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1. Retailers is the term used on Nord Pool for these participants. On the US market, they are referred to as load serving

entities.
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ABSTRACT

A dynamic global hedging procedure making use of futures contracts is developed
for a retailer of the electricity market facing price, load and basis risk. Statistical
models reproducing stylized facts are developed for the electricity load, the day-
ahead spot price and futures prices in the Nord Pool market. These models serve
as input to the hedging algorithm, which also accounts for transaction fees. Back-
tests with market data from 2007 to 2012 show that the global hedging procedure
provides considerable risk reduction when compared to hedging benchmarks
found in the literature.
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1. INTRODUCTION

With the recent liberalization of electricity markets and the disentanglement of the vertical
integration in the electricity supply chain in Nordic countries, continental Europe, North America
and Australia, new risks have arisen for some of the participants of the electricity markets. One
such risk-facing participant is the retailer buying from wholesalers to sell to end-users. These
retailers1 sign contracts giving them the obligation to supply electricity to consumers. Retailers
often need to supply a quantity of electricity at a price that is predetermined while acquiring it at
a variable market price (Von der Fehr and Hansen 2010, Johnsen 2011), exposing the retailers to
price risk. Furthermore, as the quantity of electricity which must be supplied to consumers is
uncertain, retailers also face load (or volumetric) risk (Deng and Oren 2006).

Electricity is not easily storable and retailers cannot build up electricity reserves upon
which to draw to cover an unexpectedly high load demand or an electricity price increase. The non-
storability of electric power fuels extreme price volatility as highly inelastic demand can cause spot
prices to skyrocket when shortages occur. For retailers, the volatility can affect profitability since
an unexpected high cost of electricity can lead to major losses. “The profit margin for a retailer is
so small in relation to the price risk that the profit margin can quickly disappear if the price risk
is not hedged” (NordREG 2010). In some cases, there was eventual bankruptcy as with the Pacific
Gas and Electric Company in 2001 and Texas Commercial Energy in 2003. To prevent such events,
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some government regulatory initiatives were even implemented to force retailers to hedge their
obligation to serve electricity loads. For example, the California Public Utility Commission now
requires load serving entities (LSE) to use forward contracts and options (with mandatory physical
settlement) to reduce their risk exposure (State of California 2004).

It is clear that deficient risk management can lead to financial hardship for retailers and
developing effective hedging methodologies in the electricity market has become paramount. Dif-
ferent approaches, using different electricity derivatives, have been proposed in the literature. (Deng
and Oren 2006) survey available derivatives and list the papers that implement methods pertaining
to each. Hedging procedures can be divided into two main categories: (i) static, and (ii) dynamic.
For static hedging, hedging instruments are bought at one point in time and the hedging portfolio
is never rebalanced. For dynamic hedging, the composition of the hedging portfolio is adjusted
through time as additional information becomes available. Dynamic hedging procedures can be
divided into two sub-categories, which we refer to as local and global hedging. Local hedging
procedures minimize the risk associated with the portfolio until the next rebalancing whereas global
hedging procedures minimize the risk related to the terminal cash flow.

Several papers apply static hedging without considering load uncertainty. Stoft et al. (1998)
describe simple hedging strategies with vanilla derivatives. Bessembinder and Lemmon (2002)
identify the optimal position in forward contracts for electricity producers and retailers through an
equilibrium scheme. Tanlapco et al. (2002) compare the performance of direct versus cross hedging,
the latter practice consisting of the use of futures on other commodities to hedge an exposure to
electricity prices. Fleten et al. (2010) optimize the static futures contract position of a hydro-power
electricity producer in Nord Pool. Other papers studying static hedging incorporate load uncertainty
in their model. Wagner et al. (2003) and Woo et al. (2004) investigate static hedges with forward
and futures contracts under different risk constraints. Näsäkkälä and Keppo (2005) consider an
agent with a time-varying load estimate and propose a mean-variance optimization scheme with
forward contracts for the optimization of the static hedge ratio and the hedging time. Deng and Xu
(2009) examine hedging strategies using interruptible contracts in a one-period setting. In a series
of papers, Vehviläinen and Keppo (2003), Oum et al. (2006), Oum and Oren (2009), and Oum and
Oren (2010) propose a static hedging procedure maximizing the expected utility of a LSE or a
generator using a portfolio of derivatives. Kleindorfer and Li (2005) optimize the expected return
of an electricity portfolio corrected by a risk measure (either variance or value-at-risk). The literature
on dynamic hedging strategies includes some local procedures. For example, Ederington (1979)
suggests to hedge an underlying asset with its futures in a way to minimize the one-period variance
of the total portfolio. Byström (2003), Madaleno and Pinho (2008), Zanotti et al. (2010), Liu et al.
(2010), and Torro (2011) adapt this procedure to the electricity market, but with different model
specifications for the spot and futures prices. [Byström(2003)] applies one-week horizon hedges
on Nord Pool, comparing conditional and unconditional hedge ratios. The unconditional version of
hedge ratios outperforms the conditional models. Madaleno and Pinho (2008) and Zanotti et al.
(2010) compare different correlation models for the spot and futures prices to compute optimal
hedge ratios on European electricity markets. Liu et al. (2010) use copulas to represent the rela-
tionship between the spot and futures prices. Torro (2011) studies the case of early dismantlement
of the hedging portfolio in the Nord Pool market. Alizadeh et al. (2008) propose a regime-switching
process with stochastic volatility for the joint dynamics of the spot price of a commodity and its
associated futures, allowing for the calculation of a regime dependent optimal hedge ratio.

Alternative dynamic hedging schemes are discussed in Eydeland and Wolyniec (2003).
For example, there is delta hedging, a method which consists in building a portfolio with value
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2. An open-loop solution only uses load and futures values as well as current portfolio composition and value at the
initial time step in setting the investment strategy over all rebalancing periods.

variations that mimic those of the hedged contingent claim. Eydeland and Wolyniec (2003) apply
delta hedging to achieve perfect replication when a LSE hedges the price of a fixed amount of load
to be served. When perfect replication cannot be achieved, they propose local mean-variance op-
timization to tackle hedging problems.

Local procedures are attractive because they are simple to implement. Local risk mini-
mization procedures are myopic however as they do not necessarily minimize the risk through the
entire period of exposure (see Rémillard 2013). Global hedging procedures remedy this drawback
by taking into account the outcomes of all future time periods at any point in time; they evaluate
the adequacy of a hedge by looking at the terminal hedging error, i.e. at the maturity of the hedged
contingent claim. The following is a non-exhaustive list of papers which study this methodology
in general financial contexts. Schweizer (1995) minimizes the global quadratic hedging error in a
discrete-time framework for European-type securities. Rémillard et al. (2010) extend his work for
American-type derivatives. Follmer and Leukert (1999) minimize the probability of incurring a
hedging shortfall. Follmer and Leukert (2000) minimize an expected function of the terminal hedg-
ing error.

There have been attempts to apply global hedging procedures in electricity markets. Goutte
et al. (2013) use the global quadratic hedging scheme from Schweizer (1995) to hedge various
vanilla contingent claims involving a deterministic amount of load with futures. Supposing that the
market share of the retailer is a specific functional form of the price charged to customers, Hatami
et al. (2009) propose a scheme for the joint optimization of the retail price and the derivatives
investment policy. They only consider open-loop2 solutions. Rocha and Kuhn (2012) consider a
retailer that optimizes its global procurement cost with respect to a mean-variance objective measure
over a given period of time by purchasing futures and vanilla options. They propose two simplifi-
cations to increase tractability: time steps are aggregated into sub-periods and only decision vari-
ables that are linear functions of past realized state variables are considered. Kettunen et al. (2010)
use a two-dimensional binomial scenario tree representing spot price and load uncertainty to com-
pute the optimal futures hedging portfolio of a retailer incurring electricity procurement costs while
maximizing its expected terminal cash value under conditional-cash-flow-at-risk (CCFAR) con-
straints. Futures are assumed to be priced with a risk premium that only depends on time to maturity.
Other work in the literature considers dynamic portfolio management with the perspective of elec-
tricity generators. For example, Fleten et al. (2002) propose a global portfolio optimization (both
generation scheduling and financial contract management) scheme for electricity generators under
scenarios built with a mix of construction and simulation. A total of 256 scenarios are considered
within a five-stage stochastic program.

