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Size, Subsidies and Technical Efficiency in Renewable Energy 
Production: The Case of Austrian Biogas Plants

Andreas Eder* and Bernhard Mahlberg**

ABSTRACT

This study estimates the efficiency of biogas plants and identifies determinants of 
inefficiencies. Data Envelopment Analysis is applied on a sample of 86 Austrian 
biogas plants for the year 2014, covering about one third of the installed electric 
capacity of Austrian biogas plants. We decompose technical efficiency into scale 
efficiency and pure technical efficiency (managerial efficiency). In a second-stage 
regression analysis the effects of subsidies and other variables on managerial effi-
ciency are investigated. The main results are: i) 34% of biogas plants in our sam-
ple are technically efficient, 40% are scale efficient and 50% are managerial effi-
cient; ii) small biogas plants (≤100 kW) are scale inefficient exhibiting increasing 
returns to scale; iii) production subsidies show a significant, negative relationship 
to managerial efficiency. The results are consistent with the hypothesis that pro-
duction subsidies provide a disincentive to managerial effort of plant operators.
Keywords: Data Envelopment Analysis, pure technical efficiency, scale 
efficiency, returns to scale, feed-in tariffs

https://doi.org/10.5547/01956574.39.1.aede

1. INTRODUCTION

World electricity generation from biogases1 grew from 3.7 TWh in 1990 to 13 TWh in 2000 
and 80 TWh in 2014. With an average annual growth rate of 13.1% since 1990, biogases are the 
third fastest growing source of renewable electricity in OECD countries, only outpaced by electric-
ity from solar photovoltaic (44.1%) and wind power (22.1%) (IEA, 2016a). 

The rise of electricity generation from biogas is mainly driven by OECD Europe account-
ing for 74% of world production. Germany, Italy and the UK are the largest producers in Europe 
generating 39%, 10% and 10% of world production in 2014, respectively. The second largest pro-
ducer is the United States accounting for 16% of world production. 

1.  Biogases produced by anaerobic digestion of biomass and thermal processes (gasification or pyrolisis) are included. 
However, the contribution of thermal conversion of organic matter to gas to global energy scenario is negligible (World Bio-
energy Association, 2016).  Biogases from anaerobic digestion cover landfill gas, sewage sludge gas and other biogases, such 
as biogas produced from the anaerobic fermentation of animal manure, agricultural residues and energy crops. Breweries and 
other agro-food industries are included. 
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As many renewable electricity technologies, such as solar photovoltaic and wind power, 
electricity generation from biogas struggles to compete with less costly but environmental unfriend-
ly fossil fuel electricity generation technologies. Therefore, many countries promote the develop-
ment and deployment of renewable energy and electricity generation from biogas in particular. The 
IEA estimates that in 2015, $150 billion were spent to support renewable energy worldwide—with 
the United States, Germany, China, Italy, Japan, the United Kingdom and Spain leading the way 
(IEA, 2016b).

For instance, in the U.S. electricity generation from biogas is supported by the Renewable 
Energy Production Tax Credit or the Business Energy Investment Tax Credit. Further support is pro-
vided by farm bill programs, especially the Rural Energy for America Program. In the EU indicative 
targets on the share of renewable electricity for each EU Member State for 2010 were introduced 
by the Renewable Electricity Directive (directive no. 2001/77/EC). Collectively, 22.1% of total 
Community electricity consumption should have come from electricity generated from renewable 
energy resources2 in 2010. Within this framework, all EU Member States have implemented policy 
support for electricity generation from renewable energy sources (RES-E). As documented by a 
Klessmann et al. (2011) and Kitzing et al. (2012) RES-E support schemes vary across EU Member 
states, including feed-in-tariffs (FITs), feed-in-premiums, tender schemes, quota obligations, invest-
ment grants, tax incentives and loans. All of these schemes subsidize RES-E generation in one way 
or another. However, FITs for renewable electricity generation have become the preferred renew-
able energy support mechanism in EU member countries. For instance, Germany, the UK, Italy and 
France provide FITs for biogas plants.

In that regard, Austria is by no means an exception. The national target for Austria was to 
increase the share of electricity produced from renewables in gross electricity consumption from 
70% in 1997 to 78.1% in 2010.3 In order to achieve this target, the Austrian authorities enacted the 
green electricity law (BGBl. I Nr. 149/2002) and the green electricity act (BGBl. II Nr. 508/2002), 
which became effective in 2003. Those legislations guarantee FITs for green electricity fed in to 
the power grid for a period of 13 years. The amount of the FIT depends on the renewable energy 
technology and the capacity of the power plant. Additionally, investment grants are provided, where 
eligibility and extend varies by Austrian federal states. 

Since 2003 the gross electricity generation from renewable energy resources increased 
from 35 TWh in 2003 to 45 TWh in 2010 and 50 TWh in 2014 (Statistics Austria). Biogas contrib-
utes to this increase: A rise of electricity generation from biogas plants from 42 GWh in 2003 to 543 
GWh in 2014 (E-Control) demonstrates the effectiveness of FIT policies. In 2014 biogas provided 
about 1% of total renewable electricity production in Austria. The number of biogas plants increased 
from 87 with an installed capacity of 15 MW in 2003 to 289 plants with an installed capacity of 80.5 
MW in 2014. All of these plants make use of the FIT provided by the green electricity act.4 

In 2014 the average FIT for biogas plants was 17.53 cent/kWhel, whereas the average ex-
change price for electricity was 3.54 cent/kWhel (E-Control). The difference between FITs and the 
exchange price is financed through fees paid by electricity consumers. The expiration of FITs for 
many plants in the foreseeable future and the large gap between FITs and exchange prices illustrate 
the need for increasing the competitiveness of Austrian biogas plants. The efficient operation of bio-
gas plants seems to be a necessary condition for making biogas plants ready for the market. 

2.  Including hydro power, biomass, wind, solar, geothermal, wave, tidal, landfill gas, sewage plant gas and biogas.
3.  Assuming gross electricity consumption is 56.1 TWh in 2010.
4.  Plants not receiving FITs are of minor importance. They only produce 36 GWh electricity, which is 6% of the electric-

ity produced from biogas in 2014. 
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The aim of this study is to i) assess the technical efficiency of Austrian biogas plants and 
identify efficient plants which can serve as a benchmark for other plants, ii) analyse returns to scale 
of biogas technology, and iii) investigate the impact of subsidies and other variables on pure tech-
nical efficiency (managerial efficiency). Data Envelopment Analysis (DEA) is applied to estimate 
technical efficiency and returns to scale of 86 biogas plants in Austria. The sample covers nearly 
one third of total electricity generation of Austrian biogas plants. A second-stage regression analysis 
investigates the effect of subsidies and other factors on managerial efficiency.

The previous literature roughly applies two approaches for assessing the efficiency of bio-
gas plants. The first approach uses multi-criteria decision analysis methods dominated by DEA (see 
e.g.  Braun et al., 2007; Madlener et al., 2009; Ðatkov and Effenberger, 2010). The second approach 
is based on the derivation and selection of meaningful performance figures as in Ðatkov et al. (2012, 
2014). 

One advantage of DEA is that it can be used to test for returns to scale and to determine the 
most productive scale size for biogas plants. It is also possible to decompose the technical efficiency 
measure to depict the source of inefficiency. That is whether inefficiency is caused by inefficient 
operation (managerial inefficiency) or by disadvantageous scale size (scale inefficiency). The choice 
for DEA is motivated by the aforementioned merits and the extensive data requirements needed for 
the efficiency assessment methods based on performance figures.

A novelty of this study is that a nearly complete set of inputs and outputs for a large sample 
of biogas plants is applied. Previous studies (e.g., Filler et al., 2007; Madlener et al., 2009) suffer 
from i) omitting essential inputs such as capital, heat or other costs and ii) small sample size. Con-
trary to standard radial efficiency measures a comprehensive efficiency measure (Asmild and Pastor, 
2010) is utilized, providing a more accurate performance index. As far as we know, this analysis 
is the first exhaustive study on biogas plants using DEA. There exists a large literature examining 
the effect of subsidies on farm efficiency,5 and some few studies analyse the impact of subsidies on 
the efficiency of renewable energy manufacturers (e.g. Zhang et al., 2014). Though, as far as we 
know, we are the first examining the relationship between subsidies and pure technical efficiency of 
renewable energy producers. 

