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ABSTRACT

This paper presents new evidence of asymmetric pass-through, the notion that
upward cost shocks are passed through faster than downward cost shocks, in U.S.
gasoline prices. Much of the extant literature comes to seemingly contradictory
conclusions about the existence and causes of asymmetry, though the differences
may be due to different aggregation (both over time and geographic markets) and
the use of different price series including crude oil, wholesale, and retail gasoline
prices.

I utilize a large and detailed dataset to determine where evidence of a pass-
through asymmetry exists, and how it depends on the aggregation and price series
chosen by the researcher. Using the error correction model, I find evidence of
pass-through asymmetry based on spot, rack and retail prices, though the largest
effect is found in the rack to retail relationship. I find more asymmetry in branded
prices compared with unbranded prices, consistent with a consumer search ex-
planation for asymmetry. However, I also find evidence consistent with expla-
nations based on market power as the magnitude of asymmetry is positively
associated with retail concentration. On average, retail prices rise three to four
times as fast as they fall.
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1. INTRODUCTION

There is a large literature analyzing the cost to price pass-through in industries ranging
from automobiles (Gron and Swenson (1982)), to cheese products (Kim and Cotterill (2008)), to
the beef industry (Goodwin and Holt (1999)). The literature has not only focused on the ability of
firms to successfully capture rents when input costs change, but also on how the rate of pass-through
varies when the costs increase versus decrease. Peltzman (2000) analyzes over 200 consumer and
producer products and find asymmetric adjustment in two-thirds of the products. Similarly, Meyer
et al. (2004) surveys the literature and finds that symmetric adjustment is rejected in about one-half
of the cases. Much of the extant literature comes to seemingly contradictory conclusions about the
existence and causes of this phenomenon, though the differences may be due to different data
sources, price series, aggregation over time and across geographic areas, as well as misspecified
models. In this paper, I examine the dynamics of pass-through in gasoline prices using a detailed
dataset available at a high frequency, across many cities, and at several price levels in the vertical
distribution process for gasoline.
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1. The production and distribution of gasoline is just one part of the petroleum industry, which produces a whole range
of refined products. The rockets and feathers literature has focused primarily on gasoline prices.

2. Rack prices for wholesale gasoline are observable and in 2009, rack sales accounted for 60% of the total gasoline
supplied in the U.S. See http://tonto.eia.doe.gov/dnav/pet/pet_cons_refmg_c_nus_epm0_mgalpd_a.htm and http://
tonto.eia.doe.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm. The rest is sold to lessee-dealer stations at (unobserved)
dealer-tank-wagon (DTW) prices and via transfer prices to refiner-operated stations.

3. See The Federal Trade Commission, “Gasoline Price Changes: The Dynamics of Supply, Demand and Competition,”
2005.

4. In Deltas, the average markup observed in the market over his sample period serves as a proxy for market power. It
is tempting to assume that markets in which firms face less competition will feature firms quickly passing on cost increases
to consumers, and only slowly (or possibly never) passing on cost savings. Markets with many competing firms should
feature perfect pass-through. For industry-wide cost changes, this is generally true, however the opposite results when the
cost change is firm-specific. Bulow and Pfleiderer (1983) show that firm-specific cost changes are more completely passed
through the less competitive is the market. (See also, Ten Kate and Niels (2005).) The reason is that when faced with a cost
decrease, say, firms with a greater market share will benefit relatively more from the increase in quantity demanded, which
more than offsets the lower revenue from passing on the cost decrease in the form of lower prices.

Particularly in the gasoline industry, this asymmetric phenomenon is known as rockets and
feathers, reflecting the fact that retail prices tend to increase quickly when costs (say, wholesale
gasoline prices) rise, but drift down slowly when they fall.1 Pass-through in the gasoline industry
has been the focus of many studies for several reasons. Gasoline is a fairly homogeneous product
and both retail and intermediate wholesale prices are relatively transparent compared with other
industries.2 Much of the variation in gasoline prices is driven by the price of crude oil, the key
input into gasoline.3 Crude oil is traded on a world market and the price is also transparent to market
players and to consumers. In spite of the transparency of prices, there are dynamics present in the
gasoline industry that are difficult to explain with competitive or oligopolistic economic models.

