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ABSTRACT

Extending existing studies based on constant structure, we adopt a time-varying
approach to study energy consumption and GDP causality for China in a context
of industrialization and urbanization. We find that in light of structural change,
China’s energy consumption is trend-stationary and thus forms no cointegration
with GDP. Further, the relationship between energy consumption and GDP is
two-way causal and has been decreasing in strength over time. Finally, industri-
alization and urbanization, especially the former, have limited effects on energy
consumption, suggesting the decreasing energy intensities in individual sectors,
instead of structure shift between sectors, as the main reason for China’s decreas-
ing energy intensity over the years.
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1. INTRODUCTION

The importance of the relationship between energy consumption and economic growth has
been widely acknowledged, as evidenced by the extensive line of studies following Kraft and Kraft
(1978). This issue is particularly important for China. As the largest developing country, China has
recently achieved its status as the second largest economy and the largest energy user worldwide
(International Energy Agency, 2010). Under the pressure to reduce Greenhouse Gases (GHG) emis-
sion, the challenge to balance between economic growth and energy consumption is even greater,
especially when China is in a stage of industrialization and urbanization (Lin and Liu, 2010). This
challenge calls for further understanding of the relationship between energy and growth.

Studies on this issue for China first appeared in the 1990s (Tang and La Croix, 1993;
Huang, 1993a; Chan and Lee, 1996), and have since grown steadily in number. We provide in Table
1 a brief summary of studies that have emerged since 2000 focusing on China or covering China
within a group of countries. Based on varying sample periods, they examine how different types
of energy consumption, from aggregate national to disaggregate regional, interact with economic
growth in causality. These studies take a number of econometric approaches, with Granger causality
as the dominant type, followed by innovation accounting (impulse response function or forecast
error variance decomposition), mostly in an error correction model (ECM). Possibly affected by
the different samples and methods, the causality findings are mixed. Earlier studies (Shiu and Lam,
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Table 1: Literature on the Relationship between Energy and Growth for China

Authors Year Journal Type Sample Method Causality

Shiu and Lam 2004 EP elec. 1971–2000 Granger in ECM energy to GDP
Wolde-Rufael 2004 EE elec./ Shanghai 1952–1999 Granger in VAR energy to GDP
Soytas and Sari 2006 JPM total 1971–2002 Granger in VAR

and GIR in VAR
energy to GDP,

marginal
Zou and Chau 2006 EP oil 1953–2002 Granger in ECM energy to GDP
Chen et al. 2007 EP elec. 1971–2001 Granger in ECM none
Yuan et al. 2007 EE total 1978–2004 Granger in ECM

and HP filter
energy to GDP

Yuan et al. 2008 EE total and
disaggregate

1963–2005 Granger in ECM GDP to energy

Lee and Chang 2008 REE total 1971–2002 Granger in ECM,
panel

energy to GDP

Zhang and Cheng 2009 EcE total 1960–2007 Granger in VAR
and GIR in VAR

GDP to energy

Li et al. 2011 EP total/ regional 1985–2007 panel DOLS energy to GDP
Akkemik and

Goksal
2012 EE total 1980–2007 Granger in ECM,

panel
bi-directional

Bloch et al. 2012 EE coal 1965–2008 Granger in ECM
GIR/GFEVD in
ECM

bi-directional

Li and Leung 2012 EP coal /regional 1985–2008 Granger in ECM,
panel

varying on regions

Michieka and
Fletcher

2012 EP coal 1971–2009 Granger in VAR GDP to energy

Yalta and Cakar 2012 EP total 1971–2007 Meboot VAR none
Zhang and Xu 2012 EE total

/regional
/sectoral

1995–2008 Granger in ECM,
panel

bi-directional

Notes:
a. For column Journal, EcE, EE, EP, JPM, REE stands for Ecological Economics, Energy Economics, Energy Policy, Journal
of Policy Modeling, and Resource and Energy Economics respectively.
b. Column Type gives the particular type of energy consumption, elec. stands for electricity consumption, total for total
energy consumption. If energy consumption is not for national level, we give the particular level after “/”.
c. For column Method, DOLS, GIR/GFEVD, HP stands for dynamic OLS, Generalized Impulse Response/Generalized
Forecast Error Variance Decomposition, and Hodrick-Prescott respectively.
d. For studies involving more than one level of energy consumption, causality result is based on the aggregate level finding.

1. The terms “structure” and “structural” are used repeatedly in the paper, unavoidably in differing contexts. While the
“structure” here applies to the econometric dimension, “structure” or “structural” later sometimes refers to the makeup of
economy, such as the level of industrialization or urbanization. The distinction between econometric and economic dimen-
sion should be borne in mind when reading the paper.

2004; Wolde-Rufael, 2004; Soytas and Sari, 2006; Zou and Chau, 2006) almost unanimously sug-
gest a unidirectional causality from energy to growth. Causality from growth to energy and bi-
directional causality have also emerged more recently (Yuan et al., 2008; Zhang and Cheng, 2009;
Akkemik and Goksal, 2012; Bloch et al., 2012).

In this paper, we revisit the relationship between energy consumption and economic growth
for China out of two motivations. As the first motivation, while existing studies have offered
important insights into this relationship, the issue has generally been studied under the implicit
assumption of a constant econometric structure,1 giving little consideration to the possibility of
structural change/break in the relationship between energy and growth. The assumption of constant
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2. From 1963 to 2010, China’s GDP has increased by 30 times and its levels of industrialization and urbanization have
increased from 59.4, 16.8 to 89.9, 49.9 respectively. See more details in Section 2.

econometric structure can be strong in this case. Over the recent decades, tremendous change has
been witnessed in the Chinese economy, not only affecting the size of the economy, but also its
structure in many important dimensions.2 As documented in Altinay and Karagol (2004), Lee and
Chang (2005), and Balcilar et al. (2010), the influence of changing economic structure and possibly
even economic regimes, can result in the change of causality between energy and growth. Therefore,
it is important to account for structural change when evaluating the energy-growth relationship,
especially for the case of China.

As the second motivation, we argue that beyond the bivariate causal relationship between
energy consumption and economic growth, the channel of causality is also important, but has not
been adequately addressed in the literature. By ‘channel of causality’, we mean the particular routes
for the causality to take effect. For example, consider an energy–constrained economy, given a
unidirectional causality from energy to growth, one way to explore the causal channel is by asking
which sector of the economy energy consumption impacts most. An answer to this question will
help us design an efficient industrial policy, so that energy conservation may be achieved with the
least possible harm to economic growth. Clearly, the particular channel depends on the structural
view we take and can be represented by the resulting structural variables we use. Two recent
examples using structural variables are Liu (2009) and Feng et al. (2009). Liu (2009) studied
urbanization (population structure) in relation to energy consumption and economic growth. Feng
et al. (2009) studied the share of tertiary industry (economic structure) in relation to energy intensity.
In fact, urbanization and industrialization are the two processes widely believed to have shaped
China’s growth and have fundamental effects on China’s energy consumption and GHG emission.
We take the research one step further by modeling both industrialization and urbanization (or to be
precise, the structural shifts associated with either process) in a unified system, so to reveal their
related yet differing effects on energy and growth.