The current paper contributes to the literature on global hedging procedures for electricity
markets and offers three main contributions. First, we develop a dynamic global hedging method-
ology that makes use of futures contracts for a retailer facing load risk, price risk, basis risk and
transaction costs. Obtaining global solutions to such hedging problems is non-trivial and often
requires advanced numerical schemes. Our model has the unique advantage that the optimal hedging
strategy is computed using a dynamic program that requires neither simplifying the optimization
problem (e.g. restricting admissible strategies to linear ones as in Rocha and Kuhn (2012)) nor
reducing the dynamics of the state variables (e.g. using binomial trees as in Kettunen et al. (2010)
or a low number of scenarios as in Fleten et al. (2002)). Furthermore, as the hedging strategies
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3. The tail value-at risk at 1% (TVAR1%) is defined as the expected value of the loss given that a loss in the worse 1%
possible has occurred.

considered are of the feedback (and not open-loop) type, they consider up-to-date market infor-
mation when the portfolio is rebalanced. Second, we find accurate models for the state variables
that completely specify their stochastic dynamics. These models serve as input to our hedging
procedure and are tailor-made to fit this purpose. We develop a reduced-form weekly load model
which is flexible enough to capture the seasonality trends, both in level and in variance, exhibited
by historical data. We also present a statistical model for the joint dynamics of the spot and futures
prices which encompasses stylized facts of electricity futures returns: autocorrelation, volatility
clusters and fat tails. A statistical approach using multivariate time series analysis is applied. Directly
modeling futures prices enables the integration of market information in our hedging procedure.
This can be seen as an improvement over the approach that models the spot price dynamics and
links it to futures prices through an expected spot price, potentially applying a risk-premium. The
latter approach, which is used in other global optimization schemes for electricity utilities as in
Kettunen et al. (2010) and Eichhorn and Römisch (2006), can cause mismatches between forecasted
and observed futures prices. Moreover, we present a seasonal model that captures some dependence
between the load and futures returns. The third contribution is an empirical study which compares
the performance of different hedging procedures on the Nord Pool market.

The non-quadratic global hedging procedure developed outperforms the benchmarks in
reducing the risk borne by the retailers. Hedging backtests show a significant reduction in several
risk metrics applied to the weekly hedging error. Considering the case of a retailer serving 1% of
the Nord Pool load, the TVAR1%

3 is reduced from 172,900€ to 161,900€ if our load-basis model is
used instead of the simple model in the delta hedging procedure in the in-sample backtest (see
Table 9). When our global hedging procedure is applied, the TVAR1% is further shrunk by a con-
siderable amount to 128,100€.

The remainder of the paper is organized as follows. Section 2 presents the price and
volumetric risks faced by retailers and describes the hedging procedure. Section 3 describes the
data used for modeling purposes and presents the models for the electricity load, the spot price and
futures prices. Section 4 describes the numerical experiments which test the efficacy of the hedging
methodology. Section 5 presents concluding remarks. Some technical results, estimation details and
goodness-of-fit tests are relegated to online Appendices.

2. RISK EXPOSURE AND HEDGING FOR RETAILERS

In this section, we describe the risks faced by a retailer and the hedging procedure it can
undertake to hedge its exposure with futures contracts.

2.1 Risks Faced by Retailers

Consider the case of a retailer forced to supply a quantity of electricity at a predetermined
price to end-users while buying it at a variable price on the market. Market conditions for a retailer
might differ across different electricity markets and we look specifically at the Nordic electricity
market Nord Pool. This market is chosen since it is one of the first to operate in a liberalized setup,
and mature markets provide some historical data less likely to include structural changes.
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4. In reality, because of load forecasting errors, some electricity might have to be purchased on the real-time market.
Allowing this feature would increase the number of variables to be modeled, increasing the complexity of the problem and
changing the nature of its possible solutions. The feature is disregarded in the current work.

5. In reality, the hourly spot price paid by the retailer is local and can be affected by grid congestion. We do not consider
this issue here, but in further work could be defined as the load-weighted average of the local spot price.∗S

Assume all electricity purchases occur on the day-ahead market.4 In this market, the spot
price is set on an hourly basis by balancing supply and demand. Suppose the retailer needs to serve
the load during hour h of day d in week t, while is the Nord Pool system spot price forL St,d,h t,d,h

the corresponding period. The total load to be served during week t is thus

7 24

L = L . (1)∑ ∑t t,d,h
d = 1 h = 1

The mean price paid by a retailer for the purchase of each unit of load during week t is

7 24
L S∑ ∑ t,d,h t,d,hd = 1 h = 1∗S = , (2)t Lt

the load-weighted average of all hourly prices during the week.5 Assume the retailer charges a
predetermined price for each unit of load sold to consumers at time t. Such a price setup isPt

consistent with both the variable and fixed price products sold by retailers in Norway (see Von der
Fehr and Hansen 2010). For the fixed price product, the price is locked for a long period, typically
one to three years. For the variable price product, the retailer is allowed to change the price every
week, but price changes are only effective two weeks after consumers have been notified. Thus, in
both the variable and fixed price cases, the retailer does not have the flexibility of adjusting the
retail price on the short-term hedging period considered herein and the price can be considered as
fixed on this time horizon. As pointed out in Von der Fehr and Hansen (2010), the variable price
product is the most prevalent retailing product (49.5% of households in the first quarter of 2007).
The fixed price product, although less popular, still represented over 15% of households in the first
quarter of 2007.

If no hedging is implemented, the retailer cash flow for weekly operations during week t
is

∗L (P – S ). (3)t t t

A retailer thus faces revenue uncertainty due to (i) price risk caused by the variability of the spot
price , and subsequently of , and (ii) volumetric risk caused by randomness in the total∗S St,d,h t

volume of electricity to be served.Lt

2.2 Electricity Futures Contracts

A retailer wishes to hedge its exposure to both price and volumetric risks with derivatives
on the electricity markets. Different derivatives are available to hedge those risks: forward and
futures contracts, options, weather derivatives and interruptible contracts. With the exception of
forward and futures contracts, most derivatives on the Nord Pool market are traded over-the-counter,
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Table 1: Liquidity of Weekly Futures

Weeks-to-maturity 1 2 3 4 5
Percentage 96% 90% 61% 29% 16%

Notes. Percentage of trading days between January 1, 2007 and December 31, 2012
with non-null trading volume of Nord Pool weekly futures on NASDAQ OMX.

Table 2: Liquidity of Daily Futures

Days-to-maturity 1 2 3 4 5
Percentage 64% 16% 8.8% 2.6% 2.0%

Notes. Percentage of trading days between January 1, 2007 and December 31, 2012
with non-null trading volume of Nord Pool daily futures on NASDAQ OMX.

6. Base load means that the contracts deliver electricity at all hours, in opposition to peak load contracts that only deliver
electricity between 8:00am and 8:00pm on weekdays.

7. As shown in the online appendix A.1, the basis ratio g usually revolves between 1 and 1.05. This is explained by a
higher spot price during peak hours when electricity consumption is more important.

are illiquid, and are not well-suited for dynamic hedging methodology as they may be unavailable
when they are required. More liquid futures and forwards are better suited for dynamic hedging
procedures.

For the Nord Pool market, futures and forward contracts are traded on the NASDAQ OMX.
Futures contracts provide hedging for shorter horizons (daily and weekly), while forwards cover
longer periods (months, quarters and years). The current paper focuses on short-term hedging for
two main reasons. First, the possible adjustment by the retailer of the selling price for the variable
price product reduces the importance of hedging for long durations as long-term increases in the
electricity prices can be transferred to customers. Second, the presence of transaction costs affects
the cost of hedging when there are many rebalancing periods. Tables 1 and 2 present the percentage
of trading days on which non-null trading volumes occur for weekly and daily base load futures.6

Liquidity is much higher on weekly contracts with one-, two- and three-week maturities. These
derivatives will be used in this paper.

Futures on Nord Pool are cash-settled; no exchange of the underlying commodity occurs.
The underlying asset of a weekly futures maturing at week T is the arithmetic average of theST

Nord Pool system spot price observed during week T:

7 241
S = S , (4)∑ ∑t t,d,h7�24 d = 1 h = 1

where a week starts on Monday and ends on Sunday. Contracts are traded on NASDAQ OMX
during weekdays until the Friday of week . The futures is thus not traded during its maturityT–1
week.

There is a slight mismatch between the average weekly electricity price paid by the retailer,
given by (2), and the underlying asset of weekly futures given by (4). The basis ratio

∗St
g = (5)t St

links the former and the latter.7 The basis ratio represents an additional source of risk which must
be taken into account by the hedging procedure.
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8. Transaction fees are described at http://www.nasdaqomx.com/commodities/Marketaccess/feelist/. Fixed annual fees
for membership to the Exchange are disregarded in the current study. Variable fees which are proportional to the volume
of futures transactions include Exchange fees (for trading positions) and Clearing fees (for clearing positions). Exchange
fees are 0.004 €/MWh. Clearing fees depend on the volume of futures cleared in the most recent quarter, but they range
from 0.0035 €/MWh to 0.0085 €/MWh. For illustrative purposes, a 0.004 €/MWh rate is used. Combining Exchange and
Clearing fees, entering or clearing any long or short position is therefore approximated to cost 0.004 €/MWh.