The literature on rockets and feathers dates back to at least 1991 when Robert Bacon found
evidence of an asymmetric response in gasoline prices in the UK. Since that time, others have found
evidence of the phenomenon including Borenstein, Cameron, and Gilbert (1997, hereafter BCG),
Ye et. al. (2005), Deltas (2008), Tappata (2009) and Lewis (2011). These studies all utilize some
form of an error correction model (outlined below) and consider some combination of crude oil
prices, wholesale prices (rack or spot), and retail gasoline prices. They also vary by the geography
they consider and how the data are aggregated over time. There are also several papers that, due
to either a different data source or model, find no evidence of an asymmetric price response in-
cluding Godby (2000) and Gautier and Le Saout (2012). Bachmeier and Griffin (2003) test the
results in BCG using daily data and a different methodology and find no evidence of asymmetric
adjustment, however they only focus on the transmission of crude oil to spot gasoline prices.

If it exists, there is little consensus on what causes an asymmetric response. BCG offer
three potential explanations for asymmetric adjustment: focal-point pricing as a form of market
power, inventory adjustment frictions in the face of positive and negative demand shocks, and
differences in consumer search patterns when prices are rising and falling. Deltas (2008) and Ver-
linda (2008) look at how the asymmetric response varies with the level of retail market power and
find more asymmetry in markets with relatively more retail market power.4

Lewis (2011) and Tapatta (2009) posit that consumer search behavior could be causing
the asymmetric response. If consumers are more likely to search for a low price when prices are
rising or expected to rise, then competition will be fierce when costs are rising and margins tight.
However, if prices are falling, consumers may search less and this provides retailers with short-
term market power and allows them to slowly lower prices and increase their margins. Evidence
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5. It is important to note that the model predicts complete pass-through of both positive and negative cost shocks after
some period of time, typically around two weeks. Asymmetric pass-through generally occurs in the first week after the cost
shock and after which, pass-through of positive and negative shocks is statistically indistinguishable.

of this explanation could be found in the difference in asymmetry between branded and unbranded
gasoline prices. If consumers who purchase unbranded gasoline tend to search more intensively
than branded customers who are loyal to a specific brand, cost shocks to unbranded rack prices
would be passed on more quickly to retail prices.

The Edgeworth price cycle model of Maskin and Tirole (1988) may also explain the
dynamics. They show that competition may lead to relatively slow price undercutting down to cost
and a rapid rise or resetting of the cycle initiated by a single firm and quickly followed by all its
competitors. Several studies have found evidencing of price cycles in gasoline markets (see Eckert
(2002), Noel (2007, 2009), Lewis and Noel (2011), and Zimmerman et al. (2013)). While price
cycle models do not deal directly with the response of prices to changes in costs, cycles and
asymmetric pass-through may be related. Lewis and Noel (2011) show that cost shocks are passed
through faster in markets that feature price cycles. However, the speed of pass-through may be
unrelated to the asymmetric response to positive and negative cost shocks. Pass-through rates may
be fast, though asymmetric, so cycling cities may show evidence of asymmetric pass-through even
if the speed of pass-through is faster than in non-cycling cities.

This paper is similar to BCG in that I analyze several different prices (crude oil, spot
gasoline, rack, and retail prices) over a long period of time. However, unlike BCG who use weekly
and bi-weekly data from the Lundberg Survey, I have access to daily data on all prices. I also avoid
a modeling assumption by BCG (discussed below) which was questioned by Bachmeier and Griffin
(2003) and instead use a more standard approach. I also consider how asymmetry varies across
different U.S. cities, between branded and unbranded prices, and how asymmetric pass-through is
correlated with market concentration and the existence of price cycles.