In line with related literature, we model the energy-growth causality in a Vector Autore-
gression (VAR) system. Industrialization and urbanization are included in the system to evaluate
the channels of causality upon energy consumption and economic growth. Our VAR-based analysis
departs from related studies in two aspects. First, we initiate the empirics by first testing the indi-
vidual data series for structural stability, and given evidence of instability, we embed the VAR
system in a rolling window framework to examine time-variation in system dynamics. Second,
following Swanson and Granger (1997), we do the VAR identification using the data-driven Di-
rected Acyclic Graphs (DAG).

The paper proceeds as follows. Section 2 introduces the conceptual framework and data.
Section 3 tests data stationarity subject to structural change. Section 4 describes the VAR-based
approach for system dynamics analysis. Section 5 presents the results and discussions of system
dynamics analysis. Finally, Section 6 concludes the paper.

2. CONCEPTUAL FRAMEWORK AND DATA

Existing studies often use an aggregate production function to provide a sensible concep-
tual framework for multivariate analysis of the energy-growth relationship. As one recent example,
Yuan et al. (2008) consider the following three-factor production function:
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Y = f (K ,L ,E ) (1)t t t t

where , , , represent output, capital, labor, and energy consumption respectively for timeY K L Et t t t

t. The conceptual production function is intended to supply a set of relevant variables, that may or
may not be endogenously related, but not to dictate a specific nature/direction of causality relation-
ship. In this paper, to incorporate the structural features of the Chinese economy, we consider an
alternative framework by first noting that following the popular index decomposition approach for
energy intensity (see Ma et al., 2010 for description), energy consumption can be re-expressed as
a function of output and energy intensity:

n

E = Y ⋅ EI = Y ⋅ ( S ⋅ I ) (2)∑t t t t it it
i = 1

where and are as defined above, stands for aggregated energy intensity of the economy,E Y EIt t t

the output share of the sector, and the corresponding energy intensity of the sector.S i I iit th it th

Unlike the production function in equation (1), is shown to be a complete decomposition con-Et

sisting of , , and . To focus on the structural feature of the Chinese economy, we considerY S It it it

explicitly in our multivariate system while we do not include directly into the system since itS Iit it

is inherently unobservable. This treatment essentially implies the equation below:

E /Y = EI = f (S , . . . ,S ) (3)t t t 1t nt

If we compare this equation to equation (1), then sector energy intensity is comparableIit

to the technology of the production and does not show up in the above energy intensity function.
The benefit of this treatment is, in the following multivariate analysis, we can focus on output,
energy consumption, and sector output share(s) in a compact system without having to include
sector energy intensities. Further, we show in Section 5 that while is not modeled explicitly inIit

the system, we can still draw inference on to certain degree given that equation (2) is a completeIit

decomposition and is the only dimension not addressed directly in our empirical system.Iit

For the specific definition of sector output share(s), we adopt the share of nonagricultural
sector in the economy to reflect the broad definition of industrialization in China. While not directly
available from the equation above, urbanization, the population structure, is another structural vari-
able widely believed to shape China’s economic and social development pattern and thus is also
included in the system. The joint consideration of industrialization and urbanization is designed to
capture their differing and related effects on energy consumption and economic growth relationship.

In sum, we consider a four-variable VAR system (described in detail in Section 4) for the
interaction between energy consumption and economic growth. In addition to the two indispensable
variables for energy consumption (EC) and economic growth (GDP), we further include the share
of GDP due to nonagricultural sectors (IND, secondary and tertiary sectors combined) and the share
of population living in cities and towns (URB) to represent industrialization and urbanization in
the system, especially the structural shifts associated with either process. It is important to recognize
that IND and URB thus defined capture the relative weights of nonagricultural GDP and urban
population versus their respective counterparts (agricultural GDP and rural population), not the
absolute scales. In addition, the IND defined here is a broad measure for industrialization and is
used to capture the baseline feature of the Chinese economy. We later present an alternative set of
analysis based on a narrow IND defined over the secondary industry only in subsection 5.6.
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3. Beside the test due to Zivot and Andrews, a similar test for unit root in case of endogenous structural break was
proposed by Perron (1997).

Data for the four variables is sampled for the years from 1963 to 2010 and is taken from
the National Bureau of Statistics of China. In particular, GDP is represented by real Gross Domestic
Product per capita, and EC by energy consumption per capita. We specify the two variables in per
capita terms to factor in the effect of population change. Compared to the approach of including
population directly, the per capita specification allows for a more compact system.

The data are plotted in Figure 1. Shown in Panel A, GDP appears to follow a relatively
smooth pattern of nonlinear (seemingly exponential) growth, EC appears to follow first a trend of
linear growth up to year 2000, then another phase of linear growth at a different rate. As to the two
structure variables shown in Panel B, IND, despite fluctuations, maintains a steady trend of linear
growth during the whole sample period; URB appears to have experienced two periods of accel-
erated growth, with turning points around the late 1970s and mid-1990s. The level of industriali-
zation in the Chinese economy was as high as 90% in 2010, while the level of urbanization is
roughly 50%. Due to its lower starting point, URB has grown somewhat faster than IND over the
sample period, and may continue to do so over the near future.

3. TESTING FOR STATIONARITY AND STRUCTURAL BREAKS

Prior to considering the modeling for system dynamics, it is important to test the data on
stationarity. We start by testing the four series on stationarity using Augmented Dickey Fuller
(ADF), Phillips and Perron (PP), Dickey Fuller-GLS, and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests. The overall results suggest all four series to be nonstationary, either I(1) or I(2), and
the results from ADF and PP are given in Table 2.

While the results from standard unit root test are largely consistent with previous studies,
from Figure 1, it might be inferred that there is a possible structural break in EC shortly after 2000.
As China is widely understood to have undergone substantial change in both its scale and structure,
the possibility of structural change is hard to dismiss. We thus formally test for structural break in
all the four series. The method we use is the one due to Zivot and Andrews (1992). The Zivot and
Andrews (ZA henceforth) method tests on stationarity of a series in the presence of structural break.
ZA test is not the only one in this regard. Perron (1989) proposed the test for stationarity when
structural break is present. Given a series being nonstationary based on tests considering no break,
both ZA and Perron tests can further determine whether the series is nonstationary with unit root,
or trend-stationary with break point. The difference between two tests is, Perron test needs prior
information on the location of break point while ZA test does not. In other words, ZA test is
applicable when break point is endogenous.3 Given the lack of break point information here, the
use of ZA test is justified. Two recent examples of ZA test in the energy literature are Altinay and
Karagol (2004) and Lee and Chang (2005).