The article proceeds as follows: Section 2 outlines the methods used in this analysis. Sec-
tion 3 describes the data and develops the empirical model. Section 4 presents the results of the 
analysis and section 5 concludes with some final remarks. 

2. METHOD

In this section we outline how technical efficiency is measured by DEA. DEA is a non-para-
metric frontier technique introduced by Charnes at al. (1978) and Banker et al. (1984) that measures 
the inefficiency of a particular plant by its distance from the best practice frontier constructed by the 
best-performing plants (or firms) within a sample. This method is well established for evaluating the 
relative inefficiency of a set of comparable observations that transform multiple inputs into multiple 
outputs. Based on linear programming techniques and without introducing any subjective weights 
or assuming any functional form of a production function, DEA provides an estimate of inefficiency 
of each plant compared to the best practice frontier.

5.  Latruffe and Minviel (2013) provide an excellent literature review on the impact of public subsidies on farm technical 
efficiency.
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The basic principle of our approach is shown in Figure 1. A set of plants 1, 2,... 6 with 
each plant consuming different amounts of two inputs, input 1 and input 2, and producing the same 
amount of a single output. For a given amount of produced output, plants using smaller amounts of 
the inputs will be the efficient ones. Therefore, DEA applied to this set of plants will identify plants 
3 and 4 as efficient. The piecewise linear frontier is represented by the line between plant 3 and 4. 
Those plants provide an envelope around the entire data set plants. The plants 1, 2, and 5 are within 
this envelope and classified as inefficient. The data envelope has been notionally extended by the 
vertical line beginning at 3 and the horizontal line beginning at 4 to enclose the data set. The inef-
ficiency measure of e.g. plant 2 equals the ratio 22 ' / 2I  reflecting the relative distance between 2 
and 2' where I symbolizes an ideal point. Plant 6 is on the horizontal line extending the efficiency 
frontier and not fully efficient since it could reduce input 1 to the level of plant 4 while keeping input 
2 and the output constant. The difference between the levels consumed by input 1 of plants 6 and 4 
is called non-radial slack. It is usually not included in efficiency measures.

It is assumed that the production technology T  models the transformation of inputs, ,+∈ Nx   
into outputs, +∈ My  , ( ){ }, :  can produce =T x y x y . This means the technology consists of the set 
of all feasible input/output vectors. Following Chambers et al. (1998), the directional technology 
distance function is defined as ( ) ( ){ }, ; , : ,x y x yD x y g g sup x g y g Tβ β β= − + ∈



, where +∈ N
xg   

and +∈ M
yg   are the direction vectors. This function rescales the inputs and outputs simultaneously. 

If we choose =xg x   and 0=yg , then we define the special case of a proportional input distance 
function ( ) ( ){ }, ; ,0 : ,β β= − ∈



D x y x sup x x y T  which measures the proportional contraction of 
the input vector, x , given outputs, y . The distance function completely represents the production 
technology. Note that ( )1 , ; ,0 0> ≥



D x y x  if and only if ( ), ∈x y T . In addition, ( ), ; ,0 0=


D x y x  if 
and only if ( ),x y  is on the boundary or frontier. In the terminology of Chambers et al. (1998), that 
occurs when the production process is technically efficient. If ( ), ; ,0 0>



D x y x , then the production 

Figure 1: Efficiency Estimation using Range Direction Model (RDM)
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process is technically inefficient. Thus, ( ), ; ,0


D x y x  is an input oriented measure of technical in-
efficiency. The input oriented measure of technical efficiency is given by the value of the function 
( ) ( ), 1 , ; ,0= −



TE x y D x y x . 
The distance functions may be estimated in several ways. In our empirical work we com-

pute them by applying the linear programming approach outlined by Portela et al. (2004) called 
Range Directional Model (RDM), which is an extension of the Data Envelopment Analysis (DEA). 
The RDM is superior over usual DEA (cf. Charnes at al., 1978; Banker et al., 1984) since from its 
results an efficiency measure can be derived which captures radial inefficiency as well as non-radial 
slacks. Another advantage is its translation invariance and unit invariance. One could also calculate 
the distance functions using frontier econometric approaches. The main strength of DEA and de-
rived approaches may be its lack of parameterization; it requires no assumptions about the form of 
the production technology.

We assume that there are 1, ,= …k K  plants using 1, ,= …n N  inputs nkx . These inputs are 
used to produce 1, ,= …m M  outputs mky . For each observation inputs and outputs are non-nega-
tive. The computation of the efficiency scores can be reduced to a linear program for each individual 
plant in which the following optimization problem is solved:

max
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1
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where { }0 0
− = −n n k nkR x min x  referred to as the range of possible improvement of the nth input, 

β RDM  is the inefficiency score of the plant under investigation. This procedure maximizes the inef-
ficiency score β RDM  of a single plant and must be repeated for every plant in the sample. The effi-
ciency of the plant under investigation would be ( ), 1 β= −RDM RDMTE x y . This measure is closely 
related to the technical efficiency derived from the proportional input distance function in the sense 
that 0

−=x ng R  instead of =xg x . Contrary to a traditional radial DEA-model projecting to the origin, 
Model (1) projects inefficient plants to an ideal point (see Figure 1). Apart from this there is close 
similarity between the Model (1) efficiency measure and radial measures of efficiency traditionally 
used in DEA. 

Let RDM
CTE  denote the efficiency measure satisfying constant returns to scale (CRS) and 

RDM
VTE  be the efficiency measure satisfying variable returns to scale (VRS). The model assum-

ing CRS estimates technical efficiency developed by Farrell (1957) whereas the model assuming 
VRS estimates pure technical efficiency (managerial efficiency). Technical efficiency captures 
pure technical efficiency and scale efficiency. Pure technical efficiency ignores the impact of scale-
size by comparing a plant only to other ones of similar scale. Scale efficiency refers to the devi-
ation between CRS and VRS technologies. It is defined by the ratio of the efficiency measures 

( ) ( ) ( ), , / ,=RDM RDM RDM
C VSE x y TE x y TE x y  and measures how far the scale size of a plant is away 

from optimal. For plants operating at the optimal scale size CRS holds. Because the CRS-frontier 
envelops the VRS-frontier ( ) ( ), ,≤RDM RDM

C VTE x y TE x y  holds for all observations, and the measure 
for scale efficiency has an upper bound of one. At ( ), 1=RDMSE x y  the plant is fully scale efficient. 
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A value smaller than one indicates a potential to increase efficiency by rescaling the plant’s produc-
tion. Finally, in order to identify the type of returns to scale under which a plant operates, we also 
consider an efficiency measure satisfying non-increasing returns to scale (NIRS).

The Efficiency score from the RDM is not a comprehensive efficiency measure since it 
does not encapsulate all sources of inefficiency. For a discussion of the importance of non-radial 
slacks as a source of inefficiency see e.g. Sahoo et al. (2011) and the literature cited therein. Guided 
by the argument that slacks are important in identifying properly the efficiency of plants and in the 
spirit of Asmild and Pastor (2010) we define an input-oriented comprehensive efficiency measure as

( )
* *

* 0 0

1 10 0

1, 1
N M

RDM RDM n m

n mn m

nCTE x y
n m n m R R

τ τ
β

− +

− +
= =

 
= − − + + +  

∑ ∑
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where *β RDM  is the optimal solution to (1), { }0 0max+ = −m k mk mR y y  is the range of possible im-
provement of the mth output, and *

0τ −
n  and *

0τ +
m  represent the optimal input and output slacks, re-

spectively. These slacks have to be computed by the following second phase additive model derived 
from model (2) in Asmild and Pastor (2010):
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Such a procedure is only applicable for estimating efficiency assuming VRS. For a detailed discus-
sion on this issue see Asmild and Pastor (2010). Since in our analysis a comprehensive efficiency 
measure under CRS is not applicable due to zero input and output values, we report the non-com-
prehensive efficiency measures ( ),RDM

CTE x y  and ( ),RDM
VTE x y  derived from (1) in section 4.1 and 

use them for the scale efficiency and returns to scale analysis. However, since slacks represent a 
non-negligible source of inefficiency in our analysis, the more accurate comprehensive efficiency 
measure under VRS is used as dependent variable in the censored regression model (Tobit-model, 
see, e.g., Cameron and Trivedi, 2005) in section 4.2. 