I find evidence of asymmetry in the crude oil to gasoline spot price, the spot to rack, and
the rack to retail price relationships.5 The rack to retail relationship shows the strongest asymmetry
at both the city and national level. On average, retail prices rise three to four times as fast as they
fall. Asymmetry varies significantly across cities with the strongest rack to retail asymmetry in Salt
Lake City, Louisville (Indiana) and Cleveland. New York shows the least asymmetric pass-through.
Estimates based on weekly data show more asymmetric pass-through as retail prices are predicted
to increase faster following a cost (rack price) increase and fall slower following a cost decrease.
Branded gasoline features significantly more asymmetry compared with unbranded gasoline in
response to changes in the rack price, consistent with the consumer search explanation for asym-
metric pass-through. Computing the impact of asymmetric pass-through over time shows significant
differences by year, though on average, retail prices would be about 2.45 cents per gallon (cpg)
lower if they fell as quickly as they rose.

Finally, I find that cities that show more asymmetric pass-through tend to feature more
price cycling and have a faster overall speed of pass-through. I also find evidence that asymmetry
is positively related to market concentration. The overall brand-level Herfindahl-Hirschman Index
is about 14% higher for cities in the top quartile of asymmetry relative to the bottom quartile.

The paper proceeds as follows. In section 2, I outline the model that I employ and speci-
fication tests are run to justify its use. I discuss the data and provide basic descriptive statistics in
section 3 and present the results of my model in section 4, including asymmetric pass-through
results for different geographic areas, at different levels of time aggregation, and for different
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6. Most of the metro areas in my sample are major cities. Some cities near state borders are split across state lines, so
for example, Louisville, KY and Louisville, IN are separate metro areas. See figure A1 for an example. This is important
because often different types of gasoline (e.g., conventional, RFG, and California Air Resources Board (CARB) gasoline)
are sold in different states.

7. The lag length is also three in the weekly specifications.

products. I also present city-specific factors that may be related to the magnitude of asymmetric
pass-through. Section 5 concludes.

2. MODEL

I estimate an error correction model (ECM) frequently used in the literature, though in
various forms (e.g., Bachmeier and Griffin (2003)). I estimate the model individually for each city
(metro area)6 and for a national specification that allows for different price levels and markups in
each city. The latter regression measures the average pass-through rate across all cities, while
allowing the long-term relationship to vary by city. I allow for a difference in the pass-through of
positive and negative upstream price changes. While I estimate the model for several pairs of
upstream and downstream prices, for simplicity, the following is the rack to retail pass-through
model for a given city:

+ –L L1 1
+ + – –DRetail = β D Rack + β D Rack (1)∑ ∑t 1i t– i 1i t– i

i = 0 i = 0

+ –L L2 2
+ + – –+ β D Retail + β D Retail∑ ∑2i t– i 2i t– i

i = 1 i = 1

++ β (Retail – γ – γ Rack )3 t–1 0 1 t–114444244443
+zt– 1

–+ β (Retail – γ – γ Rack ) + e .3 t–1 0 1 t–1 t14444244443
–zt– 1

Note . Lag lengths are determined by minimizing the BayesianDRetail = Retail – Retailt– i t– i t–(i–1)

Information Criterion (BIC):

BIC = K∗ log(N) + N∗ [Log(RSS/N)], (2)

where is the number of parameters to be estimated, is the number of observations, andK N
from equation 1. I could allow the lag lengths to vary separately for positive and negativeˆ ˆRSS = e�e

changes as well as for rack and retail prices. However, since determining the optimal lag lengths
for each price series, versus using a fixed (and equal) lag length for all, does not affect the qualitative
results, in the analysis below I fix the lag length at 21 days in all regressions.7 This also allows me
to compare regressions across cities and over time since I will utilize the same specification in each.