An extension of Dickey-Fuller type test, the ZA test uses one of its three specifications to
allow for either a break in the intercept, a break in the slope, or a break in both the intercept and
slope. In this study, based on visual inspection of data as in Figure 1, we restrict attention to the
two cases of break in slope, and break in both intercept and slope. These tests require estimating
the following equations respectively:

k
∗B B B B By = l + β t + γ DT (k) + α y + c Dy + e (4)∑t t t–1 j t– j t

j = 1
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Figure 1: Graphs of the Four Variables in the System

Note: EC stands for energy consumption, GDP for gross domestic product, IND for level of industrialization defined broadly,
URB for level of Urbanization.
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Table 2: Result of ADF and PP Tests for Unit Root

ADF PP

Series Intercept Intercept & trend Intercept Intercept & trend

Variables in levels

EC 1.43 –0.47 3.70 1.06
GDP 4.32 3.73 22.57 10.76
IND –0.42 –2.75 –0.18 –2.86
URB 3.98 –1.62 4.78 –0.08

Variables in first differences

EC –1.92 –2.66 –2.02 –2.85
GDP 1.46 –0.76 4.13 –0.08
IND –6.00 –5.95 –6.30 –6.23
URB –1.06 –6.99 –2.59 –6.68

Variables in second differences

EC –5.96 –5.91 –6.30 –6.32
GDP –6.11 –6.94 –6.03 –7.76
IND – – – –
URB –12.71 – –14.43 –

Notes:
a. ADF and PP are unit root test developed by Dickey and Fuller, and Phillips and
Perron respectively.
b. EC stands for energy consumption, GDP for gross domestic product, IND for level
of industrialization defined broadly, URB for level of urbanization.
c. Critical values for the ADF test at 5% level without trend and with trend are -2.93
and -3.51, respectively. Critical values for the PP test at 5 % level without trend and
with trend are -2.93 and – 3.51, respectively. For both tests, nonstationarity is rejected
when calculated values are less than critical values.

k
∗C C C C C Cy = l + h DU (k) + β t + γ DT (k) + α y + c Dy + e (5)∑t t t t–1 j t– j t

j = 1

where, following Zivot and Andrews (1992) notation, we use superscript B and C to indicate the
two alternative test hypotheses, and k is the fraction indicating break point position, ifDU (k) = 1t

, 0 otherwise; if , 0 otherwise. y is the series being tested. Other vari-∗t�Tk DT (k) = t– Tk t�Tkt

ables, their transformations and parameters are as usually defined. As in the Dickey-Fuller type
test, the key component of this test lies in the parameter α. When we reject the null of α being 1,
we conclude that is not a unit root process, instead, it is a trend stationary process with a structuralyt

break.
We apply the above ZA test to the four series respectively, with results shown in Table 3

indicating three significant break points. First, for the case of a break in slope, the test statistic on
EC turns out to be -7.94. This value is lower than the critical value of 1% and 5% significance
levels, suggesting that in 2002 there was a break point in EC. In the meantime, this result suggests
that EC is not a unit root process. Instead, it is a stationary process around a broken deterministic
trend. The test statistic for GDP turns out to be 1.27, greater than the critical value at 5% level.
This result shows that there is no significant break point in GDP, and that we cannot reject the null
hypothesis that GDP is nonstationary with unit root. Second, for the case of a break in both the
slope and intercept, a significant break point in 2001 is identified for EC while no significant break
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Table 3: Result of Zivot and Andrews Test for Unit Toot Subject to Structural Break

Variable Breakpoint Statistic Critical value at 1% Critical value at 5%

Case 1: Break in slope only

EC 2002* –7.94 –4.93 –4.42
GDP 1999 1.27 –4.93 –4.42
IND 1984 –4.06 –4.93 –4.42
URB 1993 –3.66 –4.93 –4.42

Case 2: Break in slope and intercept

EC 2001* –6.70 –5.57 –5.08
GDP 2000 1.68 –5.57 –5.08
IND 1981* –5.76 –5.57 –5.08
URB 1996 –3.72 –5.57 –5.08

Notes:
a. EC stands for energy consumption, GDP for gross domestic product, IND for industrialization defined broadly, and URB
for urbanization.
b. The null hypothesis of Zivot and Andrews test is that the original series is nonstationary with unit root; the alternative
hypothesis is that the original series is stationary around a broken trend line.
c. For each variable, Zivot and Andrews (1992) test identifies a potential break point in Case 1 and 2 respectively that is
most likely to reject the null hypothesis of nonstationarity. However, these potential break points are not confirmed as actual
break points unless they are proven statistically significant. In our case, among the eight potential break points, three of
them are statistically significant, as indicated by *.

point for GDP is obtained, as shown in the lower portion of Table 3. Third, for URB and IND,
both are found to be unit root processes without any significant break point, except that IND, in
the case of break in slope and intercept, rejects the unit root null, suggesting that it is trend-stationary
process with break in 1981.

Summarizing, the ZA tests suggest one break point for IND and EC (we keep 2001 as the
only break point for EC as 2002 is so close to 2001 and the case under which it is obtained is more
restrictive) respectively. While the 1981 break point in IND seems obviously associated China’s
reform and opening-up policy that started in the late 1970s, the 2001 break point in EC appears
more subtle. A few factors could be at play and we give two here. First, after a few years of troubled
growth due to state-owned enterprise problems and the Asian financial crisis, the Chinese economy
was back on a track of fast growth from 1999, and the growth was later enhanced by China’s entry
into World Trade Organization in 2001. Second, the Chinese economy actually transitioned into a
phase of so-called ‘heavy industrialization’ shortly after 2000, resulting in an increase of energy
intensity for the industrial sector. As a consequence of the change in both GDP and energy intensity,
we observe an abruptly elevated energy consumption level since 2001.