3. DATA AND EMPIRICAL MODEL

The data in our analysis comes from the Austrian Compost and Biogas Association 
(ACBA). The ACBA collects data via online questionnaires filled in by biogas plant operators. The 
collected data include detailed information on technical characteristics of the biogas plants, invest-
ments as well as material and energy flows. The sample consists of 86 biogas plants for the year 
2014 and covers about 30% of biogas plants in Austria or one third of the installed electric capacity 
and gross electricity generation of Austrian biogas plants. 

This sample of Austrian biogas plants includes a wide range of plant types and operat-
ing conditions.  All plants have in common that they convert feedstock by anaerobic digestion 
into biogas. Most plants are agricultural plants using e.g. maize, animal manure and other energy 
crops as feedstock. Some plants use waste from e.g. gastronomy or food processing industry, which 
highlights their role as waste recycler and waste disposer. The vast majority of biogas plants uses 
the biogas produced in the digesters to generate electricity and heat in a combined heat and power 
plant (CHP). Only few plants upgrade biogas to biomethane for injection into the natural gas grid. 
Electricity is fed into the power grid. Heat is always used on the plant for heating the digesters. The 
surplus heat can be used for supplying district heating and drying services. Unutilized heat is wasted 
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into the atmosphere. The electricity demand of the biogas plants is covered by electricity from the 
power grid as well as from own production. Digestate can be used as valuable organic fertilizer. 
Extracting gas from digestate stored in sealed tanks is frequently applied. 

Table 1 shows some characteristics of the biogas plants in our sample. The sample includes 
plants with an installed nominal capacity of the combined heat and power unit (CHP) from 25 kWel 
to 1,672 kWel. There are seventy-four agricultural biogas plants in the sample using maize, animal 
manure, grass and other renewable raw materials. Eight plants are mixed plants also processing or-
ganic waste from gastronomy or food processing industry and in some cases from households. The 
share of waste in the input mass (in t of FM) for those plants ranges from 6 to 96%.  Four plants are 
pure waste plants solely processing organic waste. The business concepts of waste and agricultural 
biogas plants are different. While for waste plants the processing of feedstock (waste) also generates 
operating revenues (so-called “income from disposal”), for agricultural plants feedstock only causes 
operating costs. Therefore, waste plants have an incentive to increase the amount of waste disposed 
to maximize revenues. By contrast, agricultural plants usually try to minimize the amount of feed-
stock given the amount of outputs. 

With regard to the choice of inputs and outputs Cook et al. (2014) point out that “if the 
DEA problem is a general benchmarking problem, then the inputs are usually the ‘less-the-better’ 
type of performance measures and the outputs are usually the ‘more-the-better’ type of performance 
measures.” Based on this definition, we selected six inputs and four outputs summarized in Table 2.

All types of feedstock (except of waste) are considered as input. In order to reduce the num-
ber of inputs we derive a single measure for feedstock input. Thereby it is important to take account 
of the different energy contents of the various kinds of feedstock. The aggregation of the different 
substrates is based on guide values for the methane content of each substrate (see Appendix A). 

Other inputs included in the analysis are i) labour, ii) capital stock, iii) electricity demand, 
and iv) heat demand as well as v) other costs (including insurance and maintenance costs). Elec-
tricity consumption is known for those plants covering their demand from the power grid. For the 
other plants an electricity consumption of 12.5% of electricity production is assumed.6 The capital 
input variable is total investments until the end of 2014 including digesters, digester heating, CHPs, 

6.  According to experts (e.g. engineers planning biogas plants) 12.5% is a typical value and therefore a good approxi-
mation.

Table 1: Characteristics of Biogas Plants in the Sample
 Mean Std. Dev. Median Min. Max.

First start-up (year) 2004.67 1.42 2005 1999 2008
Number of digesters 2.2 0.46 2 2 4
Size
    Total digester volume (m³) 3,140 2,208 2,657 410 16,000
    CHP nominal capacity el. (kWel) 311 266 250 25 1,672
    Feedstock processed (t FM) 7,330 5,779 5,450 790 36,463
Feedstock shares in total FM input
    Maize (%) 39 27 40 0 100
    Manure (%) 21 23 12 0 91
    Other renewable raw materials (%) 17 18 11 0 75
    Grass (%) 14 23 2 0 93
    Waste (%) 9 27 0 0 100

Notes: The sample size 86. FM stands for fresh matter.
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stirrers and pumps, other machinery, power grid connection, local and district heating grid, gas pro-
cessing, gas grid connection and others.

The biogas produced in the digesters is used in a CHP to generate electricity and heat. 
Electricity and heat sold are therefore identified as outputs. Furthermore, three plants in our sample 
do not only produce heat and electricity, they also upgrade biogas to biomethane for injection into 
the natural gas grid. Biomethane, having a methane content of more than 98% compared to 55–60% 
of biogas, is considered as output as well. As mentioned above twelve biogas plants dispose waste 
and generate operating revenue out of this function. Taking this fact into account, following the 
studies about economic performance of the waste sector reviewed by Simões and Marques (2012) 
and in contrast to previous studies about biogas plants, such as Filler et al. (2007) and Madlener et 
al. (2009), waste is modelled as an output in our DEA-models.7

Table 3 provides some descriptive statistics for the selected input and output variables. CO2 
and methane emissions are undesirable outputs. Digestate can be used to fertilize agricultural land 
and permanent grassland. Due to data unavailability those outputs have to be excluded from the effi-
ciency analysis. Note that cultivation, harvesting and transportation of feedstock are not considered 
as they are processes outside of the system boundaries chosen in this study.

4. RESULTS

4.1 Estimated Efficiency Scores

Table 4 describes the distribution of the estimated efficiency scores under different plant 
size. Technical efficiency scores obtained from the Range Directional Model (RDM) assuming con-
stant returns to scale and pure technical efficiency scores derived from the RDM assuming vari-

7.  	 Allen (1999) and Dyckhoff and Allen (2001) argue that waste burned in a power plant is an undesirable object. Its 
destruction is desired and, therefore, waste should be maximized.

Table 2: Selection and Description of Input and Output Variables
Variables Description

Inputs

  Feedstock (Nm³ CH4) Aggregated methane content of the substrates, excluding waste. Reflects the energy 
content of the feedstock.

  Capital (Euro) Total investments until 2014 including e.g. CHP, digesters...

  Labour (h) Working hours for operating and managing the plant

  Electricity consumption (kWhel) Electricity consumption for operating the plant 

  Heat consumption (kWhth) Heat demand primarily for digester heating

  Other costs (Euro) Include e.g. insurance and maintenance costs

Outputs

  Electricity sold (kWhel) Amount of Electricity sold generated by the CHP

  Heat sold (kWhth) Amount of Heat sold generated by the CHP

  Biomethane sold (kWhho) Amount of biomethane injected into the natural gas grid

  Waste disposed (t FM) Amount of organic waste processed
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Table 3: Descriptive Statistics of Input and Output Variables used for DEA
Variables Mean Std. dev. Min. Max.

Inputs

  Feedstock (Nm³ CH4) 560,503 448,915 0 2,137,830

   Capital (Euro) 1,479,738 1,357,643 180,173 1,0340,234

    Labour (h) 2,185 3,270 190 20,700

    Electricity consumption (kWhel) 240,606 189,517 7,800 1,095,084

    Heat consumption (kWhth) 369,671 264,185 53,100 1,876,600

    Other costs (Euro) 147,395 162,854 6,900 1,174,366

Outputs

    Electricity sold (kWhel) 2,223,593 1,733,947 95,281 8,760,670

    Heat sold (kWhth) 1,109,677 1,273,382 0 6,584,899

    Biomethane sold (kWhho) 207,815 1,313,461 0 1,1253,906

    Waste disposed (t FM) 1,083 4,611 0 36,463

Note: The sample size is 86.

