of the control of the individual households. As indicated in Section 3, 
we selected exogenous variables to minimize the influence of the prior probability selection on the 
cost frontier model estimates (and ultimately yield unbiased estimates of technical (in)efficiency) 
(Greene, 2002; Brown et al., 2014).

Recall that we initially stratified (according to quantiles, which are labeled as “Quantile[s]” 
within the table) the entire sample according to the energy intensity (ratio of total energy consump-

Table 9:  Energy efficiency index measures with and without the Orea et al. 
(2015) restrictions

  Mean   Std. dev.   Min.   Max.  

Latent-class sfa (without restrictions)         
 Class One   0.8790   0.6723   0.2921   0.9810  
 Class Two   0.8571   0.0891   0.2507   0.9910  
Partial rebound effect restrictions         
 Class One         
  Adjusted   0.8683   0.0719   0.2885   0.9804  
  Non-adjusted   0.8659   0.0727   0.2823   0.9798  
 Class Two         
  Adjusted   0.8524   0.0909   0.2461   0.0989  
  Non-adjusted   0.8490   0.0925   0.2376   0.9882  
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tion to total square feet) of consumption within each household. Therefore, the first quantile (the 
baseline comparison group of analysis labeled as “Quantile 1”) consisted of the least energy-in-
tensive households, followed by quantile two. The coefficients within the second quantile repre-
sent the directional effect on prior class membership. (To be precise, we should arguably analyze 

Table 10:  Prior probability estimates based on the 
multinomial logistic model

Multinomial logisitistic model   Quantile 1   Quantile 2  

Census divisions     
 Middle Atlantic     0.13  
    (0.16)  
 East-North Central     0.24  
    (0.15)  
 West-North Central     –0.09  
    (0.16)  
 South Atlantic     –0.40***  
    (0.15)  
 East-South Central     –0.52***  
    (0.14)  
 West-South Central     –0.25  
    (0.16)  
 Mountain-North     0.38***  
    (0.15)  
 Mountain-South     –0.21  
    (0.17)  
 Pacific     –0.15  
    (0.16)  
Climate regions     
 Hot-dry/Mixed-dry     0.65***  
    (0.18)  
 Hot-humid     0.47***  
    (0.12)  
 Mixed-humid     0.28  
    (0.19)  
 Marine     0.53***  
    (0.17)  
AIA Climate Zones     
 < 2,000 CDD and 5,500–7,000 HDD     –0.52**  
    (0.25)  
 < 2,000 CDD and 4,000–5,499 HDD     0.06  
    (0.21)  
 < 2,000 CDD and < 4,000 HDD     0.30*  
    (0.17)  
 ≥ 2,000 CDD and < 4,000 HDD     0.17  
    (0.14)  
 CDD     2e-4***  
    (0.00)  
 HDD     2e-4***  
    (0.00)  
 Constant     –1.76***  
    (0.23)  
Observations   12,007   12,007  

 Notes: Standard errors in parentheses. The superscript symbols denote the 
following p-values: ‘***’ p ≤ 0.01, ‘**’ p ≤ 0.05, and‘*’ p ≤ 0.1. There are 
no multinomial logistic coefficient estimates for the first class because it is 
the baseline comparison group. “AIA” denotes the American Institute for 
Architecture.
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the marginal effects instead of the coefficients to determine the probability of class membership. 
However, the sign of the marginal effects are the same as the estimated coefficients, and we are not 
particularly interested in the magnitude of the individual (marginal) effects, so we limit our analysis 
to the estimated coefficients only). A fairly large portion of the variables (Census division, climate 
region, climate zones, and degree days) are statistically significant indicating that the inclusion of 
the chosen variables conveys useful information in determining prior class probabilities, which in 
turn are used to determine the final class stratification. For example, the negative sign on the “South 
Atlantic” Census division variable (for quantile two) indicates that a household observation located 
within that particular region is less likely to belong to class two. Further, the sign on the climate 
region variable labelled as “Hot-dry/Mixed-dry” was also found to be positive for class two. The 
variable for cooling degree days (and heating degree days), which represents the demand for internal 
cooling (and internal heating), are positive and highly significant suggesting their inclusion provides 
useful information for class stratification.