Economic significance aside, the econometric significance of the identified break points,
specifically the break point in EC, is also interesting. Nonstationarity, and further, the resulting
cointegration for certain measures of energy consumption over certain sample periods, including
electricity, coal and oil consumption, total energy consumption, and energy intensity are well es-
tablished results in the literature (see for instance, Shiu and Lam 2004, Zou and Chau 2006, Yuan
et al. 2007, Yuan et al. 2008, Liu 2009, Feng et al. 2009, and Bloch et al. 2012 among many others).
Due to the extended view from ZA test, we can conclude that EC in this case is not nonstationary,
but rather trend-stationary. As cointegration is meaningful only among nonstationary series with
unit root, the trend-stationarity of EC therefore suggests that a long-run cointegration relationship
between EC and GDP (and other variables too) is not justified in this case.
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4. Compared to the method in Swanson and Granger (1997), the DAG method used in this paper and other DAG papers
as we cite right below has been extended to suit more general types of causal flows among variables, instead of just linear
chain of causality.

Therefore, for the system of four variables, we deviate from the analysis of long-run
relationship, and instead examine the short-run interactions only. In what follows, we transform all
four variables into their respective growth rates to achieve stationarity (test results available upon
request), and study their short-run dynamic interaction in a model of ordinary VAR (instead of
vector ECM). As a result of transforming the level variables into their growth rates, the effective
sample in this study now starts from 1964, instead of 1963.

4. ECONOMETRIC METHODOLOGY

We use a VAR model to analyze the short-run dynamics of our multivariate system. In its
standard (reduced) form, a VAR model with p lags can be expressed as

p

Y = A + A Y + e (t = 1, . . . ,T) (6)∑t 0 l t– l t
l = 1

where is the (N = 4 in this case) vector containing the N variables studied in the problem.Y N�1t

is an vector of constants and an matrix of coefficients, both to be estimated.A N�1 A N� N0 l

is the vector of residuals.e N�1t

To find the causal interactions among variables for policy analysis, we have to uncover
the structural form VAR that underlies the reduced form:

p

B Y = C + C Y + e (t = 1, . . . ,T) (7)∑0 t 0 l t– l t
l = 1

where beside and as the usual vectors of coefficient, is an matrix defining theC C B N� N0 l 0

contemporaneous causal relationship among variables, and the vector of disturbances withe N�1t

each element orthogonal to each other. To recover such a structural form VAR from the fitted
standard form VAR, a common approach is through the restriction of , a process called identi-B0

fication in VAR.

4.1 Structural Identification Using Directed Acyclic Graphs (DAG)

When Sims (1980) first proposed VAR, identification was based on the Choleski decom-
position method, i.e., by restricting a lower triangular matrix. Such a restriction implies that theB0

variables in the VAR system follow a recursive causal order, which cannot be true of all cases.
Some later proposed identification methods, particularly Structural VAR (SVAR, Bernanke 1986)
and Generalized impulse response (GIRF) and generalized forecast error variance decomposition
(GFEVD, Pesaran and Shin 1998) are more flexible in certain ways, but can suffer from either
subjective restriction (for SVAR, Swanson and Granger 1997) or extreme assumption (for GIRF
and GFEVD, Kim 2012). We adopt the data-driven identification approach introduced by Swanson
and Granger (1997).4 Using DAG method to define the contemporaneous relationship among vari-
ables, this approach reads contemporaneous causality (not limited to recursive structure) out of data
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5. A Lagrange multiplier test for serial correlation was conducted on the unrestricted VAR with two lags. The test
statistic is 19.71. Under a degree of freedom of 16 under Chi-square distribution, this statistic translates into a probability
value of 0.23, indicating no remaining serial correlation.

6. The “five-year plan” system in China was initiated shortly after the foundation of the People’s Republic of China in
1949. As a comprehensive planning system for China’s economic and social development, the five-year plan is principally

and uses such a causality to restrict matrix . Essentially, this approach makes use of the flexibleB0

SVAR framework without depending on subjective economic priors.
A full description of the DAG methodology is beyond the scope of this paper. Interested

readers can find details in Pearl (2000) and Spirtes et al. (2000), while more accessible introduction
and applications are available in Demiralp and Hoover (2003), Bessler and Yang (2003), Park et
al. (2006), Mjelde and Bessler (2009), and Yang and Zhou (2013). Briefly, with its origin in com-
puter science and artificial intelligence, DAG provides a way to read a causal pattern out of observed
data. Represented by a graph, the causal pattern consists of vertices (standing for the variables
studied in a particular problem) and edges connecting the vertices. Such a pattern can represent
different types of causal flows by different types of edges: (1) directed edge ( r ), (2) bi-directed
edge (R r ), (3) undirected edge (– –), and (4) no edge, to indicate unidirectional causality, bidi-
rectional causality, undirected correlation, and lack of correlation respectively. These edges are used
to define which elements of the matrix need to be parameterized.B0

It is worth noting that just as it is true of other conventional statistical methods, DAG can
also err in its inference. In our implementation of the DAG-VAR approach based on Eviews and
TETRAD (Scheins et al., 1994), we use more than one algorithm of DAG, GES (Chickering, 2003)
and PC algorithm (Spirtes et al., 2000), to ensure the results are as robust as possible. Specifically,
we choose GES as the main algorithm as it gives no undirected edges in almost all cases of our
analysis. In addition, following Spirtes et al. (2000) and Demiralp and Hoover (2003), we use PC
algorithm under alternative levels of significance for causal pattern. We then match the most con-
sistent pattern from PC algorithm to that of GES. It turns out that all directed edges of GES are
confirmed by the directed ones from PC. We then use the confirmed patterns for VAR identification.

4.2 The Framework of Rolling Windows

To reveal possible changes in system dynamics across time, in addition to results for the
whole sample, we embed the DAG-based VAR within a rolling window framework. Rolling window
estimation as a general approach to deal with structural instability has been used in a number of
studies (e.g., Thoma 1994, Swanson 1998, Psaradakis et al. 2005, Balcilar et al. 2010). In this study,
we start with a subsample ranging from to , i.e., a sample of h years which we call windowt t0 0 + h

1. For this window, a reduced form VAR is estimated, then structural identification done using
DAG, and the innovation accounting analysis carried out to find the interactions among variables.
Next, at some defined interval s, we move the window of span h to cover the next subsample period
(from to ), then repeat the VAR estimation, structural identification and innovationt t0 + s 0 + s + h

accounting. This process is continued until the end of the full sample is reached. By this rolling
window approach, the changing nature of the relationship among the variables can be revealed via
a conventional VAR framework.