Table 4: Frequency Distribution of Technical and Pure Technical Efficiency of Biogas Plants 
under Different Plant Sizes

Technical efficiency—TEC
RDM

Small Medium Large All

Less or equal 100 kWel 101 to 500 kWel Above 500 kWel

Share of efficient plants 0.07 0.40 0.89 0.34

Share of plants with efficiency: 0.9 to 1.0 0.03 0.21 0.00 0.13

0.8 to 0.9 0.07 0.29 0.00 0.19

0.7 to 0.8 0.03 0.08 0.00 0.06

0.6 to 0.7 0.17 0.02 0.11 0.08

0.5 to 0.6 0.28 0.00 0.00 0.09

below 0.5 0.34 0.00 0.00 0.12

Number of observations 29 48 9 86

Median efficiency score 0.57 0.95 1.00 0.87

Pure technical efficiency—TEV
RDM

Small Medium Large All

Less or equal 100 kWel 101 to 500 kWel Above 500 kWel

Share of efficient plants 0.34 0.52 0.89 0.50

Share of plants with efficiency: 0.9 to 1.0 0.10 0.23 0.00 0.16

0.8 to 0.9 0.07 0.21 0.00 0.14

0.7 to 0.8 0.17 0.02 0.00 0.07

0.6 to 0.7 0.17 0.02 0.11 0.08

0.5 to 0.6 0.14 0.00 0.00 0.05

Number of observations 29 48 9 86

Median efficiency score 0.84 1.00 1.00 0.98

Ø nominal capacity CHP (kWel) 89 340 866 311

Note: Relative frequencies are reported based on efficiency scores derived from model (1) in section 2.
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able returns to scale are reported, all based on model (1).8 Biogas plants are grouped into small-  
(≤ 100 kW), medium- (100- ≤ 500 kW) and large-sized (> 500 kW) plants according to the installed 
electric capacity of the CHP.9

As indicated in the first row of Table 4, 29 biogas plants or 34% of the total sample are tech-
nically efficient. Those plants have pure technical efficiency and scale efficiency scores of one, mean-
ing that they are operated efficiently and have optimal scale size (equiv. exhibiting constant returns 
to scale or operating at most productive scale size). The share of technically efficient plants is mono-
tonically increasing with plant size. While only 7% of small-sized plants are technically efficient, 40% 
of medium-sized and 89% of large-sized plants are technically efficient. The vast majority, 79%, of 
small-sized plants have technical efficiency scores below 0.7. Only one (2%) medium-sized and one  
(11%) large-sized plant have technical efficiency scores less than 0.7.

Table 5 reports some descriptive statistics on efficiency scores by plant size and the num-
ber of plants being in the range of constant, increasing and decreasing returns to scale. As shown 
in the first row the average technical efficiency score is monotonically increasing with plant size: 
from 0.59 for small-sized, to 0.92 for medium-sized, and up to 0.96 for large-sized plants. The Kru-
skal-Wallis test indicates significant differences not only among technical efficiency but also among 
pure technical and scale efficiency of biogas plants across different size categories.

The average pure technical efficiency of the sample is 0.91 (cf. table 5). The corresponding 
values for small-, medium- and large-sized plants are 0.82, 0.95 and 0.97, respectively. The lower 
part of Table 4 shows the distribution of pure technical efficiency scores across plant size categories. 
43 biogas plants or 50% of evaluated biogas plants are operated efficiently. The share of efficiently 
operated plants increases from 34% (10 plants) for small-sized to 52% (25 plants) for medium-sized 
and 89% (8 plants) for large-sized plants. The other 50% of purely technically inefficient plants are 
not only inefficiently managed but most of them also exhibit scale inefficiencies.10 Purely technical 
inefficient plants can increase their efficiency by using fewer inputs and producing the same amount 
of outputs since other comparable efficient peer plants do so as well.

Due to inappropriate plant size (scale inefficiency) technical efficiency is low at some bio-
gas plants. Table 5 indicates that 60% (52 plants) of biogas plants in the sample are scale inefficient. 
While the vast majority of small-sized plants are scale inefficient (93%), the share of scale inefficient 
plants decreases to 50% for medium-sized plants, and only 11% (1 plant) of large-sized plants are 
scale inefficient. The average scale efficiency is 0.73 for small, 0.97 for medium and nearly 1 for 
large-sized plants.

While scale efficient plants operate under constant returns to scale, scale inefficient plants 
exhibit either increasing or decreasing returns to scale. For instance, plants with increasing returns 
to scale can increase their efficiency by increasing their inputs and thereby over proportionately 
increasing their outputs. To identify the type of returns to scale under which a biogas plant operates 
the method developed by Färe et al. (1985) is used. 

8.  In addition to RDM we have estimated efficiency by applying traditional radial DEA models assuming CRS (Charnes 
at al., 1978) and VRS (Banker et al., 1984). The efficiency scores turned out to be highly correlated with the RDM efficiency 
scores.

9.  The chosen thresholds correspond to the FIT scheme enacted by the Austrian green electricity act in 2002 (see section 
4.2). Choosing other thresholds for plant size does not alter the main conclusions derived from Table 4. The sensitivity of the 
results is checked by using e.g. the following thresholds:  ≤ 100 kW, 100-≤ 250 kW, 250-≤ 500 kW, > 500 kW or ≤ 100 kW,  
100–500 kW, ≥ 500 kW.

10.  44% (38 plants) of plants in our sample have both inefficiencies. For five plants (6%) the efficiency scores under VRS 
and CRS are equal to but smaller than one. Those five plants are classified as purely technically inefficient but scale efficient.
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The results are summarized in the lower part of Table 5: 58% of the plants in our sample 
operate under increasing returns to scale indicating that they are too small for being technically 
efficient. The vast majority of small-sized biogas plants operates under increasing returns to scale: 
93% or 27 out of 29 plants. The share of medium-sized plants operating under increasing returns to 
scale declines to 48% (23 out of 48), and there is no large plant exhibiting increasing returns to scale. 
Half of the medium-sized plants are scale efficient and operate under constant returns to scale. 89% 
of the large plants operate under constant returns to scale and have most productive scale size. Only 
two plants exhibit decreasing returns to scale. 

Table 5: Descriptive Statistics of Efficiency Scores by Plant Size
Small

Less or equal 100 kWel

Medium
101 to 500 kWel

Large
Above 500 kWel All

Technical efficiency        

  Mean 0.59 0.92 0.96 0.81

  Standard deviation 0.19 0.09 0.11 0.21

    Max. 1.00 1.00 1.00 1.00

    Min. 0.21 0.62 0.68 0.21

  Number of efficient plants 2 19 8 29

  % of efficient plants 0.07 0.40 0.89 0.34

Pure technical efficiency

  Mean 0.82 0.95 0.97 0.91

  Standard deviation 0.17 0.08 0.10 0.13

    Max. 1 1 1 1

    Min. 0.56 0.62 0.70 0.56

  Number of efficient plants 10 25 8 43

  % of efficient plants 0.34 0.52 0.89 0.50

Scale efficiency

  Mean 0.73 0.97 1 0.89

  Standard deviation 0.17 0.04 0.01 0.16

    Max. 1 1 1 1

    Min. 0.21 0.84 0.98 0.21

  Number of efficient plants 2 24 8 34

  % of efficient plants 0.07 0.50 0.89 0.40

Number of plants in the range of

  Increasing returns to scale 27 23 0 50

  Constant returns to scale 2 24 8 34

  Decreasing returns to scale 0 1 1 2

Share of plants in the range of

  Increasing returns to scale 0.93 0.48 0.00 0.58

  Constant returns to scale 0.07 0.50 0.89 0.40

  Decreasing returns to scale 0.00 0.02 0.11 0.02

Number of obs. 29 48 9 86

Note: Reported values are based on efficiency scores derived from model (1) in section 2.
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Statistical tests on returns to scale,11 as described in Bogetoft and Otto (2011), support the 
hypothesis that the biogas technology exhibits increasing returns to scale. This can be explained by 
i) declining investment costs per m³ digester volume, ii) increasing electric efficiency of the CHP, 
and iii) a less than proportional increase in labour requirements, as the size of the plant increas-
es (Walla and Schneeberger, 2008). Remember that cultivation, harvesting and transportation of 
feedstock are not considered in this analysis. Therefore, a more than proportional increase of phys-
ical inputs needed for feedstock transportation and digestate handling as plant size increases could 
mitigate or even outweigh the positive scale effects found in this study (Skovsgaard and Klinge 
Jacobsen, 2017).