The expression is the error correction term, and it capturesz = Retail – γ – γ Rackt–1 t–1 0 1 t–1

the long-run relationship between the upstream and downstream prices. and should both be+ –β β3 3

negative: if retail prices are above their equilibrium level ( ), retail prices should fall and ifz �0t–1

they are below the level predicted by the rack price ( ), retail prices should rise.z �0t–1



Asymmetric Pass-Through in U.S. Gasoline Prices / 157

Copyright � 2016 by the IAEE. All rights reserved.

8. Since the two series are cointegrated, the OLS regression yields super-consistent estimates of the parameters. The
estimates can then be inserted into the model as if they were known parameters.

9. BCG run a two-stage least squares regression and instrument for the upstream price with the crude oil price in England
and forward prices of crude oil in the U.S. However, while they reject the null that there is no endogeneity in the prices,
their 2SLS and OLS estimates are very similar.

10. For the national-level specification, I estimate equation 3 separately for each city and then substitute the residuals
(stacked, city by city), into equation 1.

Following the two-step method proposed by Engle and Granger (1987), I estimate andγ0

by running OLS on the following equation:γ1

Retail = γ + γ Rack + z . (3)t–1 0 1 t–1 t–1

The residuals, , are then inserted directly into the model.8 BCG estimate the long-term relation-zt–1

ship in the same step as the rest of the parameters and instrument for the upstream prices to control
for possible endogeneity. As outlined in Bachmeier and Griffin (2003), this may lead to problems
with the resulting estimates.9 Once I obtain the residuals, I can estimate equation 1 by OLS.10

Asymmetric adjustment of downstream prices to changes in an upstream cost (such as a
wholesale price) is generally divided into two forms: amount asymmetry and pattern asymmetry.
Amount asymmetry occurs when the aggregate change over a period of time is different when costs
are rising versus when they are falling. In terms of the model parameters, amount asymmetry would
be of the form:

+ –L L1 1
+ –β ≠ β . (4)∑ ∑1i 1i

i = 0 i = 0

However, this cannot exist over the long term since upstream and downstream prices do not tend
to drift apart.

Pattern asymmetry involves differences in the relative speed of pass-through. As an ex-
ample, one may find evidence of pattern asymmetry if a 10% increase in wholesale prices leads to
a 10% increase in retail prices after one week, but an equivalent decrease in wholesale prices leads
to only a 5% decline in retail prices after one week and the full 10% after two weeks. Pattern
asymmetry could be found if any one of the following three conditions are met:

+ –β ≠ β for some i (5)1i 1i

+ –β ≠ β (6)⎪ ⎪ ⎪ ⎪3i 3i

+ – + –L ≠ L or L ≠ L . (7)1 1 2 2

The asymmetry in equation 5 is the one commonly analyzed in the literature. While the
aggregate pass-through should be the same for positive and negative rack price changes, the pattern
of pass-through may be different. If any of the coefficients on the same lag are different, this is
evidence of pattern asymmetry. The coefficients on the first lag, and , are particularly+ –β β1,1 1,1

important because they measure the contemporaneous speed of pass-through, assuming the model
could be approximated as a first-order difference equation. However, to fully assess the impact of
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Table 1: Daily Spot Prices (Cents per Gallon)

Date Margin
Spot Price N Min Mean Max Std Dev Range Over WTI

Gulf—Conventional 3,478 44.00 173.09 475.96 80.14 1/00–12/13 23.50
Gulf—RFG 3,478 26.05 176.93 452.91 79.93 1/00–12/13 27.34
NY—Conventional 3,478 46.75 175.96 366.50 81.67 1/00–12/13 26.37
LA—RFG/RBOB 3,478 47.00 192.73 417.70 81.03 1/00–12/13 43.14
Brent 3,478 39.31 154.52 342.74 79.56 1/00–12/13 4.93
WTI 3,478 41.67 149.59 345.98 68.87 1/00–12/13 0.00