9. Since this paper focuses on short-term hedging, a constant weekly risk-free rate r is assumed.
10. It is assumed that the retailer can always borrow capital at the risk-free rate. Such an assumption has a limited

impact; hedging errors are very insensitive to interest rates because of the short term horizon of the hedge.
11. To simplify calculations, it is assumed that the futures are marked-to-market weekly. On NASDAQ OMX, marking-

to-market is in reality performed daily. However, because maturities are short-term (and therefore accumulation of interest
is small), such an approximation has only a minor impact.

Futures contracts are marked-to-market. This means that (i) their cash flows do not occur
strictly at maturity (in opposition to forward contracts) and (ii) the variation of their quote (referred
to as the futures price) is reflected by the continuous transfer of funds between the margin accounts
of the long and short position holders. Using futures contracts implies having to pay transaction
fees and the cost of these will be accounted for in our methods.8

2.3 Hedging Procedure

Throughout this section, the retailer hedges its week T exposure. A self-financing invest-
ment portfolio containing a risk-free asset9 and futures with maturity week T is set up at andt0

rebalanced weekly until . Since futures are traded during weekdays only, rebalancing occursT–1
on Fridays at closing time. The closing price on Friday of week t (or Sunday if ) of the risk-t = T
free asset is , and the closing price of the futures is , . Since futures areB = exp(rt) F t = t , . . . ,Tt t,T 0

cash-settled, the last futures quote on Sunday of week T is automatically set by the clearing house
to . The hedging procedure is summarized by the following algorithm:F = ST,T T

At week t0. An initial amount of capital is allocated for hedging purposes. The retailer entersVt0

into long positions on the futures contract. A portion of the initial capital is placed in theh Mt + 1 t0 0

margin account required by the clearing house. Another part is used to pay transaction fees .Ct0

The remainder is invested in the risk-free asset. If is insufficient to cover the margin callB Vt t0 0

and fees, the money is borrowed. Since entering positions on futures contracts involves no imme-
diate cash flows besides the amount placed in the margin and transaction fees,

V = M + B + C .t t t t0 0 0 0

Capital (both inside and outside the margin) is invested (or borrowed) at theM + B = V –Ct t t t0 0 0 0

risk-free rate r.10

At week . The total capital available for hedging (the sum of the amountt + 1, t∈{t , . . . ,T–2}0

placed in the margin account and in the risk-free asset) at week t before transaction costs are paid
is . This capital accrues interest up to week and is now worthV t + 1t

Bt + 1(V –C ) .t t Bt

The futures margin account of the retailer is adjusted from marking-to-market,11 the amount
is deposited (withdrawn if negative) in the margin account. The total capitalh (F – F )t + 1 t + 1,T t,T

available for hedging at week is thereforet + 1
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12. Hedging procurement costs does not remove all risks; profits are still proportional to the load. Adequate hedging of
procurement costs will however prevent extreme losses.

13. This is true if transaction fees are disregarded.

Bt + 1V = (V –C ) + h (F – F ).t + 1 t t t + 1 t + 1,T t,TBt

The retailer modifies its portfolio to hold long positions on the futures contract. Transactionsht + 2

fees are paid. A margin call might be made, but it does not affect the total amountCt + 1

invested at the risk-free rate.V –Ct + 1 t + 1

At week T. The terminal hedging capital is

BTV = (V –C ) + h (S – F )–C ,T T–1 T–1 T T T–1,T TBT–1

where are clearing fees. Transaction costs are computed following (final clearingC C = 0.004 h⎪ ⎪T T T

costs) and if with .C = 0.004 h – h t�T h = 0⎪ ⎪t t + 1 t t0

The retailer is at risk of bearing losses when the price it pays to purchase electricity is
higher than the price it charges to its customers. To avoid this situation, the hedging algorithm
proposed in this paper aims at minimizing risks related to electricity procurement costs incurred by
the retailer. Having reliable procurement costs stabilizes the retailer’s profitability.12 Weekly futures,
which are used by the retailer to hedge its exposure, allow locking in the payoff of the variable
contingent claim to (see the online appendix A.2).13 However, the retailer has short positionsS FT t ,T0

on (instead of ) because it needs to buy electricity at that price. Since , the electricity∗ ∗S S S = g ST T T T T

procurement target price for each unit of load bought by the retailer during week T is set to
. The retailer’s cash flow at time T, given by Equation (3), can be separated∗(S /S )F = g FT T t ,T T t ,T0 0

into an unhedged cash flow , the baseline profit margin, and a more risky componentL (P – g F )T T T t ,T0

, the procurement costs term:L (S – F )T T t ,T0

∗ ∗L (P – S ) = L (P – g F )– L (S – g F )T T t T T T t ,T T t T t ,T0 0

= L (P – g F )–L (S – F )T T T t ,T T T t ,T0 0

where the load-basis is the product of the load and the basis factor:LT

L = g L . (6)t t t

The procurement costs term can cause large losses when the price peaks way above the futuresST

price . The hedging strategy aims at offsetting the variation of the quantityFt ,T0

W = L (S – F ) (7)T T T t ,T0

while the retailer determines the predetermined selling price to extract an expected but uncertainPT

profit. Considering the load-basis L (instead of the load L and the basis factor g separately) is
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14. The retailer is assumed to consider information relative to past and contemporaneous load-basis, spot prices andG

futures prices: .G L= σ{ ,S ,F 0≤ u≤ t,j = 1,2,3}⎪t u u u,u + j

15. In the current paper, this consists of all predictable trading strategies, meaning that is measurable for allG G- h –t + 1 t

t.
16. Ni et al. (2012) add a linear term to the quadratic penalty which makes it asymmetric.
17. This penalty is also considered in a hedging problem by François et al. (2012).

convenient since only a single model is required for the former quantity (instead of two models for
the latter).

We choose to hedge procurement costs risk, instead of the full cash flow in (3), for several
reasons. First, the more critical part of the risk faced by the retailer is found in the procurement
costs term. Failures of electricity retailers (e.g. Texas Commercial Energy in 2003) were caused by
a large and sudden increase in the spot price. A prime concern in hedging is to avoid extreme losses
which could lead to financial hardship or even bankruptcy. Since such losses are likely to be caused
by the procurement costs term, the hedging approach developed in the current paper focuses on
this term. Second, while this approach leaves some residual risk unhedged since the fluctuation of
the load and basis ratio affect the baseline profits, the retailer in the variable price product speci-
fication has some control on the retail price over a medium-term time horizon. This can offsetPT

a portion of the risk related to the baseline profit margin. Third, since the design of futures contracts
allows locking the spot price to the initial futures price , it is more natural to hedge theS FT t ,T0

procurement costs term based on the difference in these two quantities than the full cash flow which
is driven by the retail selling price . Fourth, only considering procurement costs avoids thePT

separate modeling of the load and basis ratio processes. Finally, hedging only procurement costs
instead of the full cash flows is consistent with other similar work in the literature (see Rocha and
Kuhn (2012) and Kettunen et al. (2010)).

The retailer would like the terminal value of the hedging portfolio to be bigger thanVT

the target (or at least as close as possible to it) to offset the procurement costs risk. The globalWT

hedging problem that must be solved is thus

min E[G(W – V ) G ], (8)⎪T T t0
(h , . . . ,h )∈Ht + 1 T0

where , is the filtration that defines the information avail-V = V (h , . . . ,h ) G = {G t = t , . . . ,T}⎪T T t + 1 T t 00

able to the retailer,14 H is the set of all trading strategies available to the retailer15 and G is a penalty
function which weights and sanctions losses. Some integrability and regularity conditions might
need to be satisfied to ensure that the solution exists.

There are numerous possibilities for the penalty function G. A standard choice in the
literature is the quadratic function, , since it conveniently leads to semi-analytical formulas2G(x) = x
(Schweizer 1995) and therefore enhances the tractability and the computational speed of the solu-
tion. This approach has two principal caveats: (i) the semi-analytical formulas do not take trans-
action fees into account; (ii) the quadratic penalty is symmetric, such that gains and losses are
equally penalized.16 To remedy the problem of penalized gains, we also consider a semi-quadratic
penalty17

2G(x) = x I . (9){x�0}
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18. Sanda et al. (2013) find evidence of speculative trading within the hedging portfolio of electric utilities in Nord Pool
which leads to substantial profits.

A drawback of using a non-quadratic penalty is that it leads to a substantial increase in the numerical
burden. The computations are however still feasible for the current framework since the portfolio
is only rebalanced three times. The computation of solutions for problem (8) with penalty (9) is
discussed in the online appendix A.3. A simulation-based algorithm is proposed to solve the Bell-
man equation. This algorithm can accommodate a wide class of penalty functions.