The covariate estimates, used in addition to the theoretical cost frontier parameters, are 
displayed in Table 11. The parameter estimates for class one suggests that a ten percent increase in 
the square footage within a home would lead to a 0.2% decrease in energy costs. However, the class 
two estimates imply that a ten percent increase in footage would lead to a 0.1% increase in energy 
costs. Further, similar to the results in Levinson (2016), we found that newer homes, as identified 
by the coefficient estimates on “Year built” (Table 11) for classes one and two, arguably consume 
more energy. However, we also specify additional indicator variables for vintage of the home and 
estimates for the newest vintage (2004–2009) suggest that energy usage decreased marginally for 
households observed within class two.

The number of refrigerators (labeled as “Number of frigs” in Table 11) in a home is a fairly 
easy metric to determine how wasteful households are with their energy consumption, as some 
consumers have a tendency to purchase newer, energy-efficient refrigerators and keep older, less-ef-
ficient units for additional storage (Kim et al., 2006). We find consistent evidence that an increase 
in the number of refrigerators in the home leads to an increase in energy usage—the finding is also 
highly statistically significant across each of the classes. Consistent with our priors, the estimates 
imply that an increase in the number of bedrooms leads to an increase in energy consumption.

In addition to the two main energy inputs (electricity and natural gas) that we explored 
within the current study, the initial survey (RECS) provides data on the consumption of liquid pe-
troleum gasoline, kerosene, heating oil, wood, and solar energy. (We did not include the additional 
energy resources within the main cost frontier parameters because the survey lacked a sufficient 
number of observations for the latter five sources. The indicator for heating oil formed the base-
line comparison group for the other sources, so it was omitted from the regression results in Table 
11). A close observer may also notice that we include a control for natural gas usage (labelled as 
“Use nat gas” in Table 11)—this was due to the fact that only approximately 60% of the survey 
respondents indicated that they used natural gas, as opposed to 100% of respondents who indicated 
that they used electricity. If a survey entry for natural gas consumption was zero, we did not know 
if the household truly consumed zero units of natural gas or if it was missing data coded as zero. 
Therefore, we include the additional indicator variable for natural gas consumption to control for 
potential data censoring issues (Burbidge et al., 1988). Nevertheless, the indicator suggests an in-
verse relationship between natural gas consumption and energy usage—these results are negative 
and highly statistically significant across each of the class-level estimates. A small portion of the 
survey respondents use solar energy (approximately one percent of the overall responses); however, 
the coefficient estimates are insignificant.
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Table 11: Class-specific partial effects—covariates (heteroskedastic error)
Parameters   Class 1   Class 2   Parameters   Class 1   Class 2  