11. The Gulf Coast RFG price becomes Gulf RFG with Ethanol in June 2006.
12. RBOB is short for Reformulated Blendstock for Oxygenate Blending. The Los Angeles RFG price is replaced with

the RBOB spot price in November 2003.

asymmetric adjustment on the downstream price, a full impulse response function will be estimated
taking into account all lags of the upstream and downstream price. In principal, any difference in
the coefficients is evidence of some form of pattern asymmetry, but the rockets and feathers type
of asymmetry implies for least one lag.+ –β �β1i 1i

The second pattern asymmetry (noting again that should be negative reflecting mean-β3

reversion) involves the speed at which relative prices return to their long-term equilibrium levels.
We have evidence of the rockets and feathers type of asymmetry if this mean reversion is slower
(closer to zero) when retail prices are above their long-term levels and faster when retail prices
should be adjusting upwards toward their long-term levels (i.e., ).+ –β � β⎪ ⎪ ⎪ ⎪3 3

Finally, if I allowed the BIC-optimum lag lengths to vary for positive and negative changes,
further evidence of pattern asymmetry is obtained if the optimal lag lengths are different. Though
this is often the case, I fix the lag lengths and focus most of my attention on the asymmetries in
equations 5 and 6.

3. DATA AND DESCRIPTIVE STATISTICS

I combine two datasets to perform the analysis. Spot prices are available from Reuters via
the Energy Information Administration (EIA) and rack and retail price data are from the Oil Price
Information Service (OPIS). All data are available daily (weekends and missing values discussed
below) from 2000 through 2013 though some series are not available for the entire period. Summary
statistics are provided in tables 1, 2, and 3.

Spot prices include the price of West Texas Intermediate (WTI) crude oil at Cushing,
Oklahoma and Brent crude oil produced in the North Sea region. I also obtain the conventional and
reformulated gasoline (RFG) spot prices on the Gulf Coast11 along with another conventional spot
at New York Harbor and RFG/RBOB12 spot price for Los Angeles. Spot prices are reported as of
the close of day, Monday through Friday.

I use rack prices from OPIS for 20 U.S. cities. These rack prices are for the type of gasoline
used in each city since many cities utilize different types of gasoline (conventional, RFG, etc.). In
some cases, rack prices for different types of gasoline are reported in the same city. In these cases,
I use the rack price that corresponds to the type of gasoline that is used in each retail market area.
For example, the Fairfax, VA rack reports both conventional and RFG prices. Since I observe retail
data for stations in Washington, DC, as well as the Virginia, Maryland, and West Virginia suburbs
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Table 2: Daily Branded Rack Prices (Cents per Gallon)

Date Margin
Rack N Min Mean Max Std Dev Range Over WTI

Atlanta (Conventional) 4,298 50.64 182.75 354.29 81.37 1/00–12/13 33.08
Boston (RFG) 4,365 56.15 187.77 362.22 82.29 1/00–12/13 38.54
Chicago (RFG) 4,365 61.64 190.28 366.60 81.16 1/00–12/13 41.10
Cleveland (Conventional) 4,365 54.22 183.90 359.30 80.55 1/00–12/13 34.66
Dallas (RFG) 4,365 54.47 184.81 356.63 80.82 1/00–12/13 35.62
Denver (Conventional) 4,365 52.23 183.68 364.76 80.80 1/00–12/13 34.65
Detroit (Conventional) 4,365 52.02 184.43 361.20 81.53 1/00–12/13 35.26
Fairfax (Conventional) 4,365 53.49 185.84 356.28 81.68 1/00–12/13 36.64
Fairfax (RFG) 4,365 51.22 180.84 351.70 80.28 1/00–12/13 31.62
Houston (RFG) 4,364 52.44 182.77 355.03 81.14 1/00–12/13 33.53
Los Angeles (CARB) 4,062 59.28 207.39 392.91 77.66 12/00–12/13 52.72
Louisville (Conventional) 4,348 52.58 183.23 355.70 80.08 1/00–12/13 33.74
Louisville (RFG) 3,563 84.89 216.85 376.64 74.38 7/02–12/13 48.72
Miami (Conventional) 4,361 50.98 182.11 353.51 81.44 1/00–12/13 32.97
Minneapolis (Conventional) 4,363 51.41 184.76 363.60 79.61 1/00–12/13 35.60
New Orleans (Conventional) 4,365 50.02 178.71 350.88 80.26 1/00–12/13 29.52
Newark (RFG) 2,374 98.89 245.14 355.16 54.72 5/06–12/13 44.60
Phoenix (Conventional) 4,365 61.61 195.62 366.58 79.66 1/00–12/13 46.61
Salt Lake City (Conventional) 4,364 59.11 188.71 367.52 80.99 1/00–12/13 39.83
San Francisco (CARB) 4,158 59.23 202.17 380.51 77.82 1/00–12/13 49.33
Seattle (Conventional) 4,365 56.21 190.64 364.57 80.77 1/00–12/13 41.60
St Louis (Conventional) 4,357 52.51 182.27 355.41 80.00 1/00–12/13 33.14
St Louis (RFG) 4,365 57.92 188.11 364.79 79.10 1/00–12/13 38.97