Keeping the quadratic order as in penalty (9) has the advantage of giving a lot of weight
to large losses, precisely the type of losses that the retailer must avoid. Moreover, smaller losses
are still penalized, which is consistent with the hedger’s preferences. Other popular risk measures
that are used in the risk management literature are the value-at-risk (VaR) and tail value-at-risk
(TVaR). The most important pitfall associated with the VaR is that this measure disregards the
magnitude of the largest losses. This property means that using the VaR as the objective function
in the global risk minimization problem can lead to gambling for resurrection behavior, as shown
in Godin (2013). As only losses beyond the VaR are penalized, whenever the VaR threshold has
been reached, the retailer has the incentive to take very risky positions to maximize the probability
of getting back beyond the VaR. This behavior increases the probability of extreme losses and is
incompatible with the purpose of hedging. The TVaR measure is preferable to the VaR in a global
hedging framework as this risk measure takes into account all worst-case losses by averaging them.
However, small losses are not penalized when using the TVaR as the objective function and this
results in higher hedging costs. Furthermore, using the TVaR significantly increases the numerical
burden: performing the global minimization of the hedging error TVaR with dynamic programming
requires to solve a double minimization problem as shown in Godin (2013). This is not easily
handled by the numerical algorithm proposed in this paper. The expected semi-quadratic penalty
therefore seems the most appropriate choice in the current context.

Penalty (9) removes losses as much as possible, and this without affecting gains. Its use
is justified in the case of a highly risk averse retailer wishing to remove downside risk as much as
possible, without penalizing the upside risk. However, retailers using weekly electricity futures to
hedge incur a cost on average due to the presence of a positive risk premium (contango) on these
contracts. An important strand of the literature studies the risk premium on electricity futures
contracts, and some of these papers study risk premiums on weekly futures for Nord Pool. Lucia
and Torro (2011) observe a risk premium on weekly futures with four or less weeks-to-maturity
that is positive on average, but that varies through seasons: it is greatest during winter and approx-
imately null during summer. The risk premium is also shown to be affected by hydropower reservoir
levels; an unexpectedly low level inducing a higher premium. The risk premium also increases with
increasing time to maturity. Botterud et al. (2010) study the risk premium and convenience yield
on weekly futures with one to six weeks to maturity and also observe that futures prices are on
average higher than realized spot prices. Because the contango situation leads to substantial costs
to retailers using weekly futures to hedge their exposure, it is important to perform the hedging in
the most cost-efficient way possible. Solving the optimization problem (8) does the latter.

Retailers with a hedging policy that allows for speculation might decide to accept addi-
tional risk in order to increase their expected return.18 Because of the contango situation of weekly
electricity futures in Nord Pool, this would be achieved by under-hedging, i.e. reducing the exposure
that is hedged.
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19. If the internal load data of the retailer do not support this assumption, the load model should be reworked. For
differences between the load consumption patterns across the four countries that are part of the Nord Pool market, see
Huovila (2003).

3. MODELS FOR THE STATE VARIABLES

To compute the optimal trading strategy, the dynamics of the state variables and ,L Ft t,T

the key components in the hedging problem, must be modeled. The proposed models are constructed
from historical data.

3.1 Load-basis

We assume that the load the retailer must supply is proportional to the entire system load
on the Nord Pool spot market.19 This proportionality assumption, which is justified by a high
correlation between firm load and market load, is also found in Coulon et al. (2013) for the Texas
electricity market.

Load forecasting has been studied in the literature. Weron (2006) surveys different load
forecasting methods and divides them in two classes: artificial intelligence models (neural networks,
fuzzy logic, support vector machines) and statistical models (regression models, exponential
smoothing, Box-Jenkins type time series models). Load forecasting methods are split into three
different segments: short-term load forecasting (STLF), medium-term load forecasting (MTLF) and
long-term load forecasting (LTLF). STLF is interested in hourly forecasts up to one week ahead,
MTLF considers forecasts from one week to one year ahead and LTLF considers even longer
horizons. The vast majority of the load forecasting literature considers STLF (Hahn et al. 2009),
but MTLF has attracted more attention recently. Gonzalez et al. (2008) use a combination of neural
networks and Fourier series to represent respectively the trend and the cyclical fluctuation of the
monthly load in the Spanish market. In their paper, Fourier series outperform neural networks in
their predictive ability for the cyclical load fluctuations. Abdel-Aal (2008) compares the use of
neural and abductive networks to forecast the monthly load supplied by a power utility based in
Seattle. Abdel-Aal and Al-Garni (1997) compare the use of univariate ARIMA process, abductive
networks and multivariate regression models incorporating demographic, economic and weather
related covariates to forecast the monthly domestic energy consumption in the Eastern province of
Saudi Arabia. ARIMA processes outperformed their competitors in the study. Barakat and Al-
Qasem (1998) propose a regression model with time and temperature as covariates to forecast the
weekly load on the Riyadh system (Saudi Arabia).

A few papers attempt MTLF in Nord Pool. For example, Johnsen (2001) models the
electricity demand as a linear function of current and lagged variables including the previous de-
mand, the electricity price, heating degree days (HDD) and other exogenous variables such as the
price of alternative fuels, the day-length and the economic activity level. Vehviläinen and Pyyk-
konen (2005) propose that the monthly electricity demand is the sum of a white noise and a piece-
wise linear function of the temperature. Fuglerud et al. (2012) use a SARIMA model with HDD as
an input to represent the weekly electricity consumption in Nord Pool. To keep the model parsi-
monious and because the numerical scheme is affected by the dimension of the state variable vector,
the current paper proposes a reduced-form parametric statistical model for the weekly load dynamics
on Nord Pool which does not include exogenous variables.
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20. Nord Pool uses the expression “turnover” to designate the load.
21. Otherwise each additional lag would have to be included as a state variable.
22. Results in the online appendix A.4.2 show that the fitted model is good and a more numerically challenging single-

step estimation was thus not attempted.

3.1.1 Load-basis data

Time series of hourly load (in MegaWatt-hours, MWh) and hourly day-ahead spot price
(in Euros, €) on Nord Pool for the January 1, 2007 to July 29, 2012 period are obtained through
the Nord Pool FTP server.20 The hourly load is aggregated as shown in Figure 1 and yields 291
weekly load observations. The resulting load series L and basis ratio series g defined by Equation
(5) are then combined to obtain the load-basis series L in (6).

The most salient feature of the load time series is a seasonal pattern, both in the mean and
in the variance. Autocorrelation between consecutive load departures from its trend is also present.
The model chosen for the dynamics of the load-basis L (observed in Figure 1) is thus:

L – g(t) = γ(L – g(t–1)) + v(t)e (10)�t t–1 t

P P
(sin,j) (cos,j)g(t) = β + β C + β C (11)∑ ∑0 j t j + P t

j = 1 j = 1

Q Q
(sin,j) (cos,j)log v(t) = α + α C + α C (12)∑ ∑0 j t j + Q t

j = 1 j = 1

where e is a strong standardized Gaussian white noise. The g function represents the seasonal trend
of the load-basis level and its fitted value is represented by the dashed line in Figure 1. The v
function characterizes the trend in the variance of seasonally corrected load-basis observations and
the square root of its fitted value is represented by the dashed line in Figure 2. Terms of a Fourier
expansion

3p 2pjt 3p 2pjt
(sin,j) (cos,j)C = sin + , C = cos +t t� � � �2 365.25/7 2 365.25/7

are used to capture yearly cycles (see also Gonzalez et al. (2008)). The γ parameter in Equation
(10) represents the autocorrelation in seasonally corrected load-basis observations. To preserve the
Markov property, only one lag is considered.21 Parameters to be estimated are

.γ,β , . . . ,β , α , . . . , α0 2P 0 2Q

3.1.2 Estimation of model parameters

The model estimation is performed in two steps.22 The first consists in estimating γ and
by quasi-maximum likelihood under the assumption that is constant. The optimalβ , . . . ,β v(t)0 2P

number of Fourier terms in the mean trend ( ) is chosen using the cross-validation procedureP = 3
described in the online appendix A.4.1. Table 3 gives estimated parameters and their standard errors
for this step. Figure 1 shows the load series L, the load-basis series L and the estimated load-basis
seasonality trend g. Even if the variance v is presumed constant during the estimation of the trend
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Table 3: Load-basis Seasonality Trend Parameters

Parameter Estimated Value Standard Error

γ 0.68 0.04
β0 �106 5.70 0.04
β1 �106 –1.13 0.06
β2 �106 –0.15 0.05
β3 �106 0.06 0.04
β4 �106 0.24 0.06
β5 �106 0.10 0.05
β6 �106 0.11 0.04

Notes. Estimated parameters and their standard error for the load-basis
seasonality trend g defined by Equation (11). Data between January 1,
2007 and July 29, 2012. Estimated parameter variance is obtained
through the inverse of the observed Fisher information matrix.