We first estimate the system for the full sample to provide a benchmark assessment of the
system dynamics, including the lag structure. For the full sample, the optimal lag length of the
system is determined first based on Schwarz and Akaike information criterion (SIC/AIC), with both
criteria achieving the minimum value at the lag order of two.5 This lag order is applied to each of
the rolling windows. Given this two lag structure, our sample now effectively starts at 1966, the
first year of the 3rd “five-year plan”.6 In determining the rolling window length h, our basic con-
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Table 4: Definition of Five Windows (Subsample
Periods) for Rolling-window Analysis

Start End Duration

Window 1 1966 1990 25
Window 2 1971 1995 25
Window 3 1976 2000 25
Window 4 1981 2005 25
Window 5 1986 2010 25

made and implemented by the central government, and has always been fundamental in drawing an overall picture for
China’s development over a five-year cycle. Although this system was initiated during the planned economy regime and
was most influential back then, it is still very influential today even though the Chinese economy is much more market-
oriented.

7. In addition to FEVD, impulse response function (IRF) is another type of innovation accounting analysis. While FEVD
and IRF are both based on the same structural model and convey qualitatively the same information regarding causal
relationship among variables, FEVD measures variables response clearly on the same relative scale (all in percentages),
which is more suitable for over time comparison in this case.

sideration is to balance degree of freedom requirement (favoring a longer window) against the effect
that too long a window may make it more difficult to observe the changing structure of the system
over time (favoring a shorter window). Based on this consideration and preliminary estimates, a
span of 25 years is chosen to be the length h, corresponding to five “five-year plan” periods. In
determining the interval s, for tractability and ease of exposition, instead of moving the windows
at interval of one year, we move the windows over five year intervals. The joint determination of
h and s gives us five rolling windows with each spanning 25 years, as summarized in Table 4.

5. RESULTS AND DISCUSSIONS

Based on the DAG VAR model in a rolling-window framework, we analyze the interre-
lationships of the four variables in the system. There are two key aspects to our analysis. First,
given the estimated unrestricted VAR system, the contemporaneous causal structure of the VAR
system is identified using the DAG approach. Second, the resulting innovation accounting results,
particularly forecast error variance decompositions (FEVD),7 are presented to illustrate the causal
relationships among the variables. This section proceeds by first considering these two aspects of
the results for the full sample in Subsection 5.1 and 5.2 before presenting the results for five
subsamples in Subsection 5.3.

5.1 Contemporaneous Causality for the Full Sample

As discussed in Section 4, a lag of 2 is chosen for the system estimation over the full
sample. Based on the correlation matrix of residuals estimated from such a unrestricted VAR model,
we use the GES algorithm (Chickering, 2003) of DAG to find the pattern of contemporaneous
causality, which in turn, identifies the VAR in structural form. The resulting pattern of contempo-
raneous causality is shown in Figure 2.

As can be seen, there are a total of four directed edges (causal flows) among the four
variables: the two causal flows from EC to GDP and IND, and the other two from URB to GDP
and IND. This means that contemporaneously, EC causes both GDP and IND, and given that no
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Figure 2: DAG Contemporaneous Causal Pattern for the Full Sample

Notes:
a. EC stands for energy consumption, GDP for gross domestic product, IND for level of industrialization, URB for level
of Urbanization.
b. Panel A and B differ in that Panel A is based on the broad IND defined over nonagricultural sectors, while Panel B is
based on the narrow IND defined over the secondary industry only.

variables cause EC, it is suggested that EC is the exogenous variable when compared to GDP and
IND. Similar to EC, URB is exogenous contemporaneously, given that it causes both GDP and
IND while caused by none. The results regarding EC therefore suggest that aside from the well
documented effect of energy consumption on the level of economic growth (both in short-run and
long-run), energy consumption also affects the structure of the economy (the degree of industrial-
ization) in contemporaneous dimension. Note that while contemporaneous means instantaneous,
the degree of instantaneity is up to the frequency of data used. Given the data being annual, con-
temporaneous causality means causality that happens within one year. Later, FEVD results will
reveal causality in longer horizon (still short-run causality when compared to causality within a
cointegration relationship).

For our four-variable system, the pattern in Figure 2 actually supplies eight zero restrictions
(two more than the required six for just identification), resulting in an overidentified system. Given
such a contemporaneous causal pattern, the structural VAR can now be identified by restricting the

matrix in equation (7).B0

5.2 FEVD Results for the Full Sample

Based on the structurally identified VAR, the FEVD results are obtained for the full sample
and given in Table 5 covering a five-year forecast horizon. This horizon is chosen as the variables’
responses to shocks in the results are generally stable by the 5th year. For each variable, the result
is shown by one of the four panels in Table 5. For each panel in the table, there are 6 rows showing
the variance decomposition of that variable from time zero (contemporaneous or current period) to
five years ahead. The first panel shows how the variations of GDP depend on itself and the other
three variables in the system. At time zero, 38% of GDP growth is due to itself while EC explains
a further 56%, and URB a much smaller 6%. Over the 5 year horizon, the percentage of EC drops
slightly to 52% while that of URB rises dramatically to 14%. The contribution of IND is very
limited, no more than 1% over the whole horizon.
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Table 5: FEVD Result for the Full Sample

GDP GDP EC IND URB

0 38.3 56.0 0.0 5.7
1 34.2 55.9 0.1 9.7
2 34.8 52.3 0.1 12.8
3 33.5 53.0 0.4 13.1
4 33.4 52.6 0.5 13.5
5 33.9 51.9 0.5 13.7

EC GDP EC IND URB

0 0.0 100.0 0.0 0.0
1 13.0 86.2 0.7 0.0
2 30.2 68.6 0.8 0.4
3 31.0 65.3 1.8 1.9
4 30.2 64.2 2.1 3.6
5 31.4 62.4 2.0 4.2

IND GDP EC IND URB

0 18.1 26.4 49.4 6.1
1 19.4 27.6 47.0 6.0
2 25.4 27.1 42.1 5.5
3 25.5 28.2 40.9 5.4
4 25.8 28.0 40.6 5.6
5 26.3 28.0 40.2 5.6

URB GDP EC IND URB

0 0.0 0.0 0.0 100.0
1 2.8 0.4 0.8 95.9
2 2.9 1.1 0.8 95.2
3 2.8 1.1 0.7 95.3
4 2.7 1.0 0.7 95.6
5 2.6 1.0 0.6 95.8

Note: EC stands for energy consumption, GDP for gross domestic prod-
uct, IND for level of industrialization defined broadly, URB for level
of urbanization.

The second panel of Table 5 shows how EC variation is explained by itself and the other
three variables. At time zero, consistent with the contemporaneous causality suggested by the DAG
analysis (in Figure 2), EC is exogenous, explaining 100% of its own variation. As time goes on,
EC is explained increasingly by GDP up to 31%. Compared to GDP, the effects of IND and URB
on EC are much smaller. IND explains as much as about 2% of EC over the horizon, while the
effect of URB is roughly double that of IND at about 4%. Comparing the results in the first two
panels of the table, it is clear that between GDP and EC, there exists a two-way causality in the
short-run, with each variable explaining a significant portion of the other over the five year horizon.
In the meantime, EC appears to be the relatively more exogenous variable, as it explains greater
portion of its own variance over the five-year horizon than GDP does.