Some racks service multiple states with different types of wholesale gasoline. The Fairfax, VA rack sells RFG to stations
in DC, MD, and VA, while it sells conventional gasoline to stations in WV. Similarly Louisville and St. Louis sell conven-
tional gasoline to stations in IN and IL and RFG to stations in KY and MO respectively.

13. For racks that report multiple prices for different types of RFG or different types of conventional gasoline on the
same day, the lowest price quote is selected.

14. See http://www.opisretail.com/methodology.html for more information on OPIS’s retail data. More than one-half of
the stations in the OPIS sample report a price each day, though the sample of stations may change from day to day.

of DC, I match the RFG rack price to DC, VA, and MD since each uses primarily RFG, while the
WV retail prices are matched to the conventional rack since that area primarily uses conventional
gasoline. Rack prices are reported as of 9AM, Monday through Saturday and are available for both
branded and unbranded products.13

Some racks service multiple states with different types of wholesale gasoline. The Fairfax,
VA rack sells RFG to stations in DC, MD, and VA, while it sells conventional gasoline to stations
in WV. Similarly Louisville and St. Louis sell conventional gasoline to stations in IN and IL and
RFG to stations in KY and MO respectively.

Finally, I utilize pre-tax retail price data from OPIS for the 27 retail metro areas all within
the 20 cities for which I have rack prices. Retail prices are (usually) end of the day prices as they
are recorded from the last swipe of a consumer’s “fleet-card” on a given day.14 OPIS averages all
the prices they receive each day (at most one from each station) to determine the price for the metro
area. After 2001, the prices are reported every day of the week. OPIS samples over 100,000 stations
each day and covers branded and unbranded stations. As shown in table 3, (pre-tax) retail prices
varied significantly during this period from 53 cents per gallon to over $4 per gallon. The Seattle
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Table 3: Daily Retail Prices (Cents per Gallon)