Characterists of home       Demographics     
 Total square ft   –0.02**   0.01*    Married   0.03***   0.04***  
  (0.01)   (0.01)     (0.01)   (0.00)  
 Metropolitan   –0.00   –0.01**    Poverty   0.01   0.01  
  (0.01)   (0.01)     0.01   0.01  
 Urban   –0.01**   –0.01**    Retired   –0.02***   –0.02***  
  (0.01)   (0.01)     (0.01)   (0.01)  
 Renter   0.00   –0.01**    College educ   –0.00   –0.02***  
  (0.01)   (0.01)     (0.00)   (0.01)  
 Year built   2.00**   3.05***    Caucasian   –0.01   –0.02***  
  (0.88)   (0.70)     (0.01)   (0.01)  
 Number of frigs   0.04***   0.04***    Latino   0.01   0.02***  
  (0.00)   (0.01)     (0.01)   (0.01)  
 Number of beds   0.07***   0.09***    African American   0.00   0.01  
  (0.01)   (0.01)     (0.01)   (0.01)  
 Single family   –0.01   0.03***    Asian   –0.00   –0.03***  
  (0.01)   (0.01)     (0.01)   (0.01)  
       No. of occupants   0.00   –0.00  
Vintage of home         (0.00)   (0.00)  
 1950s   –0.01   –0.02*    Soc sec income   0.03***   0.02***  
  (0.01)   (0.02)     (0.00)   (0.01)  
 1960s   0.02   –0.03*    HH age   –0.00   –0.01***  
  (0.02)   (0.01)     (0.00)   (0.00)  
 1970s   0.01   –0.02    HH male   –0.00   –0.01***  
  (0.02)   (0.02)     (0.00)   (0.00)  
 1980s   0.01   –0.03       
  (0.03)   (0.02)   Income     
 1990s   –0.00   –0.03    $20–40K   0.01   0.00  
  (0.03)   (0.02)     (0.01)   (0.01)  
 2000–2004   –0.00   –0.04    $40–60K   0.02*   0.01*  
  (0.03)   (0.03)     (0.01)   (0.01)  
 2004–2009   –0.03   –0.07**    $60–80K   0.03**   0.01  
  (0.04)   (0.03)     (0.01)   (0.01)  
       $80–100K   0.02*   0.03***  
Energy resource use         (0.01)   (0.01)  
 Use liq pet gas   0.00   –0.02***   ≥ $100K   0.05***   0.04***  
  (0.00)   (0.01)     (0.01)   (0.01)  
 Use nat gas   –2.29***   –2.80***       
  (0.17)   (0.17)   Conservation indicators     
 Use kerosene   –0.01   –0.03**    Use air cond   0.07***   0.07***  
  (0.02)   (0.02)     (0.01)   (0.01)  
 Use wood   –0.02***   0.01    Thermostat   0.23***   0.18***  
  (0.01)   (0.01)     (0.03)   (0.03)  
 Use solar   0.00   0.03    Well insulated   –0.02   –0.03  
  (0.02)   (0.02)     (0.02)   (0.02)  
       Adeq insulated   –0.02   –0.03  
        (0.02)   (0.02) 
       Poorly insulated   –0.02   –0.02  
        (0.02)   (0.02)  
       1-pane glass   0.00   0.01  
        (0.03)   (0.03)  
       2-pane glass   0.02   0.01  
        (0.03)   (0.03)  
       3-pane glass   0.01   0.02  
        (0.03)   (0.03)  
       Energy audit   0.01   0.01  
        (0.00)   (0.01)  

Observations   6,004   6,003   Observations   6,004   6,003  

 Notes: Standard errors in parentheses. The super scripted symbols denote the following  p-values: ‘***’ p < 0.01, ‘**’ p < 
0.05, and ‘*’ p < 0.1. All variables are expressed in natural logarithms.
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Columns four, five, and six of Table 11 highlight additional demographic and conserva-
tion-related covariates. The coefficient estimates indicate that if a survey respondent is married, he 
or she is more likely to consume additional energy within the home—the marginal effect is small, 
but highly statistically significant across both of the classes. The coefficient estimates suggest that 
if a respondent were to switch from unmarried to married, then we could expect a three-to-four 
percent (approximately US$50–$70) annual increase in the geometric mean of energy costs (ap-
proximately US$ 1755 for the entire sample) within the home. If a respondent was retired at the 
time of the survey, then we would expect a relatively small two percent decrease (in the geometric 
mean) in energy consumption. Moreover, if a respondent is college educated (“College educ”), then 
it only leads to small marginal decrease in energy consumption, which is only significant for class 
two. The respondent’s race (or ethnic heritage) does not seem to provide a clear pattern of an over-
all increase or decrease in energy consumption; although, householders of Latino or Asian descent 
consume marginally less energy relative to the other ethnicities represented in the survey. Consistent 
with expectations, the estimates suggest that the older the age (“HH age”) of the householder (the 
respondent to the survey), the less energy is consumed within the home—this possibly could be due 
to older respondents living on fixed incomes after retirement age. The expected sign and magnitude 
of the estimated coefficients for “HH age” are similar to the estimate coefficients for the “Retired” 
indicator.

Among the income indicators in Table 11, only the group of respondents with the high-
est incomes (equal to or exceeding US$ 100K per year) seem to offer a relatively clear pattern of 
energy consumption. That is, if a respondent was at the highest income bracket at the time of the 
survey, we would expect to see an approximate five percent annual increase in the geometric mean 
(approximately $88) of energy costs. This may imply that wealthier respondents are less sensitive to 
energy input prices, and therefore consume more energy (relative to the cost-minimizing frontier). It 
could also be argued that wealthier respondents own larger living spaces, which require more energy 
services. An auxiliary regression of total energy costs (in natural logs) on an interaction variable of 
$100K-per-year respondents and the total number of household bedrooms (in natural logs) indicates 
that a ten percent increase (in the interaction term) leads to an approximate 4% increase in average 
energy costs. Our results suggest that wealthier respondents demand larger homes and by extension 
consume more energy services.