The third panel of Table 5 shows the results for IND. Briefly, other than the effect of IND
on itself, EC explains the greatest part of the IND variation (between 26 and 28% over the horizon),
followed closely by GDP (up to 26%). The effect of EC on IND implies that energy consumption
is important to the process of industrialization. As to the relationship between IND and GDP,
recalling that IND explains less 1% of GDP in the first panel, it can be inferred that GDP is more
exogenous than IND, i.e., the change of economic scale tends to cause the change of economic
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8. The 3rd year result is chosen because although the FEVD results are time varying over the horizon, their relative
variations are fairly stable and can be well represented by the 3rd year value, hence the results for the other years offer little
extra information.

structure, but not the reverse. Finally, other than EC and GDP, URB has a much smaller effect,
explaining roughly 6% of the IND variance.

The fourth panel of Table 5 reports the results for URB. Over the 5 year horizon, URB
consistently explains over 95% of its own variation, leaving very limited room for the other vari-
ables, particularly, no more than 3% for GDP, and negligible percentages for EC and IND. One
implication of these results is that urbanization in China, consisting mainly of the inflow of a large
amount of the rural population into cities and towns (Zhang and Song, 2003), is not driven directly
by the regional/macroeconomic development, such as the immediate need for labor in manufactur-
ing and service sectors; Instead, urbanization may have been driven by the prospect of better life
in the future. However, this further implication can only be conjectured with our available data.

In summary, the full sample FEVD results demonstrate, among other things, the two-way
causal relationship between energy consumption and economic growth, similar for instance to the
finding in Akkemik and Goksal (2012). Meanwhile, representing another facet of an integrated
relationship, the relative exogeneity of EC over GDP is also shown, echoing other studies that
report the unidirectional causality from energy to growth. Further, the FEVD results demonstrate
that IND and URB, though important components of the VAR system, have only limited effects
upon EC and GDP.

5.3 FEVD Results for Five Subsamples

As discussed in the methodology section, we re-estimate the DAG VAR for each of the
five windows and the resulting FEVD results across windows are summarized into a unified frame-
work, as given in Figures 3, 4, and 5 respectively for a selection of variable relationships. For
example, Panel A of Figure 3 shows the effect of EC on GDP, where each of the five bars represents
the percentage of GDP variation due to EC at the 3rd year of the five year horizon for each of the
five rolling windows respectively.8 Other panels of the three figures are defined similarly.

Starting with Panel A of Figure 3, the percentage of GDP variation due to EC demonstrates
a systematic change across the five windows. With the exception of an increase from window 1 to
window 2, the percentage drops steadily over time to just 20% by window 5. Panel B shows the
effect of IND on GDP and that the percentage of GDP variation due to IND is no more than 5%
for most windows, with a downward trend. In contrast, URB (in panel C) seems to play a bigger
role in GDP growth, especially during window 5 (covering the period 1986 to 2010). However,
there is no monotonic trend in this relationship. In comparison to the full sample result, the rolling-
window result reaffirms the effect of EC on GDP, and importantly reveals that the strength of this
effect has been decreasing over time.

Figure 4 reports how the effects of GDP, IND and URB on EC change over the five
windows. For window 1 of panel A in Figure 4, 30% of EC variation is due to GDP, and the
percentage drops systematically to below 10% by the 5th window. Panel B reveals the effect of IND
on EC to be overall small and stable across the windows, except that for window 4 (1981–2005)
IND once had a relatively larger effect. In Panel C, except for an increase from window 1 to window
2 (1971–1995), we see an overall decrease in the effect of URB on EC.
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Figure 3: The Rolling-window FEVD Results for GDP

Notes:
a. Bars in the figures stand for the corresponding FEVD results. The dashed lines are fit lines of cubic polynomial.
b. EC stands for energy consumption, GDP for gross domestic product, URB for level of urbanization, broad IND for level
of industrialization defined broadly over nonagricultural sectors, and narrow IND for level of industrialization defined
narrowly over the secondary industry.
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Figure 4: The Rolling-window FEVD Results for EC

Notes:
a. Bars in the figures stand for the corresponding FEVD results. The dashed lines are fit lines of cubic polynomial.
b. EC stands for energy consumption, GDP for gross domestic product, URB for level of urbanization, broad IND for level
of industrialization defined broadly over nonagricultural sectors, and narrow IND for level of industrialization defined
narrowly over the secondary industry.
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Figure 5: The Rolling-window FEVD Results for IND and URB

Notes:
a. Bars in the figures stand for the corresponding FEVD results. The dashed lines are fit lines of cubic polynomial.
b. EC stands for energy consumption, GDP for gross domestic product, URB for level of urbanization, broad IND for level
of industrialization defined broadly over nonagricultural sectors, and narrow IND for level of industrialization defined
narrowly over the secondary industry.

Figure 5 reports the percentages of the variance in IND and URB due to EC as an eval-
uation of energy consumption’s effects on industrialization and urbanization. Panel A of this figure
shows the percentage of the IND variance due to EC. Across windows, the effect of EC on IND
variance experiences a significant drop since window 3, suggesting that the industrialization process
has become less energy-dependent. In comparison, as shown in Panel B, EC has little impact upon
URB across windows, confirming the full sample result that urbanization is more exogenous than
the other variables of the system.

5.4 Discussion: Interpretation of the Main Results

If we compare the rolling-window result to that of the full sample, we can see that overall
the two sets of results are similar to each other. Principally, regarding the energy consumption and
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GDP relationship, the full sample result suggested that there exists mutual causality between the
two variables, and that energy consumption is relatively more influential when compared to GDP.
The rolling-window result broadly confirms the full sample result. In our view, the rationale for the
two-way causality is as follows. On one hand, there is the causality from energy to growth given
that energy is one important factor for an economy. On the other hand, energy consumption is not
a purely exogenous variable in relation to output. Generally speaking, how much energy to consume
depends on the demand from the economy output as determined by multiple factors not limited to
energy availability. When the economy is expanding, the energy sector is driven to supply more
energy to meet the demand. In contrast, when the economy slows down, the energy sector will be
under pressure to reduce its supply in response to less demand. Recently, the experience of the coal
industry in China exemplifies what a slower Chinese economy can do to its energy sector to adjust
its supply (Financial Times, 2012; Xinhua News Agency, 2012).