Date Margin
Retail Area N Min Mean Max Std Dev Range Over Rack

Atlanta 4,930 60.09 196.03 360.72 80.88 1/00–12/13 10.42
Boston 4,930 69.82 208.63 366.50 82.60 1/00–12/13 17.59
Chicago 4,930 67.75 208.90 378.24 83.76 1/00–12/13 15.43
Cleveland 4,930 63.61 200.77 369.15 81.82 1/00–12/13 13.72
Dallas 4,930 62.48 199.06 359.40 80.97 1/00–12/13 11.00
Denver 4,929 61.51 200.42 360.39 80.48 1/00–12/13 13.54
Detroit 4,930 61.57 199.54 362.99 81.87 1/00–12/13 11.89
Houston 4,870 75.20 221.38 380.73 84.94 1/00–12/13 30.70
Los Angeles 4,930 72.16 209.72 368.13 82.53 1/00–12/13 20.54
Louisville IN 4,930 63.97 205.44 363.64 83.16 1/00–12/13 16.29
Louisville KY 4,928 65.49 203.54 362.74 85.19 1/00–12/13 19.25
Miami 4,930 60.97 197.19 357.66 81.08 1/00–12/13 11.16
Minneapolis MN 4,929 53.85 217.29 397.34 83.44 1/00–12/13 13.99
Minneapolis WI 4,928 64.57 195.74 361.26 79.62 1/00–12/13 9.67
New Orleans 4,929 68.79 205.52 388.44 81.15 1/00–12/13 7.06
Newark 4,930 62.18 203.53 365.27 83.13 1/00–12/13 17.79
New York City 4,930 59.44 201.54 385.61 79.83 1/00–12/13 13.69
Pheonix 4,928 63.64 201.67 369.52 80.33 1/00–12/13 13.68
Salt Lake City 4,928 63.31 199.25 362.24 80.48 1/00–12/13 17.19
San Francisco 4,929 68.22 208.71 367.73 82.17 1/00–12/13 19.90
Seattle 4,930 77.39 218.26 381.63 86.64 1/00–12/13 34.96
St Louis IL 4,929 68.04 209.46 377.72 78.93 1/00–12/13 10.43
St Louis MO 4,929 62.85 200.65 373.46 81.56 1/00–12/13 8.62
Washington DC 4,929 87.55 228.08 401.90 79.39 1/00–12/13 27.03
Washington MD 4,929 78.39 215.87 384.57 83.01 1/00–12/13 21.83
Washington VA 4,930 57.98 192.86 350.23 79.45 1/00–12/13 7.23
Washington WV 4,929 59.26 199.22 363.56 81.12 1/00–12/13 8.00

This table shows statistics by “retail market area” as reported by OPIS. Prices are generated using Fleet Card purchases
from all stations in the area.

15. Across all cities, the unbranded price exceeds the branded price on 12% of the days in my sample. Among cities,
this percentage varies from less than 4% in Minneapolis and New Orleans to over 25% in Los Angeles, San Francisco, and
St. Louis.

metro area had the highest average margin (retail less rack price) over the sample period while New
Orleans had the lowest average margin.

Given the different reporting times of day for each price series, when running regressions
using daily data, it is important that lags are used where appropriate. For example, when considering
the speed of pass-through from rack to retail, I can consider the effect for the same time stamp
since end of day retail prices have a chance to adjust to a change in the rack price observed at the
beginning of the day. However, in the spot to rack pass-through regressions, I use the lagged spot
price because these two price series are reported at the same time of day.

My data include both branded and unbranded rack prices. Generally, unbranded gasoline
is more homogeneous across refiners because it includes only a generic package of additives and
lacks a brand name premium. Therefore, in most cases, branded gasoline is about five cents more
expensive than unbranded. However, at times the unbranded price exceeds the branded price.15

Many of these inversions follow supply shocks (e.g., hurricanes and refinery outages) as refiners
may be giving priority to their branded customers to maintain the brand image, resulting in a more
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16. See http://www.nimresearch.com/.
17. My algorithm selects the price on Wednesday in almost all weeks, though selects the price on Thursday in the few

weeks when there is no reported Wednesday price.
18. In some states the liability protection has been removed so refiners are reluctant to use it.
19. A simple regression of the RFG spot on the RBOB spot during the overlap yields a slope coefficient of 0.95.

severe supply reduction for unbranded gasoline. Whatever the cause, below I investigate the asym-
metric response for branded and unbranded fuel separately.

In addition to data from EIA and OPIS, I also gather information on each city in the sample
to assess factors that may be associated with more or less asymmetric pass-through. Some factors,
such as the degree of price cycling and the speed of cost pass-through can be calculated using the
EIA data. In addition, I calculate brand-level retail market concentration for each city based on
sales data from New Image Marketing Research Corporation.16 These data provide brand-level sales
for 22 of the 27 cities in my sample for a single year between 1998 and 2001, which is around the
start of my sample period.