To sum up, on average small-sized plants are less efficient compared to medium- and large-
sized biogas plants. They are not only less efficient due to their disadvantageous scale size (scale in-
efficiency) but also because of their inefficient operation (pure technical or managerial inefficiency). 

4.2 Explaining Pure Technical Efficiency

In this section we investigate factors potentially explaining the variation in pure technical 
efficiency (managerial efficiency). A second-stage regression using a Tobit model is applied. In par-
ticular, we are interested in the effect of investment subsides (IS) and production subsidies (PS) on 
pure technical efficiency. Note that the comprehensive measure of pure technical efficiency CTERD-

M(x,y) as defined in section 2 is used as dependent variable. We consider the comprehensive measure 
as more precise since it captures not only the radial part of inefficiency but also the non-radial slacks. 
Descriptive statistics of the variable CTERDM are available in Appendix B.

To investigate the relationship between PS and pure technical efficiency, we make use of the 
variation in FITs for renewable electricity as fixed in the green electricity act (BGBl. II Nr. 508/2002). 
The FIT scheme for green electricity produced in Austrian biogas plants determines four tariff lev-
els depending on plant size and taking into account economies of scale: i) less or equal 100 kWel  

(16.5 Cent/kWhel), ii) 101 to 500 kWel (14.5 Cent/kWhel), iii) 501 to 1000 kWel (12.5 Cent/kWhel) 
and iv) above 1000 kWel (10.3 Cent/kWhel). For waste processing plants those tariffs are reduced 
by 25%. Additionally, since 2012 each plant receives a premium of 4 Cent/kWhel compensating for 
increased operating costs (§ 22 BGBl. I Nr. 75/2011; ACBA). The FIT is guaranteed for 13 years.

PS are calculated by subtracting the average exchange price for electricity in 2014 
(3.53 Cent/kWhel, E-Control) from the individual FIT (including the 4 Cent/kWhel premi-
um). Biogas plants are then divided into four groups according to the level of the PS they re-
ceive. For each category a dummy variable is constructed, coded with one if the respective PS 
applies and being zero otherwise. Descriptive statistics for the dummy variables labelled i) PS 1  
(16.97 cent/kWhel), ii) PS 2 (14.97 cent/kWhel), iii) PS 3 (12.85 to 12.97 cent/kWhel), and iv) PS 4 
(below 12.85 cent/kWhel) are shown in Appendix B.12 Plants with coding one in variable PS 1 are 
used as the reference group in our regression analysis.

Contrary to the nation-wide applicable FIT regulation, the regulations on investment grants 
vary across Austrian federal states (Walla and Schneeberger, 2008; Wirth et al., 2013). While 82% of 

11.  We are testing the hypotheses that the technology set from which our observations are sampled exhibit i) constant 
returns to scale and ii) non increasing returns to scale. Both hypotheses can be rejected indicating that the technology set 
exhibits increasing returns to scale. 

12.  PS 1 = 16.5 + 4 – 3.53 = 16.97; PS 2 = 14.5 + 4 – 3.53 = 14.97; PS 3 = 12.5 + 4 – 3.53 = 12.97 (agricultural plants), 
and PS 3 = (16.5 * 0.75) + 4 – 3.53 = 12.85 (waste plants). PS 1 applies to all agricultural plants ≤ 100 kWel; PS 2 applies to 
all agricultural plants with 101 to 500 kWel; PS 3 applies to all agricultural plants with 501 to 1000 kWel and all waste plants 
≤ 100 kWel; PS4 includes all agricultural plants > 1000 kWel and all waste plants > 100 kWel.
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biogas plants received investment subsidies in Lower Austria, the share of biogas plants receiving in-
vestment subsidies is only 38% in Styria and 21% in Upper Austria.13 Investment subsidies are granted 
for the construction (mainly for heat usage) and mobile machinery of biogas plants. Access to fund-
ing also depends on plant size, whereas small biogas plants had easier access to investment subsidies. 
The relative and absolute amount of the investment grant is usually limited by an upper threshold (e.g.  
30% of total investment and 150,000 EUR in Lower Austria).

We apply two measures of investment subsidies in our analysis: i) a dummy variable taking 
the value one if any investment subsidy is received (IS DUMMY) and ii) the absolute amount of 
the investment subsidy measured in EUR (IS VALUE). 55% of biogas plants in our sample receive 
investment subsidies. On average investment subsidies amount to 12% of the total capital stock in 
2014. Investment subsidies reach values up to 37% of the capital stock, playing a substantial role 
in financing biogas plants. Investment subsidies are to a large extent received prior to 2007 and are 
supposed to be obtained at a time close to the start-up date.

The main objective of the Austrian FIT policy and the investment subsidy programs is to 
increase the generation of green electricity. Investment subsidy programs also intended to create 
capacities for green electricity, heat and fuel production to guarantee an adequate number of farmers 
a reliable base of life (BMLFUW, 2004). 

From a theoretical perspective the effect of investment and production subsidies on tech-
nical efficiency can be either negative or positive. If subsidies provide incentives to implement ef-
ficiency-improving innovations or keep technologies up to date, the effect of subsidies on technical 
efficiency could be positive. On the other hand, we could expect a negative impact of subsidies on 
pure technical efficiency, if subsidies provide a disincentive to managerial effort of plant operators 
and are used to increase leisure consumption (Martin and Page, 1983). With respect to the rent 
seeking theory of Tullock (1980) economic agents spend resources to obtain subsidies and political 
favours thereby restricting the amount of resources needed for efficient plant operation. Thus, the 
effect of subsidies on pure technical efficiency is an empirical question. 

Remember, that the dependent variable in our regression analysis is pure technical efficien-
cy, reflecting operational or managerial inefficiencies net of scale effects (see section 2). Neverthe-
less, we control for size in our regression models. Plant size is measured by the installed electric 
capacity of the CHP (in kWel), and is reflected by the variable SIZE. We introduce the plant size in 
addition to the variables for the FITs in order to disentangle the effects of FITs and of size.

Other factors included in the regression analysis are inter alia based on the studies of Fill-
er et al. (2007) and Pöschl et al. (2010). As far as we know, Filler et al. (2007) are the only ones 
investigating the determinants of technical inefficiencies of biogas plants through a second-stage 
regression analysis. They conclude that the number of full-load hours of the CHP and the number 
of digesters are positively related to technical efficiency. They do not find any effects of feedstock 
composition, organic loading rate, frequency of digester loading and size, measured as the installed 
electric capacity of the CHP, on technical efficiency. Pöschl et al. (2010) assess the energy efficiency 
of different biogas systems by primary energy input to output ratios. They find that significant vari-
ation in energy efficiency arises from feedstock resource, plant size, biogas utilization pathways and 
digestate management technique. In particular, energy efficiency could be enhanced by upgrading 
biogas for gas grid injection and recovery of residual biogas from enclosed digestate storage units. 

13.  Information on the distribution of biogas plants across Austrian federal states in our sample is available in Appendix 
B.
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The independent variables in our regression analysis include dummies for Austrian federal 
states to control for geographical and state-specific particularities (Wirth et al., 2013). We include 
several dummies to test whether certain plant types are more efficient than others: 

i)    A dummy for plants processing organic waste (WASTE) is included to test whether waste 
disposing plants are operated more efficiently than agricultural biogas plants. Distinct reg-
ulations applying for waste and agricultural plants could translate into different efficiency 
levels; 

ii)   A dummy for plants which upgrade biogas to biomethane (BIOMETHANE) for injection 
into the gas grid; 

iii)  We test the hypothesis that plants extracting gas from enclosed digestate storage units are 
more efficient by including a dummy for plants having a gas tight final depot (GAS TIGHT); 

iv)  The number of digesters may reflect different technological varieties of biogas plants. 
Therefore, we include two dummies capturing the effect of three-digester- (THREE) and 
four-digester-systems (FOUR) relative to two-digester systems (TWO). 

Furthermore, the age of the plant (AGE) is included to test for the presence of learning effects. In-
cluding the square of the age of the plant allows for decreasing returns to experience. 