Figure 1: Load-basis Seasonality Trend Curves

Notes. Observed total weekly load on the Nord Pool market as defined by (1), corresponding load-basis L described in (6)
and fitted seasonality trend of Equation (11) with parameters of Table 3. Data between January 1, 2007 and July 29,g(t)
2012. Load data before 2007 are also included to show the shift in the overall system load level and justify the use of data
starting from January 2007. The load-basis model used is given by (10)–(12).

23. At this step, the constant estimated volatility is .5v̂ = 2.264�10�

parameters,23 the overall trend seems reasonably captured. The load-basis is much larger in winter
than in summer; this is expected given the winter heating requirements for Scandinavian countries.
The autocorrelation parameter γ is estimated at 0.68, this large value indicating a high persistence
in load deviations from the trend. This persistence can be seen in Figure 1 where the observed load
tends to remain away from the trend for a few weeks following a deviation.

Once the trend parameters are estimated, proxy values for , denoted , can beˆv(t)e v̂(t)e� �t t

computed using Equation (10). These proxies serve as input in the second step which consists in
estimating by maximum likelihood (ML). The optimal number of Fourier terms in theα , . . . ,α0 2Q

variance trend ( ) is selected through the cross-validation procedure described in the onlineQ = 2
appendix A.4.1. Table 4 presents the estimated parameters for the variance model (12). Figure 2
shows the estimated standard deviation trend (dashed curve) and the absolute value of thev̂� t
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Table 4: Load-basis variance trend

Parameter α0 α1 α2 α3 α4

Estimated Value 24.40 –0.72 –0.38 0.49 –0.32
Standard Error 0.08 0.11 0.11 0.11 0.12

Notes. Estimated parameters and their standard error for the load-basis variance trend
v defined by Equation (12). Data between January 1, 2007 and July 29, 2012. Estimated
parameter variance is obtained through the inverse of the observed Fisher information
matrix.

Figure 2: Load-basis Standard Deviation Trend Curves

Notes. Realized absolute load-basis volatility and fitted standard deviation trend as defined by Equation (12)ˆv̂(t) e v̂� �⎪ ⎪t
with parameters found in Table 4. Data between January 1, 2007 and July 29, 2012.

24. If the load information is not available in real-time due to delays needed to integrate data in information technology
systems, the load data from Monday to Thursday at midnight can be used instead to perform the forecast. The method to
compute the forecast in this situation remains the same.

proxies (full curve). The peak in volatility occurs in the beginning of winter, while the lowestˆv̂(t)e� t

volatility is observed during the end of the summer. Note that the high volatility in the winter could
generate spikes like those observed in Figure 1. Goodness-of-fit tests that confirm the adequacy of
the load model are found in the online appendix A.4.2.

3.1.3 Load-basis forecasting from incomplete information

The selection of , the number of futures shares detained in the portfolio from theht + 1

Friday of week t until the Friday of week (or Sunday if ), is based on , the weeklyt + 1 t + 1 = T Lt

load-basis on week t. However is only observed at midnight on Sunday of week t, and not atLt

the closing time of markets on Friday. What is observed at the latter time is the sum of hourly loads
from the beginning of week t to 4:00 p.m. on Friday24:

4 24 16

L̃ = L + L .∑ ∑ ∑t t,d,h t,5,h
d = 1 h = 1 h = 1
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25. The out-of-sample MAPE obtained by using the naive benchmark is 1.21%. Obtaining good load forecastsˆ ˜L : = �Lt t

is crucial to the success of the hedging procedure and the small improvement of model (13) over the naive method justifies
its use. Non-Gaussian residuals invalidate the usual t-tests on model parameters. Nested sub-models gave larger out-of-
sample prediction RMSE and MAPE.

26. This is consistent with what is expected; since L and are respectively approximately the sum of 168 and 112L̃
hourly loads, the long-term average of the ratio should revolve around .168/112 = 1.5

When is selected, the value of must thus be forecast using . The accuracy of several˜h L Lt + 1 t t

forecasting models were compared through a cross-validation test and the model

q
Lt– jˆ ˜L = L � � + c (13)∑t t � �L̃j = 1 t– j

produced the lowest out-of-sample forecasting root-mean-square error (RMSE). The out-of-sample
mean absolute percentage error (MAPE) is 1.12%.25 The parameter � drives the long-term average
of the ratio , while the autoregressive coefficient c characterizes the dependence of the current˜L /Lt t

ratio on previous ratios. The estimated parameters obtained when re-estimating with the full dataset
are , and . Nested models where one parameter is dropped yield a lower�̂ = 0.716 ĉ = 0.171 q̂ = 3
predictive power. The long-term average of the ratio is given by .26ˆ˜L /L �/(1– q̂ĉ) = 1.47t t

3.2 Futures and Spot Price

In this section, time series of futures prices are modeled. Modeling the relation between
the spot and futures prices in the context of electricity markets is complicated by the fact that
electricity is not storable. This prevents the use of the usual cash-and-carry scheme to price futures
contracts.

Solving problem (8) requires a model that completely specifies the stochastic dynamics of
futures prices. Several approaches are however proposed in the literature for this purpose and they
are now discussed.

Despite the fact that electricity is not storable and not openly traded, some authors follow
the risk-neutral approach commonly used in finance. The dynamics of the spot price are modeled
and a martingale measure is selected to compute futures prices as an expectation of the discounted
cash flows. The literature proposing models for the spot price of electricity is extensive. Two main
classes of models exist: reduced-form and structural (or bottom-up) models. Reduced-form models
directly specify the stochastic dynamics of the spot price. Many papers follow this approach, e.g.
Knittel and Roberts (2005) and Escribano et al. (2011) who test the performance of several models
across the different electricity markets. In the structural class of models, the main factors driving
the spot price (e.g. weather, alternative fuels price, inflows to hydro-reservoirs, the spot price in
adjacent electricity markets) are individually modeled and the interaction of these factors leads to
an equilibrium spot price through the intersection of supply and demand. See e.g. Fuglerud et al.
(2012) and Vehviläinen and Pyykkonen (2005). Risk-neutral measures are used to compute deriv-
atives prices from the spot price dynamics. E.g. the Girsanov transform is proposed in Lucia and
Schwartz (2002), Cartea and Villaplana (2008) and Coulon et al. (2013). Benth et al. (2008) use
the Esscher transform to compute futures prices from their spot model which is a linear combination
of non-Gaussian Ornstein-Uhlenbeck processes.
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Besides the non-storability of electricity, there is another potential pitfall with the risk-
neutral approach to price futures. On the Nord Pool market, a principal component analysis applied
to weekly futures returns shows that the spot price might be driven by factors different than those
driving futures prices Benth et al. (2008). The martingale measure approach discounting the ex-
pected spot price to obtain the futures price might thus be inappropriate. This result is consistent
with the study of Koekebakker and Ollmar (2005) who use principal component analysis to propose
a multi-factor model for forward returns. They find that the number of factors necessary to represent
the full forward curve is much larger for electricity futures on the Nord Pool market than for other
commodities; the correlation between short-term and long-term electricity forward prices is smaller
than in other markets.

Benth et al. (2008) also suggest adapting the Heath-Jarrow-Morton framework to electricity
markets. Under such a methodology, the dynamics of forward prices that deliver an infinitesimal
volume of electricity are directly specified. However, futures prices, which are really swap prices
in the context of electricity markets, suffer from severe intractability issues under this model and
we did not retain this approach.

Bessembinder and Lemmon (2002), in their equilibrium scheme, propose to model futures
prices as a linear combination of the first three moments of the spot price at maturity. However,
empirical work in Redl et al. (2009) shows that the latter model does not perform well for the Nord
Pool market.

The third method proposed in Benth et al. (2008) is to find a statistical model that repro-
duces the dynamics of the observed futures returns. This approach is followed in the current paper
since it better suits our need to fully specify the distribution and the stochastic dynamics of futures
and spot prices of electricity. Benth et al. (2008) use a deterministic volatility with seasonal and
time to maturity regressors. We use a GARCH-type stochastic volatility to accomodate the random
(non seasonal) volatility clusters observed in our futures returns series. This approach better repro-
duces stylized facts.

Daily prices of futures on NASDAQ OMX are provided by Bloomberg. Since futures
prices vary during the day, closing prices are used.