Further, the rolling-window results seem to offer a much richer and arguably more precise
description of system dynamics that is not available from the full sample result. Specifically, over
time the two-way causality between energy consumption and GDP has been decreasing in strength.
The decreasing effect mainly occurs during windows 3 through 5, i.e., the period featuring the
dramatic drop of energy intensity in China. We argue that this decreasing effect of energy on GDP
can be interpreted as a decreasing reliance of GDP on energy, as the Chinese economy becomes
more dependent on other factor inputs, especially technology or labor, as for example suggested by
Su et al. (2012). Since the causality from energy to growth arises from energy being an important
input for the economy, less reliance of output on energy naturally translates into a reduced causal
effect of energy on output. Due to the same issue of energy intensity drop, the same degree of
economic growth now means less increase of demand on energy, implying a decreasing causal
effect of GDP on energy consumption.

Regarding the effects of industrialization and urbanization, while the full sample result
shows both to have limited effects on EC and GDP, the rolling-window result shows that the effects
of the two structure variables are larger in certain stages than in others, particularly for urbanization.
The overall limited effect of IND on EC can be traced to the relatively low energy intensity of the
agricultural sector (or vice versa, the relatively much higher energy intensity of the nonagricultural
sectors). According to data from various issues of the China Energy Statistical Yearbook, for most
of the years, the energy intensity of the agricultural sector has been below one-fifth of that of all
nonagricultural sectors combined. This much lower energy intensity means that the changing share
of the agricultural sector in GDP has a much reduced effect on energy consumption. This is true
recently in 2010 when the agricultural sector’s share in GDP is 10 percent with its energy con-
sumption share being only 2 percent, and this was also true back in 1985 when its GDP share was
28.4 percent and its energy consumption share 5 percent. Hence the energy consumption of this
sector has only marginal impact, irrespective of its output share in the economy. A similar expla-
nation applies to the effect of urbanization on energy consumption. In a way, the results on IND
and URB’s limited effects complement the finding in Kahrl et al. (2013) which finds that the vast
majority of energy consumption growth in China since 2002 is due to GDP growth, not structural
change. Our findings here indicate that this is actually true not just for the post-2002 years, it has
been the case for a much longer period.

5.5 Extension: From GDP-EC Causality to the Cause of Energy Intensity Change

The limited effect of IND on EC has its implications beyond the energy-growth causality.
The recent decades have witnessed a continuous drop of China’s energy intensity (EI), the amount
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Figure 6: Energy Intensity Change and the Contributions of Structure and Efficiency

Note:
DEI, DEIeff, DEIstr stand for the energy intensity change, the part of energy intensity change due to structure, and the part
of energy intensity change due to efficiency, respectively. TCE stands for ton of coal equivalent.

9. We thank one anonymous referee for pointing out the need for more substantive examination of this issue.

of energy consumed per unit of GDP. Despite a number of studies into this issue, conflicting findings
remain as to what has caused such a drop of energy intensity. The literature is divided between the
studies (e.g., Huang, 1993b; Ma and Stern, 2008; Zhang, 2003; Wu, 2012) assigning sectoral energy
intensity (efficiency) as the main reason, and the studies (e.g., Fisher-Vanden et al., 2004; Zhao et
al., 2010; Yu, 2012) showing that structural change does matter.

EI is not explicitly modeled in this study, but given its definition, EI is affected to the
same degree (in percentage) as EC by a third variable if GDP is a constant. And indeed, GDP is
held constant when FEVD measures the effect of IND on EC (given shocks being orthogonal in
structurally identified VAR). The limited effect of IND on EC then tends to suggest the same degree
of limited effect on EI. One step further, as EI can be decomposed to depend on either structural
effect or efficiency effect, then, the limited effect of IND on energy intensity goes without saying
that the efficiency effect will explain the remaining larger share for China’s energy intensity drop
over the decades.

As a check of the above reasoning,9 we use the popular index decomposition approach
(IDA) to offer a direct evaluation for the relative contributions of structure change and efficiency
change. Using IDA, we decompose conceptually the change of EI into the part due to the change
of structure (captured by IND alone), and the part due to the changes of energy intensity in two
sectors (captured by I1 and I2 for agriculture and nonagriculture sector) with details given in
Appendix. We then apply this decomposition to the Chinese data between 1980 and 2010. As shown
in Figure 6, the change of energy intensity is mostly due to the effect of sectoral energy intensity
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10. We thank two anonymous referees for pointing out the need for a more disaggregated measure of IND.
11. We thank one anonymous referee for pointing out the issue of within-window structural change.

change, the effect of structural change is quite limited. This result then, from another perspective,
confirms the foregoing reasoning extended from FEVD based result. Overall, the above results,
FEVD-based inference and IDA result, echoes the aforementioned papers which assign a bigger
role to efficiency, and in particular Feng et al. (2009) who in a time series setting finds that changing
economic structure (defined as the share of the tertiary industry in GDP) had limited effect on
energy intensity.

The above said, it is worth noting that due to the issue of aggregation, the implication of
economic structure depends on the level at which it is defined. The variable IND used here is
defined at a very aggregate level, and cannot be generalized to more disaggregated levels without
qualification. In addition, as shown in Figure 6, there is an abrupt change of pattern between 2003
and 2006. We discuss the two issues in the next two subsections.

5.6 Alternative View: When Industrialization Means Only the Secondary Industry10

We have so far based our analysis on the broad definition of industrialization (IND covering
both the secondary and tertiary industry). While economic structures defined at different levels have
their respective policy implications and the broad definition is important as it captures a baseline
feature of the Chinese economy, it is also true that the broad definition can conceal the likely effects
of structure at more disaggregated level (e.g., Ang, 1995; Su et al., 2010). For robustness of results
and a finer view into the issue, we now break down the nonagricultural sector and use only the
share of the secondary industry in GDP as the measure for IND. With the narrow IND, we then
repeat the whole set of DAG-VAR analysis, including full sample contemporaneous causality, full
sample FEVD, and rolling-window FEVD.

Shown in Panel B of Figure 2 is the contemporaneous causal pattern based on full sample.
Compared to the pattern in Panel A, we now see the causal flow from GDP to IND. Other than
this, all other causal flows hold as before.

The full sample FEVD results are very close to those in Table 5 and thus are not presented
for brevity. Instead, for a finer comparison, the rolling-window FEVD results are presented along
with those based on the broad IND, as in Figures 3, 4, and 5. Among the eight pairs of relationships
shown there, only two pairs show meaningful deviation from the set based on the broad IND.
Specifically, in Panel B of Figure 3, IND shows greater effect on GDP during window 1 and window
5; Further, in Panel B of Figure 4, IND shows greater effect on EC over all five windows. However,
even for the above two cases, the percentage of GDP and EC variance due to IND remain low,
barely over 20 percent at the maximum point. Other than the two, the other six pairs of relationships
(including the IND-EC pair in Panel A of Figure 5) are similar to their counterparts under the broad
IND.