According to Filler (2007) the organic loading rate (LOADING RATE) can have an impact 
on biogas yield: Higher loading rates (equivalent with long hydraulic retention times) increase the 
methane yield in m³ per day. However, higher loading rates decrease the methane yield per kg organ-
ic dry matter utilized. So there might be an optimal loading rate with respect to efficiency balancing 
substrate and capital utilization. To test this hypothesis, we do not only include the organic loading 
rate but also its quadratic term. Descriptive statistics of the independent variables included in our 
regression analysis are available in Appendix B.

Table 6 presents the results of the censored regression model (Tobit model). Estimated co-
efficients and robust standard errors are reported. Model 1 and Model 3 include a dummy (WASTE) 
for capturing the effect of waste processing plants. In Model 2 and Model 4 substrate shares of total 
feedstock use are applied (cf. Table 1), with maize share as the reference category. Regardless of the 
applied measure for waste plants, we do not find systematic differences in pure technical efficiency 
between waste plants and agricultural plants. As expected the effect of substrate composition or 
substrate shares is insignificant indicating that we took the different energy contents of the various 
feedstocks properly into account when estimating efficiency scores. 

The regression results show that the estimated coefficients of both investment subsidy mea-
sures have a negative sign throughout model 1 to 4. However, the null-hypotheses that the coeffi-
cients of the IS DUMMY and IS VALUE are equal to zero cannot be rejected in model 2 and model 
4 at the 10% significance level. The statistically significant effect of investment subsidy measures in 
model 1 and model 3 on pure technical efficiency is not robust to various model specifications. We 
conclude that the relationship between investment subsidies and pure technical efficiency scores is 
negative but statistically insignificant.

Biogas plants receiving 14.97 cent/kWhel production subsidies (PS 2) are more purely tech-
nically efficient than plants receiving 16.97 cent/kWhel (PS 1). This effect is statistically significant, 
at least at the 5% significance level, throughout all model specifications presented in Table 6. Sim-
ilarly, plants receiving 12.85 to 12.97 cent/kWhel (PS 3) and less than 12.85 cent/kWhel (PS 4) are 
more purely technically efficient compared to plants receiving 16.97 cent/kWhel (PS 1) controlling 
for other factors such as plant size. The estimated coefficients for each dummy (PS 2, PS 3, PS 4) 
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are monotonically increasing with decreasing production subsidies. That is, the lower the production 
subsidy, the higher is the operational efficiency compared to plants receiving the highest output price 
for electricity.  Those results are robust to various model specifications and statistically significant 
at least at the 10% significance level.

Furthermore, we find that plants having an enclosed digestate storage unit (GAS TIGHT) 
and plants upgrading biogas to biomethane for injection into the natural gas grid are more efficient. 
Plants having two main digesters and two post-digesters are more efficient compared to plants hav-
ing one main digester and one post-digester. 

Table 6: Determinants of Pure Technical Efficiency (CTERDM) – Tobit Regression
Model 1 Model 2 Model 3 Model 4

IS DUMMY –0.08** –0.06

(0.04) (0.04)

 IS VALUE / 1,000,000 –0.27** –0.14

(0.11) (0.11)

 PS 2 0.17*** 0.13** 0.18*** 0.13**

(0.05) (0.05) (0.05) (0.05)

 PS 3 0.32** 0.18* 0.41*** 0.21*

(0.13) (0.11) (0.13) (0.11)

 PS 4 1.17*** 0.83*** 1.27*** 0.86***

(0.21) (0.18) (0.22) (0.18)

 SIZE / 1000 –0.03 0.08 –0.06 0.08

(0.16) (0.16) (0.16) (0.16)

BIOMETHANE 0.96*** 0.98*** 0.93*** 0.96***

(0.09) (0.09) (0.09) (0.09)

GAS TIGHT 0.13*** 0.12** 0.13*** 0.12***

(0.05) (0.05) (0.05) (0.04)

WASTE –0.23 –0.33*

(0.17) (0.17)

Waste share 0.09 0.07

(0.15) (0.15)

Manure share 0.24 0.26

(0.22) (0.22)

Grass share –0.09 –0.09

(0.07) (0.07)

Other renewables share 0.02 0.01

(0.09) (0.09)

Log Likelihood 11.84 12.83 12.21 12.47

 Total number of obs. 86 86 86 86

 Uncensored obs. 43 43 43 43

 Right-censored obs. 43 43 43 43

Wald Test 195.07 200.69 194.63 202.05

Note: Sandwich robust standard errors are reported in parenthesis (Huber, 1981) correcting for heteroscedasticity. All models 
include an intercept, controls for Austrian regions, age, age squared, organic loading rate, organic loading rate squared, and 
different digester systems. Full results are available in Appendix C, Table C.1. ***p < 0.01, **p < 0.05, *p < 0.1.
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The estimates of model 1-4 applying ordinary least squares (OLS) are available in Appen-
dix C (Table C.2) showing an R-squared of 0.42. For the most part, these results are similar and 
confirm the conclusions from the regressions based on the Tobit-model.

4.3 Sensitivity of Results

In order to check the sensitivity of the results we exclude waste processing plants and 
biomethane producers from the sample.14 The remaining 73 agricultural plants (‘N=73 sample’) are 
used to estimate the efficiency scores using DEA outlined in section 2. Furthermore, the regression 
analysis as described in section 4.2 is repeated. This robustness checks show that the main results 
presented in section 4.1 and 4.2 are quite insensitive to the sample applied.

The average pure technical efficiency score is 0.91 using the entire sample (‘N=86 sam-
ple’) and 0.92 using the ‘N=73 sample’. While on average the differences between the diverse 
sample estimates are negligible, for some individual biogas plants the estimated efficiency scores 
vary substantially. The maximum difference in estimated efficiency scores for a single plant is 0.31. 
Using the ‘N=73 sample’ eight additional biogas plants are indicated as efficient being classified as 
inefficient when applying the ‘N=86 sample’.

However, the regression results presented in section 4.2 are rather insensitive to the sample 
used for our analysis. Production subsidies, gas tight final depots and four-digester systems remain 
statistically significant determinants of pure technical efficiency, at least at the 10% significance 
level. Using the ‘N=73 sample’ the effects of both investment subsidy measures become statistically 
insignificant in all model specifications, though remaining a negative sign. The regression results of 
the Tobit-model and OLS-estimates for the ‘N=73 sample’ are available in Appendix D.

5. CONCLUSIONS AND POLICY IMPLICATIONS

This study applies Data Envelopment Analysis (DEA) to estimate technical efficiency of 
Austrian biogas plants. After decomposing technical efficiency into pure technical (managerial) and 
scale efficiency we i) use the scale efficiency scores to test for scale effects and ii) investigate the 
effect of production subsidies, investment subsidies and other variables on managerial efficiency 
employing a second-stage regression analysis. 

As far as we know we are the first i) using DEA for examining returns to scale of biogas 
plants and ii) investigating the effect of subsidies on biogas plants’ managerial efficiency. Our results 
indicate that the biogas production technology exhibits increasing returns to scale. Biogas plants 
with less or equal than 100 kWel installed capacity are found to be scale inefficient due to positive 
scale effects. The regression analysis suggests that biogas plants receiving higher production subsi-
dies in the form of feed-in-tariffs (FITs) have lower managerial efficiency relative to less subsidized 
plants. This result is robust after controlling for the size of the plant and a variety of plant type 
measures as well as to different samples applied. Moreover, we find that plants with an enclosed 
digestate storage unit linked to the biogas collection system are more efficient.

FITs are usually differentiated by technology to reflect the differences in generation costs 
between the various renewable energy technologies. However, policy makers also introduced differ-
ent FITs for the same technology (e.g. biogas technology in Germany). A typical example are FITs 
which differ according to the size of the renewable energy project, reflecting the higher generation 

14.  The application of the outlier-detection method introduced by Wilson (1993) and described in Bogetoft and Otto 
(2011) indicates that the only outlier observations in our sample are the three plants producing biomethane.
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costs of small scale renewable energy projects due to economies of scale. This shows that policy 
makers are willing to accept scale inefficiencies in renewable energy generation to reach ambitious 
renewable energy targets. This study indicates that biogas plants with less or equal than 100 kWel 

installed capacity are scale inefficient. Currently 40% of the Austrian biogas plants are in this size 
class representing 10% of the installed electric capacity of the Austrian biogas sector (E-Control, 
personal communication on 22 January 2016). Those plants receive the highest FIT questioning the 
efficiency of such support-schemes.