3.2.1 Our model

For a market participant hedging the cost of electricity at maturity week T, the sequence
of observed futures prices that must be modeled is . We propose a multivariate{F j = 3,2,1,0}⎪T– j,T

time series model for the joint dynamics of the spot and futures prices. As with financial assets,
futures price returns are modeled (instead of the futures prices) as they are more likely to be
stationary. Futures returns defined by

x = log(F /F ) (14)t,T t,T t–1,T

are shown in Figure 3 for .t = T,T–1,T–2
Futures price returns exhibit autocorrelation, volatility clustering and fat tails. These fea-

tures suggest a multivariate AR-GARCH process with innovations drawn from a fat-tail distribution.
For the latter, we choose a Normal Inverse Gaussian (NIG) distribution. This distribution is shown
to provide a good fit to Nord Pool’s electricity futures returns in Frestad et al. (2010) and Andresen
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Figure 3: Futures Price Returns for Different Times-to-maturity

Notes. NASDAQ OMX electricity weekly futures returns (on Nord Pool day-ahead spot price) as defined by (14) between
January 1, 2007 and July 29, 2012. The trivariate time series illustrated contains 290 observations.

27. A standardized NIG is a NIG distribution with mean 0 and variance 1. Such a distribution only has two free
parameters: α and β. Note that these α and β should not be confused with those used in the load-basis model in Section
3.1.1.

28. More precisely, the condition

α –βi iσ � a.s. (17)i,t 2

is necessary and sufficient to obtain . Thus, the volatility bound y combined with the additional constraints2xt,t + iE[e ] �∞

, and assure (17) is satisfied.α �y β ∈(–α ,α –2y]i i i i

et al. (2010). More specifically, for , the trivariate AR(1)-GARCH(1,1) with NIG innova-i = 0,1,2
tions is

x = l + a x + σ z (15)t,t + i i i t–1,t–1 + i i,t i,t

2 2 2 2 2σ = min{y ,j + γ σ + n σ z } (16)i,t + 1 i i i,t i i,t i,t

where has the following properties:z = (z ,z ,z )t 0,t 1,t 2,t

if , and are independent; are drawn from a standardized27 NIG( ) distri-s ≠ t z z z α ,βt s i,t i i

bution; conditionally upon , , and are linked by the Gaussian copula.G z z zt–1 0,t 1,t 2,t

A bound y is used on the volatility to ensure that futures prices are square-integrable.28 The ai

parameter represents autocorrelation of futures returns while adjusts their long-term expectedli

level. The parameter adjusts the long-term level of futures return volatility, the characterizesj γi i

the persistence in returns volatility, and determines how shocks associated with current returnsni
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Table 5: Futures Return Parameters

Parameter i = 1 i = 2 i = 3

2l �10i –0.72 (0.38) –1.57 (0.51) –1.27 (0.48)
ai 0.22 (0.07) 0.14 (0.07) 0.07 (0.07)

2j �10i 0.18 (0.06) 0.12 (0.05) 0.11 (0.05)
γi 0.28 (0.13) 0.58 (0.09) 0.60 (0.10)
ni 0.50 (0.16) 0.37 (0.09) 0.34 (0.10)
αi 1.10 (0.10) 1.27 (0.30) 1.24 (0.15)
βi –0.11 (0.03) –0.06 (0.31) 0.01 (0.08)

Notes. Estimated parameters (standard error) for futures returns model defined in (15)–
(16). Data between January 1, 2007 and July 29, 2012 for futures with , 2 and 3i = 1
weeks to maturity.

Table 6: Futures Return Copula Parameters

Parameter ρ0,1 ρ0,2 ρ1,2

Estimate (Standard Error) 0.76 (0.02) 0.67 (0.03) 0.88 (0.05)

Notes. Estimated parameters (standard errors) for the Gaussian copula described in
Section 3.2.1. links returns on futures with respectively and weeks toρ i + 1 j + 1i,j

maturity. Data between January 1, 2007 and July 29, 2012.

29. The proxy for the initial value for the volatility is its long-term stationary average. The bound is set atσ̂ y = 0.6i,0

since such a constraint is not numerically binding with the available data.

affect the current volatility. The NIG parameter drives the tail thickness in the distribution of theαi

futures return while the drives its asymmetry.βi

3.2.2 Model estimation

A two-step procedure is applied. First, the parameters for the three marginal AR(1)-
GARCH(1,1) processes ( and ) are estimated by ML.29 Plugging the estimatedx ,x xt,t + 1 t,t + 2 t,t + 3

parameters in (15)–(16) yields proxy values for . Then, the proxies are used to estimate theẑ zt t

parameters of the Gaussian copula. Letting denote the cumulative distribution function (cdf)FNIG

associated with the NIG distribution and applying the Rosenblatt (1952) transform to the proxy ẑt

yields a series of approximatively independent uniformly distributed observations U =t

drawn from the Gaussian copula. ML is used and theˆ ˆ ˆ(F (ẑ ),F (ẑ ),F (ẑ ))ˆ ˆ ˆNIG(α ,β ) 0,t NIG(α ,β ) 1,t NIG(α ,β ) 2,t0 0 1 1 2 2

closed-form solution is

(–1) (–1)ρ̂ = Corr(U (U ),U (U )),i,j i,t j,t

where Corr is the sample correlation and is the inverse cdf of a standard Gaussian variable.(–1)U

Parameter estimates are shown in Tables 5 and 6. Negative estimates for the parametersli

indicate the futures market is in contango. The GARCH parameters and are highly significant,γ ni i

confirming the presence of volatility clustering in futures returns. The autocorrelation parameters
are positive, indicating that futures returns are partially predictable. The parameters are alla αi i

low (smaller than 2) so the kurtosis of futures returns is more pronounced than in a Gaussian
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Table 7: Correlation Between Load-basis and Futures Return
Residuals

Weeks to maturity

Quarter 1 2 3

1 0.23 0.21 0.32
2 0.03 0.05 – 33�10
3 0.14 – 3–3�10 –0.01
4 0.05 0.09 0.08

Notes. Sample Spearman correlation across quarters between residuals of the load-
basis series and the three futures returns series. Data between January 1, 2007 and July
29, 2012.

distribution (which corresponds to an infinite α). The correlation parameters of the Gaussian copula
are all higher than 0.65, indicating a somewhat high correlation between futures returns across the
time to maturity dimension.

Goodness-of-fit tests that confirm the adequacy of the futures return model are shown in
the online appendix A.4.3. None of the main features (autocorrelation, volatility clustering and non-
Gaussianity) in the futures returns model can be removed without at least one of the tests in the
online appendix A.4.3 indicating an inadequate fit (p-values for nested models not shown).

3.3 Dependence Between Load-basis and Futures Innovations

In this section, the dependence between load-basis and futures return innovations is spec-
ified. The structure of dependence between the load-basis and futures is known to vary across
seasons. The dependence is stronger during winter where the price of electricity is more demand-
driven. Table 7 gives estimates of correlation between the load-basis and futures returns residuals
across quarters, confirming the time-varying correlation structure.

To reflect this dependence, the Gaussian copula linking futures innovations is extended to
include the load-basis innovations. Thus, conditionally upon , are assumed to beG (z ,z ,z ,e )t–1 0,t 1,t 2,t t

linked by a Gaussian copula with the following correlation parameters matrix:

1 ρ ρ ρ0,1 0,2 LF,t

ρ 1 ρ ρ0,1 1,2 LF,tR = (18)
ρ ρ 1 ρ0,2 1,2 LF,t� �
ρ ρ ρ 1LF,t LF,t LF,t

where is the parameter linking the load-basis and futures returns innovations. We suppose theρLF,t

correlation between load-basis and futures return innovations to be identical for the three considered
maturities. To capture the cyclical behavior of the correlation, a trigonometric function is used:

365.25
2pmin (t– s )mod ,s3 2� �73p

ρ = s 0.5 1 + sin + (19)LF,t 1 � � ��2 s2

where is the maximum correlation during the year, determines the span of time across whichs s1 2

the correlation is non-null and sets the location of the correlation peak. The parameters ands s ,s3 1 2
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Table 8: Estimated Parameters of Dynamic Correlation
Between Load-basis and Futures

s1 s2 s3

Estimated Parameter 0.36 34.1 –11.1
Standard Error 0.10 10.7 5.8

Notes. Estimated parameters and standard errors for the functional form (19) of the
dynamic correlation between load-basis and futures innovations. Data between January
1, 2007 and July 29, 2012.

Figure 4: Estimated Correlation Function Between Load-basis and Futures Innovations

Notes. Estimated correlation function between load-basis and futures innovations between January 1, 2007 and July 29,
2012, as obtained by (19) with parameters found in Table 8.

are estimated by ML, using that the distribution of is(–1) (–1) (–1) ˆs (U (U ),U (U ), U (U ),e )3 0,t 1,t 2,t t

approximately Gaussian with zero mean and covariance matrix R. The estimated parameters are
given in Table 8.