Beyond demographic variables, we explore indicators for conservation behavior among 
households—the estimation results are presented at the bottom of Table 11. Consistent with expecta-
tions, if a household uses air conditioning (labelled as “Use air cond”), then overall household-level 
energy costs increase. The estimates imply that the use of air conditioning raises the geometric 
mean of average energy costs by seven percent per year. The intuition with a household’s average 
thermostat setting (labelled as “Thermostat’) is similar to that of air conditioning—that is, all else 
equal, a ten percent increase in the average thermostat setting (to control internal heating and cool-
ing) leads to an approximate two percent increase in average annual energy costs. The thermostat 
variable should be interpreted with skepticism as this is a self-reported value as opposed to an 
average annual reading from an auditor. Surprisingly, a household’s level of insulation and type of 
external windows does not appear to have a statistically significant affect on average annual energy 
costs. Again though, the insulation indicators should be viewed with skepticism as the responses 
are self-reported. Finally, we include an indicator if a home had received an energy audit (labelled 
as “Energy audit”) in the recent past. Inconsistent with our expectations, the variable for energy 
audit(s) is statistically insignificant.
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6. CONCLUSIONS AND POLICY IMPLICATIONS

The empirical results within the study yield many potential policy implications for U.S. 
residential energy building codes. One of the main findings is that recently promulgated energy 
building code regulations appear to have led to an increase, instead of a decrease, in average annual 
energy consumption. The current study—based on economic, not engineering analysis—sheds light 
on the fact that potential savings may change due to behavior responses. These findings are fairly 
robust to different demographic characteristics of occupants, physical characteristics of the home, 
geographic regions, climate data, and unobserved heterogeneity within the underlying technologies 
(for energy services) available in the home. The increase in average annual consumption could 
suggest a rebound effect, wherein stricter energy building code requirements lead to greater energy 
efficiency within the household and thereby reduce the effective costs of energy resources. The re-
duction in the effective costs could lead to an unintended consequence in which households end up 
consuming more energy resources as a result of the inducement to retrofit the home. Our findings 
are not entirely bleak, as we do find some evidence where energy code regulations serve their pur-
ported intent by reducing overall average energy consumption for some of the observations. From 
a regulatory standpoint, it is important for policymakers to further investigate why some codes lead 
to an increase in energy consumption whereas others lead to a decrease.

There are some potential shortcomings within the current study stemming from the lim-
itation of the underlying data. The RECS survey did not explicitly collect data on the average costs 
of the energy inputs (such as the average rate of electricity service per KWh); therefore, our study 
is limited by inferring these costs. Additionally, our analysis disregarded allocative inefficiency 
within household energy consumption. Future research may consider estimating both technical and 
allocative inefficiency of consumption. Further, future studies within this literature may consider 
offering a system of equations that includes additional theoretically-consistent assumptions in re-
gards to cost minimization. For example, in addition to the cost frontier model, researchers can also 
include the cost-share equations for each of the inputs. As we found fairly consistent evidence that 
cost frontier analysis satisfied the assumptions of monotonicity and concavity, we did not pursue the 
systems equation approach. Lastly, Brown et al. (2014) recently criticized the use of multinomial 
logistic models in latent class analysis. Part of the reason is due to the undesirable assumption of 
the Independence from Irrelevant Alternatives—wherein it is assumed that the probability of class 
membership, relative to any other, is independent of any additions to, or deletions from, the choice 
set (Train, 1993). Brown et al. (2014) propose using an ordered probit instead of the multinomial lo-
gistic model. In cases like the current study, where the ordering matters for potential class member-
ship, such an approach may prove to be fruitful for future research. As the ordered probit approach 
would have added only more complexity to the current study, we leave it for future research.

As governmental agencies and research institutions continue to gather rich microdata sets, 
economic theory (including stochastic frontier analysis) can provide several unique insights into 
household-level energy consumption and the efficiency of consumption, including the behavioral 
responses of households to increasingly stringent building codes. This differs from energy efficiency 
estimates based on engineering analysis, which often assumes away the behavioral aspects of house-
hold energy consumption. Thus, economic theory can aid in policy development for future energy 
efficiency standards or goals.
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