However, there is one issue left that could make our results vulnerable. The fact that har-
vesting and transportation of feedstock as well as the handling of digestate are not considered in 
our study might be seen as a limitation. Skovsgaard and Klinge Jacobsen (2017) show in a Danish 
case study that per unit transport costs for biogas plants increase with scale, which partly offsets the 
economies of scale found for capital and operational expenditures. Hence, one possible avenue for 
future research could reconsider scale effects based on an investigation of cost efficiency including 
costs for i) feedstock transportation and ii) digestate handling.

Our study highlights that in addition to the presence of scale inefficiencies, production 
subsidies in the form of FITs can stimulate substantial managerial inefficiencies. This article in-
dicates that the managerial inefficiency of biogas plants increases with the level of the production 
subsidy (FIT – electricity exchange price) they receive. The result is consistent with the hypothesis 
that production subsidies provide a disincentive to managerial effort (Martin and Page, 1983). FITs 
for agricultural biogas plants can be seen as an income enhancing tool for farmers rather than an 
opportunity to advance the biogas technology and might have contributed to reduce managerial 
motivation and effort of plant operators. 

Green and Yatchew (2012) find that FIT programs are very effective in producing rapid 
deployment of renewable energy capacities, but they have also proved to be costly to ratepayers.  
However, setting FITs that avoid inefficiencies and achieve expansion targets for renewable energy 
is not easy. Since policy makers can never know the true cost structure of individual renewable en-
ergy plants, defining renewable expansion targets for each technology and determining correspond-
ing FITs through a tendering mechanism could be a solution.15 In addition, a tendering mechanism 
might avoid high returns on capital employed for renewable energy projects as found in Haar and 
Haar (2016).16 

Biogas plant operators could benefit from making their digestate storage units gas tight and 
linking them to the biogas collection system. This measure would not only increase efficiency but 
also reduces methane emissions to the atmosphere making the biogas plant more environmentally 
friendly. 

Future research should evaluate the profit-, revenue-, and cost-efficiency of biogas plants. 
Estimating eco-efficiency, which incorporates the environmental performance of biogas plants, is 
also an interesting and relevant issue for future research. Last but not least the presented study of 
technical efficiency could be extended to an intertemporal analysis investigating efficiency change, 
technical change and productivity change over time.

15.  We thankfully integrate this idea from an anonymous referee in our conclusions. 
16.  Haar and Haar (2016) find returns on capital employed in the range of 20% to 50% for solar photovoltaic projects 

and 11% to 68% for wind farm projects under the renewable energy support prices in a group of European countries. Haar 
and Haar (2016) conclude that, when measured by the returns provided to renewable energy investors, many schemes across 
Europe were wasteful and inefficient.
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APPENDIX A

Table A.1: �Guide Values for Methane, Dry Matter and Organic Dry Matter Content per t of 
FM

Ø Nm3 CH4/t FM DM (in% FM) Organic DM (in% of DM)

Waste 145 24% 85%

Grass 110 33% 93%

Cascading use 85 65% 90%

Maize 115 35% 98%

Other renewables 105 33% 95%

Manure 20 10% 85%

Note: FM stands for fresh matter, DM is dry matter; Source: ACBA.

APPENDIX B

Table B.1: Descriptive Statistics of Variables used in Regression Analysis
Variables Mean Std. Dev. Min. Max.

Dependent variable

CTERDM 0.92 0.09 0.70 1.00

Independent variables

State dummies

  Lower Austria 0.51 0.50 0.00 1.00

  Styria 0.19 0.39 0.00 1.00

  West Austria 0.12 0.32 0.00 1.00

  Mid-West Austria 0.19 0.39 0.00 1.00

Plant type dummies

  Waste plant 0.14 0.35 0.00 1.00

  Biomethane plant 0.03 0.18 0.00 1.00

  Gas tight final depot 0.85 0.36 0.00 1.00

Digester system dummies

  Two digesters 0.83 0.38 0.00 1.00

  Three digesters 0.15 0.36 0.00 1.00

  Four digesters 0.02 0.15 0.00 1.00

Production subsidy dummies

  PS 4: < 12.85 cent / kWhel 0.08 0.28 0.00 1.00

  PS 3: 12.85 - ≤12.97 cent / kWhel 0.14 0.35 0.00 1.00

  PS 2: 14.97 cent / kWhel 0.50 0.50 0.00 1.00

  PS 1: 16.97 cent / kWhel 0.28 0.45 0.00 1.00

(continued)
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Table B.1: �Descriptive Statistics of Independent Variables used in Regression Analysis 
(continued)

Variables Mean Std. Dev. Min. Max.

Investment subsidy

  IS Dummy 0.55 0.50 0.00 1.00

  IS Value (Euro) 135,184 147,974 0.00 650,000

Other plant characteristics

  Size (CHP capacity el., kWel) 310.57 265.53 25.00 1672.00

  Age (years) 9.33 1.42 6.00 15.00

  Loading Rate (kg oDS/d/m³) 1.79 0.90 0.23 4.82

Note: The sample size is 86. West-Austria is Tyrol and three plants in Vorarlberg; Mid-West Austria includes Upper Austria 
and two plants in Salzburg. 

APPENDIX C

Table C.1: �Determinants of Pure Technical Efficiency – Tobit Regression Results; N=86 
sample

Model 1 Model 2 Model 3 Model 4

(Intercept) 0.55 0.12 0.46 0.04

(0.35) (0.39) (0.36) (0.40)

Styria 0.01 –0.01 0.03 0.01

(0.05) (0.05) (0.04) (0.05)

West Austria 0.04 –0.02 0.06 –0.00

(0.07) (0.07) (0.07) (0.07)

Mid-West Austria –0.02 –0.00 0.00 0.02

(0.04) (0.04) (0.04) (0.04)

WASTE –0.23 –0.33*

(0.17) (0.17)

BIOMETHANE 0.96*** 0.98*** 0.93*** 0.96***

(0.09) (0.09) (0.09) (0.09)

SIZE / 1000 –0.03 0.08 –0.06 0.08

(0.16) (0.16) (0.16) (0.16)

PS 2 0.17*** 0.13** 0.18*** 0.13**

(0.05) (0.05) (0.05) (0.05)

PS 3 0.32** 0.18* 0.41*** 0.21*

(0.13) (0.11) (0.13) (0.11)

PS 4 1.17*** 0.83*** 1.27*** 0.86***

(0.21) (0.18) (0.22) (0.18)

AGE 0.48 1.46* 0.60 1.56*

(0.78) (0.86) (0.78) (0.88)

(continued)
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Table C.1: �Determinants of Pure Technical Efficiency – Tobit Regression Results; N=86 
sample (continued)

Model 1 Model 2 Model 3 Model 4

AGE_SQ –0.15 –0.70 –0.19 –0.76*

(0.39) (0.44) (0.39) (0.45)

LOADING_RATE –0.57 –0.60 –0.59 –0.60

(0.59) (0.62) (0.64) (0.65)

LOADING_RATE_SQ 0.73 0.77 0.80 0.83

(1.08) (1.13) (1.19) (1.21)

GAS TIGHT 0.13*** 0.12** 0.13*** 0.12***

(0.05) (0.05) (0.05) (0.04)

THREE DIGESTERS –0.12** –0.11** –0.12** –0.10*

(0.05) (0.05) (0.05) (0.05)

FOUR DIGESTERS 0.41*** 0.52*** 0.32*** 0.51***

(0.12) (0.10) (0.12) (0.11)

IS DUMMY –0.08** –0.06

(0.04) (0.04)

IS VALUE / 1000000 –0.27** –0.14

(0.11) (0.11)

Waste share 0.09 0.07

(0.15) (0.15)

Manure share 0.24 0.26

(0.22) (0.22)

Grass share –0.09 –0.09

(0.07) (0.07)

Other renewables share 0.02 0.01

(0.09) (0.09)

Log Likelihood 11.84 12.21 12.83 12.47

Total number of obs. 86 86 86 86

Uncensored obs. 43 43 43 43

Right-censored obs. 43 43 43 43

Wald Test 195.07 194.63 200.69 202.05

Note: Sandwich robust standard errors are reported in parenthesis (Huber, 1981) correcting for heteroscedasticity. ***p < 
0.01, **p < 0.05, *p < 0.1.
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Table C.2: Determinants of Pure Technical Efficiency – OLS Regression Results; N=86 sample
Model 1 Model 2 Model 3 Model 4