The estimated correlation function is given in Figure 4. The resulting correlationρ̂LF,t

parameter is null in the summer and attains its peak value in the middle of winter at the sixth week
of the year.

4. PERFORMANCE ASSESSMENT

We carry out numerical experiments to assess the performance of the hedging strategy
given by solutions of problem (8). We propose two different hedging procedures: (i) the hedging
methodology which solves problem (8) with is referred to as quadratic dynamic global2G(x) = x
hedging (QDGH); (ii) the methodology solving that same problem but without penalizing the gains,
i.e. using (9), is called semi-quadratic dynamic global hedging (SQDGH). The benchmarks are
described in Section 4.1 while the backtests are explained in Section 4.2.

4.1 Benchmarks

4.1.1 Delta Hedging

If the load to be served by the retailer is known with certainty and no transaction fees
exist, the delta hedging strategy proposed by Eydeland and Wolyniec (2003) completely eliminates
the price risk borne by the retailer by locking in the spot price to (see the online appendixFt ,T0
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A.2). This strategy is adapted to the case of a stochastic load by hedging the expected load-basis,
i.e. the retailer enters into

Bt + 1
h = E[L G ] (20)⎪t + 1 T tBT

long positions in the futures contract at time t to cover its exposure at time T. Improved delta
hedging (IDH) uses the load-basis model (10)–(12) to compute in (20).E[L G ]⎪T t

To quantify the impact of using the (10)–(12) load-basis model in the hedging algorithm,
alternative load-basis models are also proposed to compute . For example, one may stateE[L G ]⎪T t

that a good prediction of the expected load-basis in a near future is the last observed load-basis.
This points to the first alternative, the naive delta hedging (NDH), which uses the naive prediction
model

(NDH) (NDH)E[L G ] = L .⎪T t t

The second alternative, referred to as delta hedging (DH), uses a load-basis model inspired
from Wagner et al. (2003) where the latent variable found in their model is removed for simplicity.
Their model specifies the load dynamics, but is applied here to the load-basis. More specifically,
the load-basis model for DH is

(DH) (DH) (DH) (DH)¯L = L + γ (L –L ) + Et + 1 t m t t + 1t + 1

where is a Gaussian white noise, is the historical mean value of the load-basis during the¯E Lm

month of the year ( ) in the estimation set, is the month associated with weekmth m = 1, . . . ,12 mt + 1

and is estimated by ML. We find . Note that any dependence between the(DH) (DH)ˆt + 1 γ γ = 0.3477
load and the futures cannot be easily accounted for under all delta hedging approaches.

4.1.2 Local Minimal Variance Hedging (LMVH)

The objective of this strategy, which is based on the Ederington (1979) scheme, is to
construct a portfolio of futures whose variation mimics the variation of the spot price as closely as
possible for the current period. More precisely, for each unit of load to serve, the retailer would
detain units of futures at time t, where minimizesϑ ϑ Var[(S – S )–t + 1 t + 1 t + 1 t

. This yields the solution . Toϑ (F – F ) G ] ϑ = Cov[S ,F G ]/Var[F G ]⎪ ⎪ ⎪t + 1 t + 1,T t,T t t + 1 t + 1 t + 1,T t t + 1,T t

adapt this scheme to the case of stochastic load, the retailer hedges its expected load-basis by
detaining at time t,

Cov[S ,F G ]⎪t + 1 t + 1,T t(LMVH)h = E[L G ] (21)⎪t + 1 T t Var[F G ]⎪t + 1,T t

long positions in the futures contract to cover its exposure at time T. As for all delta hedging
procedures, the correlation between the load-basis and the futures contract is not accounted for.
There are many ways to estimate , our reported results use our model outlined in SectionE[L G ]⎪T t

3.1.1. Many different models are used in the literature to compute the conditional variance and
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30. The average EURO LIBOR rate over January 1, 2007 to July 29, 2012 period.
31. Let be the set of ordered hedging errors . Then,(1) (n) ( n + 0.5 )α� ⎦x , . . . ,x W – V q = x + (αn + 0.5– �αn +T T (1 – α)

.( n + 0.5 + 1) ( n + 0.5 )α α� �⎦ ⎦0.5⎦ )(x – x )
32. The results are qualitatively the same when the correlation model in Section 3.3 is omitted and the correlation is set

to zero so the differences cannot be attributed to the consideration of the load/futures dependence.

covariance terms in (21). We compute these quantities with the futures model (15)–(16) for con-
sistency and refer to the approach as local minimal variance hedging (LMVH).

4.1.3 Static Hedging

Since many papers are devoted to static hedging procedures, we include them in our study.
To apply static hedging (STAH), the retailer identifies the solution to problem (8) under the con-
straint . We use the semi-quadratic penalty (9) and identify the optimal tradingh = . . . = ht + 1 T0

strategy through simulation.

4.2 Backtests

In all tests, the initial value of the portfolio is set to 0 and the weekly continuouslyVt0

compounded risk free rate is .30 The case of a retailer serving 1% of the Nord Poolr = 0.0193/52
load is considered.

4.2.1 In-sample backtest

In this experiment, our global hedging and the benchmarks are applied to historical data
during the 287 weeks over the January 29, 2007 to July 23, 2012 period. Hedging errors W – VT T

are recorded at the end of week T and the performance of the various approaches are compared
using the root-mean- square error (RMSE), the semi-root-mean-square error (semi-RMSE) and tail
value-at-risk (TVaR) metrics:

2871
2RMSE = (W – V ) , (22)∑� T T287 T = 1

2871
2semi-RMSE = ((W – V )I ) , (23)∑� T T {W � V }T T287 T = 1

287
(W – V )I∑ T T {W – V ≥ q }T = 1 T T (1 – α)TVaR = . (24)α 287 I∑ {W – V ≥ q }T = 1 T T (1 – α)

where is the quantile31 of level of hedging errors . Results are reportedVaR = q 1– α W – Vα (1– α) T T

in Table 9.
The main result is that the semi-quadratic SQDGH outperforms all other methods in terms

of risk reduction. It reduces the semi-RMSE, the and the TVAR1% by €, € andTVaR 2,560 13,1905%

€, respectively (i.e. by 9.8%, 13.3% and 20.9% in relative measurement), with respect to33,800
IDH, the best non-global benchmark. Those improvements can be attributed to using global hedging
procedures instead of delta hedging since both approaches share the same load model.32 To put
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Table 9: In-sample Backtest Results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 6.12 7.37 7.69 8.17 7.06 8.31 –18.9 –70.7
RMSE 26.16 26.04 27.36 31.37 35.03 27.74 274.8 474.1
Semi-RMSE 23.54 24.55 26.10 29.75 32.15 26.67 208.4 319.5
VaR5% 49.76 53.46 54.53 60.56 73.85 52.77 414.0 688.7
VaR1% 113.9 118.3 129.2 142.7 153.5 133.7 1206 1471
TVaR5% 86.12 92.79 99.31 115.3 121.0 101.7 784.5 1201
TVAR1% 128.1 134.5 161.9 172.9 180.9 152.2 1273 1831

Notes. Hedging error risk metrics for the in-sample backtest (in 1000€). Semi-quadratic dynamic global hedging (SQDGH),
quadratic dynamic global hedging (QDGH), delta hedging (DH), improved delta hedging (IDH), naive delta hedging (NDH),
static hedging (STAH), local minimal variance hedging (LMVH) and no hedging (NOH), i.e. for all t. Historical(NOH)h = 0t

data from January 29, 2007 to July 23, 2012.

33. The average 3-weeks futures price is 7.7% higher than the arithmetic average spot price for the January 2007 to
July 2012 period.

these numbers in context, the mean weekly procurement costs of electricity (the average of L ST T

for the January 2007 to August 2012 period) for the considered retailer is €. Von der Fehr2.35M
and Hansen (2010) identify a retail price mark-up over the wholesale price ranging between 4.4%
and 10.8% for variable price contracts and between 7.2% and 13% for fixed price contracts in
Norway. Using a 10% mark-up for ballpark calculations, this leaves the retailer with an average
weekly margin of € to cover expenses and profit; average profits will be a fraction of that235,000
amount. SQDGH reduces the 1% worst-scenarios average loss with respect to IDH by €, a33,800
substantial fraction of average profits.

Note that IDH benefits from our load-basis model (10)–(12). The added value of the latter
model is isolated by comparing IDH with DH and NDH. The TVAR1% is reduced from €180,900
for the NDH to € for the DH, and further reduced to € for the IDH. This illustrates172,900 161,900
the importance of having an accurate load-basis model and the benefits provided by the model (10)-
(12) in terms of risk reduction.