In summary, under the narrow definition, IND shows somewhat greater effect on GDP,
and especially EC. The greater effect may have been caused by disaggregation. Aggregation leads
to the structure effect at more disaggregated levels being counted as efficiency effect. Disaggregation
therefore reveals the concealed effect of structure. Overall, the baseline results hold for the alter-
native definition of IND.

5.7 Further Issue: The Change of Econometric Structure over Very Short Horizon11

We have adopted the rolling-window approach to reveal change of econometric structure
not available from existing studies, however, question remains as to whether the issue of structural
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change has been fully addressed. The answer seems to be a “No”. Of particular attention is the
potential structural change around 2002. ZA test result earlier suggests that there is a point of break
in EC series at 2001/2002. This break in single series also indicates potential change in the system
dynamics. Unfortunately, unlike the breakpoint in IND at 1981, the 2002 breakpoint occurs at the
middle of our last window and cannot be captured effectively by the rolling-window approach.

The economic intuition behind this break seems reasonably easy to obtain. A graphic and
numerical check of data show that between 1986 and 2010, EC is the only variable showing
significant change of growth rates before and after the breakpoint (from 3.2% to 8.8%). At a closer
look, the rate of growth is especially high for the years from 2003 to 2006, and has dropped back
to normal since then. A number of studies have addressed this fluctuation. Among others, Liao et
al. (2007) documented the abnormal rise of energy intensity and attributed it to the expansion of
more energy-intensive subsectors using IDA method (Tornqvist and Sato-Vartia index method, to
be specific).

Further claim on causality as the one from innovation accounting of VAR, however, is
hard to do. As explained in Section 4, the inherent degree of freedom issue in VAR and the low
frequency of data mean that it is not practical for the rolling-window approach (and other time
series approaches as well, e.g., Primiceri 2005) to estimate a model over a horizon of less than 10
periods. As one solution, the effort to establish the causality over such a horizon, when needed,
may resort to variables in higher frequency. That analysis would require a different system. We
leave this issue to further research.

6. CONCLUSION

A number of studies have addressed the relationship between China’s energy consumption
and economic growth. Compared to existing studies, our approach to this issue is distinguished
mainly in the following two ways. First, we examine, for the first time, the time-varying relationship
between energy consumption and economic growth for China in a VAR system. We do so by first
testing for structural break of individual series, and further by studying the change of system
dynamics using a rolling-window VAR approach. Second, by introducing two structural variables,
industrialization and urbanization, we study China’s energy-growth relationship in the context of
its continued industrialization and urbanization between 1963 and 2010. The findings thus shed
light on, at a very aggregate level, how the changes of China’s fundamental structural variables
interact with energy consumption and economic growth.

The results, while confirming some findings in the literature, additionally reveal several
points not available from existing studies. First, in the time-varying perspective, we are able to
show that given energy consumption being trend-stationary, the cointegration and error correction
processes commonly followed in the related literature are not suitable in this case. Instead, there
exist non-constant interactions among the four variables. Specifically, the two-way causality be-
tween energy consumption and GDP has been decreasing in strength over time. Second, the struc-
tural (relative) dimensions of industrialization and urbanization, especially for the former, have
overall limited effects on energy consumption. Comparatively, the scale of the economy is a far
more influential force in determining energy consumption. Third, extended from the limited effect
of industrialization on energy consumption, we show that the drop in China’s energy intensity has
come not from the structural shift between its agricultural and industrial sector, but from efficiency
gained within the sectors.

Suggesting hope and direction for the future, the three findings have important implications
for China’s energy and growth policy. First, the lack of a long-run relationship between energy
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consumption and GDP (and other variables in the system) might be considered as a reassuring
finding. It indicates that it is possible for China to sustain economic growth and reduce energy
consumption at the same time. Second, the relatively limited effects of industrialization and urban-
ization on energy consumption, plus the reduced potential for either process after decades of de-
velopment, suggest that even if China’s industrialization and urbanization continue into the future,
further reductions of energy intensity for China should be possible, and fostering further energy
efficiency gains within the sectors of the economy should be the primary route.

APPENDIX

We show below step-by-step for a context of industrialization, how the change of overall
energy intensity can be decomposed into the part due to structural change, and the part due to
efficiency change. Based on index decomposition approach (IDA), the energy intensity of a two-
sector economy can be decomposed as:

t t t t tEI = S I + S I (A.1)1 1 2 2

where , stand for the shares of agricultural and industrial sector in GDP, and , , standt t t t tS S EI I I1 2 1 2

for the energy intensity for the economy and two sectors respectively. Given that and sumt tS S1 2

up to one, the above decomposition can be further shown as

t t t t tEI = (1– S ) ⋅ I + S I (A.2)2 1 2 2

That is, the structural change (industrialization) is captured by alone while the efficiency changetS2

has to be captured by and together. Based on this setup, the change of energy intensity overt tI I1 2

time (e.g., one year) (similar definitions apply to the changes of , , and ) cant 0 t t tDEI = EI – EI I I S1 2 2

be decomposed as follows

t t t t t 0 0 0 0DEI = [(1– S ) ⋅ I + S ⋅ I ] – [(1– S ) ⋅ I + S ⋅ I ] (A.3)2 1 2 2 2 1 2 2

t 0 t t 0 0 t t 0 0= I – I – S ⋅ I + S ⋅ I + S ⋅ I – S ⋅ I1 1 2 1 2 1 2 2 2 2

0 0 0 0 0 0 0 0= DI –(S + DS ) ⋅ (I + DI ) + S ⋅ I + (S + DS ) ⋅ (I + DI )– S ⋅ I1 2 2 1 1 2 1 2 2 2 2 2 2

0 0 0= DI + S ⋅ (DI –DI ) + DS ⋅ (I – I ) + DS ⋅ (DI –DI )1 2 2 1 2 2 1 2 2 1

Further, the above terms can be grouped into three terms as below

0 0 0DEI = DI + S ⋅ (DI –DI ) = (1– S ) ⋅DI + S ⋅DI (A.4)eff 1 2 2 1 2 1 2 2

0 0DEI = DS ⋅ (I – I ) (A.5)str 2 2 1

DEI = DS ⋅ (DI –DI ) (A.6)res 2 2 1

where , , stand for the contribution of efficiency change, structural change, andDEI DEI DEIeff str res

residual respectively. and are defined so as they are due to respectively the change inDEI DEIeff str

efficiency ( and ) and the change in structure ( ).DI DI DS1 2 2
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