(Intercept) 0.57** 0.47* 0.53** 0.45

(0.25) (0.26) (0.25) (0.27)

Styria 0.01 0.01 0.02 0.02

(0.03) (0.03) (0.03) (0.03)

West Austria 0.03 –0.00 0.04 0.01

(0.04) (0.05) (0.04) (0.05)

Mid-West Austria 0.00 0.01 0.01 0.02

(0.03) (0.03) (0.03) (0.03)

WASTE –0.15** –0.16**

(0.07) (0.08)

BIOMETHANE 0.11* 0.12* 0.11* 0.11*

(0.06) (0.07) (0.06) (0.07)

SIZE / 1000 –0.04 –0.03 –0.04 –0.03

(0.06) (0.06) (0.06) (0.06)

PS 2 0.12*** 0.10*** 0.12*** 0.10***

(0.03) (0.03) (0.03) (0.03)

PS 3 0.18*** 0.13*** 0.20*** 0.14***

(0.05) (0.05) (0.05) (0.05)

PS 4 0.31*** 0.20* 0.34*** 0.21*

(0.10) (0.10) (0.10) (0.10)

AGE 0.46 0.72 0.52 0.74

(0.52) (0.55) (0.52) (0.56)

AGE_SQ –0.17 –0.33 –0.19 –0.34

(0.26) (0.28) (0.27) (0.28)

LOADING_RATE –0.34 –0.21 –0.37 –0.22

(0.37) (0.40) (0.37) (0.40)

LOADING_RATE_SQ 0.50 0.28 0.57 0.31

(0.76) (0.79) (0.75) (0.80)

GAS TIGHT 0.06** 0.06** 0.06** 0.06*

(0.03) (0.03) (0.03) (0.03)

THREE DIGESTERS –0.05 –0.03 –0.05 –0.03

(0.03) (0.04) (0.03) (0.04)

FOUR DIGESTERS –0.09 –0.06 –0.09 –0.06

(0.08) (0.08) (0.08) (0.08)

IS DUMMY –0.04 –0.03

(0.02) (0.03)

IS VALUE / 1000000 –0.11 –0.05

(0.08) (0.08)

(continued)
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Table C.2: �Determinants of Pure Technical Efficiency – OLS Regression Results; N=86 
sample (continued)

Model 1 Model 2 Model 3 Model 4

Waste share –0.06 –0.06

(0.09) (0.09)

Manure share 0.06 0.07

(0.13) (0.13)

Grass share –0.06 –0.06

(0.05) (0.05)

Other renewables share 0.02 0.02

(0.07) (0.07)

R2 0.42 0.42 0.42 0.41

Adj. R2 0.28 0.24 0.28 0.23

Number of obs. 86 86 86 86

Note: Standard errors are reported in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1.

APPENDIX D

Table D.1: �Determinants of Pure Technical Efficiency – Tobit Regression Results; N=73 
sample

Model 1 Model 2 Model 3 Model 4

(Intercept) 0.81 0.74 0.37 0.29

(0.91) (0.89) (0.87) (0.86)

Styria 0.05 0.05 0.04 0.05

(0.06) (0.06) (0.07) (0.07)

West Austria 0.19* 0.18* 0.14 0.14

(0.11) (0.10) (0.10) (0.10)

Mid-West Austria 0.06 0.07 0.09 0.09

(0.07) (0.07) (0.07) (0.06)

SIZE / 1000 –0.13 –0.15 –0.14 –0.16

(0.22) (0.21) (0.22) (0.22)

PS 2 0.16** 0.16** 0.13* 0.14*

(0.07) (0.07) (0.08) (0.08)

PS 3 0.35** 0.42** 0.31* 0.37**

(0.17) (0.16) (0.17) (0.17)

AGE 0.15 0.29 1.10 1.25

(1.94) (1.89) (1.85) (1.82)

AGE_SQ –0.05 –0.10 –0.54 –0.60

(1.03) (1.00) (0.98) (0.96)

(continued)
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Table D.1: �Determinants of Pure Technical Efficiency – Tobit Regression Results; N=73 
sample (continued)

Model 1 Model 2 Model 3 Model 4

LOADING_RATE –1.35 –1.40 –1.43 –1.49

(0.91) (0.93) (0.88) (0.91)

LOADING_RATE_SQ 2.89 3.02* 2.99* 3.14*

(1.79) (1.81) (1.79) (1.83)

GAS TIGHT 0.15** 0.16*** 0.15** 0.15**

(0.06) (0.06) (0.06) (0.06)

THREE DIGESTERS –0.08 –0.08 –0.09 –0.10

(0.08) (0.08) (0.08) (0.08)

FOUR DIGESTERS 0.64*** 0.57*** 0.68*** 0.61***

(0.16) (0.16) (0.16) (0.16)

IS DUMMY –0.04 –0.03

(0.05) (0.06)

IS VALUE / 1000000 –0.21 –0.17

(0.16) (0.16)

Manure share 0.37 0.38

(0.34) (0.35)

Grass share –0.12 –0.11

(0.10) (0.10)

Other renewables share 0.11 0.12

(0.14) (0.14)

Log Likelihood –6.77 –6.41 –4.91 –4.62

Total number of obs. 73 73 73 73

Uncensored obs. 34 34 34 34

Right-censored obs. 39 39 39 39

Wald Test 145.82 144.63 153.44 152.77

Note: Sandwich robust standard errors are reported in parenthesis (Huber, 1981) correcting for heteroscedasticity. ***p < 
0.01, **p < 0.05, *p < 0.1.

Table D.2: Determinants of Pure Technical Efficiency – OLS Regression Results; N=73 sample
Model 1 Model 2 Model 3 Model 4

(Intercept) 1.01** 0.99** 0.85* 0.83

(0.49) (0.49) (0.50) (0.50)

Styria 0.03 0.03 0.03 0.03

(0.04) (0.04) (0.04) (0.04)

West Austria 0.10 0.10* 0.08 0.09

(0.06) (0.06) (0.07) (0.07)

(continued)



210 / The Energy Journal

All rights reserved. Copyright © 2018 by the IAEE.

Table D.2: �Determinants of Pure Technical Efficiency – OLS Regression Results; N=73 
sample (continued)

Model 1 Model 2 Model 3 Model 4

Mid-West Austria 0.04 0.04 0.05 0.05

(0.04) (0.03) (0.04) (0.03)

SIZE / 1000 –0.05 –0.06 –0.06 –0.07

(0.12) (0.12) (0.12) (0.12)

PS 2 0.09** 0.09** 0.07* 0.07*

(0.04) (0.04) (0.04) (0.04)

PS 3 0.16* 0.17* 0.14 0.15*

(0.08) (0.09) (0.08) (0.09)

AGE –0.35 –0.33 0.03 0.05

(1.07) (1.07) (1.09) (1.09)

AGE_SQ 0.23 0.22 0.03 0.02

(0.58) (0.58) (0.60) (0.60)

LOADING_RATE –0.62 –0.62 –0.71 –0.71

(0.52) (0.52) (0.52) (0.52)

LOADING_RATE_SQ 1.23 1.24 1.32 1.32

(1.02) (1.01) (1.02) (1.02)

GAS TIGHT 0.06 0.06 0.06 0.06

(0.04) (0.04) (0.04) (0.04)

THREE DIGESTERS –0.04 –0.05 –0.06 –0.06

(0.05) (0.05) (0.05) (0.05)

FOUR DIGESTERS –0.05 –0.06 –0.04 –0.05

(0.12) (0.13) (0.12) (0.13)

IS DUMMY –0.02 –0.01

(0.03) (0.03)

IS VALUE / 1000000 –0.06 –0.04

(0.10) (0.10)

Manure share 0.06 0.06

(0.18) (0.17)

Grass share –0.09 –0.08

(0.06) (0.06)

Other renewables share 0.07 0.07

(0.09) (0.09)

R2 0.22 0.23 0.27 0.27

Adj. R2 0.04 0.04 0.05 0.05

Number of obs. 73 73 73 73

Note: Standard errors are reported in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1.