The combined reduction in TVAR1% due to methodology presented in this paper obtained
by comparing SQDGH and NDH is €, with a combined reduction in semi-RMSE of €.52,800 8,610

It is also interesting that the mean hedging error is lower for SQDGH than for all other
models except LVMH and no hedging (NOH). This indicates the risk reduction yielded by the
SQDGH method is not obtained at the expense of a lesser profitability. The LMVH and NOH
methods are the two most profitable on average, but they yield extremely poor results in terms of
risk management. The poor performance of the LMVH method is explained by positions in the
futures that are significantly too low. Indeed, since the cash-and-carry relationship of futures price
and the spot price does not hold in this market, the correlation between spot price and futures price
variations are much lower than in other markets. This reduces the position and produces(LMVH)h

under-hedging. Because the Nord Pool electricity futures market is in contango,33 under-hedging
produces higher average profits than full hedging.

In terms of semi-RMSE, STAH underperforms IDH, QDGH and SQDGH, showing the
benefits of dynamic hedging over a static procedure.

4.2.2 Out-of-sample backtest

In this experiment, we carry out an out-of-sample test that replicates more realistic appli-
cation conditions where future observations cannot be used to estimate state variable models. The
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Table 10: Out-of-sample Backtest Results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 13.21 13.15 13.68 14.82 11.29 15.35 –0.60 –59.9
RMSE 33.71 36.60 35.15 42.04 42.64 37.71 347.5 585.5
Semi-RMSE 31.45 34.01 34.19 40.10 40.15 36.77 275.4 409.0
VaR5% 79.54 87.50 92.51 104.7 97.51 105.1 678.7 907.9
VaR1% 112.5 133.4 121.5 150.7 155.5 131.5 1208 1633
TVaR5% 103.9 113.6 116.3 137.0 134.9 122.6 1040 1483
TVAR1% 114.1 142.5 150.0 166.1 168.8 145.1 1311 2005

Notes. Hedging error risk metrics for the out-of-sample backtest (in 1000€). Semi-quadratic dynamic global hedging
(SQDGH), quadratic dynamic global hedging (QDGH), delta hedging (DH), improved delta hedging (IDH), naive delta
hedging (NDH), static hedging (STAH), local minimal variance hedging (LMVH) and no hedging (NOH), i.e. (NOH)h = 0t

for all t. The three-week hedging procedure is applied weekly between December 28, 2009 and July 23, 2012.

three-week hedging procedure is applied weekly between December 28, 2009 and July 23, 2012.
For each iteration of the test (an iteration corresponds to the starting point of the hedging procedure),
all load and futures price models are estimated based on historical data from the three previous
years (rolling-window estimation set). The hedging algorithm is then applied out-of-sample on the
three weeks following the estimation set, and the terminal hedging error is recorded. There are 132
iterations in total. Descriptive statistics and risk metrics (22)–(24) applied to hedging errors are
given in Table 10.

Once again, SQDGH outperforms all the benchmarks, reducing the semi-RMSE by 7.5%,
the by 8.5% and the TVAR1% by 19.9% with respect to QDGH, the best competitor. TheTVaR5%

SQDGH is therefore the best hedging method among all the proposed methods in both the in-
sample and the out-of-sample backtests.

4.3 Drivers of the SQDGH Hedge Ratio

The hedge ratio is the proportion of futures contract shares to hold per unit of expected
MWh:

ht + 1
h̃ =t + 1 E[L G ]⎪T t

Delta-hedging prescribes holding one futures contract per unit of the underlying asset, i.e. the delta-
hedging hedge ratio is , which is approximately one. However, in electricity markets, futures– r(T– t)e
prices, futures volatilities, load-basis, current portfolio value and previous portfolio composition
affect the optimal hedge ratio prescribed by our model in a complex manner. First, to gain some
intuition on the drivers of the optimal hedge ratio, let us consider a simple one-period version of
the hedging problem (instead of the three-period version in Section 2.3). In this case, the loss is

Loss = W – VT T T

r ˜= L (S – F )–((V –C )e + h E[L G ](S – F ) + C )⎪T T T–1,T T–1 T–1 T T T–1 T T–1,T T

r r˜= (L – h E[L G ])(S – F )– V e + C e + C .⎪T T T T–1 T T–1,T T–1 T–1 T144424443 14243 14243
term 1 term2 transaction costs
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Figure 5: SQDGH Hedge Ratio and Futures Risk Premium Over Time

Notes. Optimal hedge ratios and futures risk premium for the three-week hedging procedure applied weekly between
December 28, 2009 and July 23, 2012; wtm weeks to maturity.=

Large losses may occur when terms 1 and 2 are simultaneously positive (type-a loss) or negative
(type-b loss). Controlling type-a losses requires increasing the hedge ratio while managing type-b
losses suggests decreasing the hedge ratio. Because the risk premium is usuallyF –E[S G ]⎪t,T T t

positive on the futures market, is usually larger than (contango) and the termF E [S G ]⎪T–1,T T–1 T T–1

tends to be negative, making type-b losses more likely. In this case, choosing ˜(S – F ) h �1T T–1,T T

mitigates the probability of having the two components being simultaneously negative. Analo-
gously, when the risk premium is negative, one would choose . This has the beneficial by-h̃ �1T

product that more (less) futures are bought when they are less (more) expensive.
When there is positive correlation between futures prices and load-basis, terms 1 and 2

are more likely to have the same sign and the probability of experiencing large losses increases.
Because a higher correlation increases both the likelihood of type-a and type-b losses, it is unclear
a priori if such higher correlation should positively or negatively impact the optimal hedge ratio.
The optimal hedge ratio will depend on how the other state variables influence the likelihood of
losses of type a or b. These influences are complex and non-linear, and a global optimization
procedure is required to mitigate the largest losses.

We now go back to our three-period hedging problem and consider the results from our
out-of-sample backtest. Figure 5 shows the optimal hedge ratio calculated under SQDGH (panel 1)



56 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

Table 11: Explanatory Power of State Variables on SQDGH Optimal Hedge Ratio

R-square (%) Standardized slope (bsp)

Weeks-to-maturity Weeks-to-maturity

Explanatory variable 1 2 3 1 2 3

Futures premium risk 35.2 34.2 24.0 –192 –129 –64
Load-basis Futures Correlation 9.6 1.1 0.0 –4 23 34

Notes. Results are for simple linear regression. Optimal hedge ratio is regressed on each (contemporaneous) explanatory
variable. Futures risk premium is obtained through our model ex-ante. The standardized slope is the slope multiplied by
the sample standard deviation of the explanatory variable and can be interpreted as the average impact, measured in basis
points (bsp) on the optimal hedge ratio of a one standard deviation increase in the explanatory variable. Optimal hedge
ratios for the three-week hedging procedure applied weekly between December 28, 2009 and July 23, 2012.

and the futures risk premium (panel 2). The first panel shows that the volatility of the optimal hedge
ratio is (i) more important during the winter season and (ii) decreases with the time to maturity.
Given that there is a certain dependence between panels 1 and 2, it is then a legitimate question to
ask whether the futures risk premium is a good predictor of the optimal hedge ratio.

Table 11 shows simple linear regression results where the realized SQDGH optimal hedge
ratio is regressed on the futures risk premium. A simple rule-of-thumb hedging decision based only
on the futures risk premium, i.e. changing the hedge ratio in a linear way with respect to the futures
risk premium, is clearly suboptimal as the latter only explains 24% to 35% of the variation in the
optimal hedge ratio. The average impact on the optimal hedge ratio of a one standard deviation
increase in the risk premium is –64 to –192 basis points.

The inadequacy of the load-basis and futures prices correlation as a simple predictor of
the optimal hedge ratio is also confirmed by the very small values in Table 11. In summary, the2R
explanatory variables play on the hedging decision, but not in a simple way and there is no easy-
to-compute hedging decision rule.

5. CONCLUSION

A dynamic global hedging methodology involving futures contracts is developed to allow
retailers to cover their exposure to price and load risk. Global hedging procedures have received
less attention in the electricity markets literature because they often yield solutions which are
computationally more complex than their local counterparts. We show that the approach is not only
feasible but allows us to account for load uncertainty, basis risk and transaction costs when seeking
the optimal trading strategy.

Statistical models were proposed for the load to be served by the retailer, the electricity
spot price and futures contract prices on the Nord Pool market. Those models were built from
weekly historical data and reproduce their stylized facts. The load-basis model accounts for sea-
sonality in the mean and the variance, as well as autocorrelation in seasonally corrected shocks.
The proposed model for futures price returns, a multivariate AR(1)-GARCH with NIG innovations,
exhibits stochastic volatility, partially predictable returns and fat tails. Dependence between load-
basis and futures innovations is also modeled. Multiple goodness-of-fit tests validate the adequacy
of all models developed.

Backtests using historical market data show the superiority of the semi-quadratic global
hedging procedure compared to various benchmarks of the literature in terms of risk reduction.
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