3.1 Data Issues

Before focusing on the results, there are a few issues with the data that need to be addressed.
I run my regressions at both a daily and a weekly frequency. Weekly data is generated both as the
simple average of the daily series and by choosing a specific day of each week.17 Using the daily
average means that sometimes the average is over five days, other times six days, four days, etc.
Using the weekly price series based on a particular day of the week avoids this issue, though it
turns out that the estimates using either method are almost identical.

Due to weekends, holidays, etc, there are some missing values in the daily data. Since the
regression equations involve the contemporaneous and lagged change in prices, it is important to
make constant the time over which the change is calculated. For over 99.9% of the daily obser-
vations, the difference in days between observations is three or less (82.8% of the observations are
adjacent). In the results presented in the next section, I linearly interpolate the prices if one or two
days are missing between observations and I drop any observation where the change in price is
over three or more days. The resulting dataset contains daily observations where the change in
prices is always over exactly one day. For robustness, I also consider two alternative methodologies:

1. do not interpolate and drop changes over three or more days;
2. do not interpolate and do not drop multi-day changes.

Each of these alternatives lead to qualitatively similar results. The estimates themselves change
only slightly and are never statistically different from each other. For example, using the branded
rack-to-retail national specification, the positive and negative contemporary coefficients ( and+β1,1

) using the baseline algorithm are 0.23 and 0.08 respectively. They change slightly to 0.23 and–β1,1

0.07 using alternative one, and 0.24 and 0.07 using alternative two.
Finally, at one time the spot price for RFG was for reformulated gasoline blended with

MTBE, which has now been banned in most states.18 It has been replaced by the RBOB spot price,
which is RFG that will eventually get blended with an oxygenate (typically ethanol). For the LA
spot price, there is some overlap in the two series so I create a complete spot price series for RFG
using the old RFG spot for the early part of the sample and switching to the RBOB spot as soon
as it is reported. The two prices are similar to each other during the overlap period.19 For the Gulf
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20. This difference is large compared with the mean absolute day-to-day changes for RFG and RBOB of 2.6 and 5.1
cents respectively.

21. Both tests are carried out assuming a constant term in the polynomial under the null hypothesis. Dickey Fuller tests
on each price series confirm the presence of a unit root at the 5% significance level. Johansen tests on each pair of upstream
and downstream prices reject the null hypothesis that no cointegrating relationship exists. The tests are significant at the
5% level in all cases except one (WTI/Newark-NJ branded rack), which is significant at the 10% level. Complete statistical
results are available from the author upon request.

22. I estimate the crude to spot relationship for each of the six spot prices available on EIA’s website: conventional
gasoline and RFG in NY, Houston, and LA.

23. I use the NY spot price for Boston and Newark. I use the LA spot price for LA, San Francisco, Phoenix, Salt Lake
City and Seattle. For the remaining cities, I use the Gulf Coast spot price.

Coast, there is no overlap (the RFG spot ends on one day and the RBOB spot begins being reported
on the very next day) so I concatenate the two series to form my complete Gulf Coast RFG spot
price. However, the RBOB price on its first day reported is 38 cents higher than the RFG spot on
the previous day.20 For robustness, I have run the models only using dates where I observe the RFG
spot price and the results are qualitatively similar.

4. RESULTS

Before analyzing the results, it is important to test for stationarity of the regressors. I run
a Dickey Fuller (DF) test on each price series, which show that all have a unit root so first differ-
encing is necessary. I then run the Johansen test on each set of price series together and confirm
that the upstream and downstream price series are cointegrated (i.e., the residuals from the long-
run regression equation 3 are stationary).21 Therefore, estimating the long-term relationship in the
first stage provides super-consistent estimates that can be entered into the model directly. Durbin
Watson tests for autocorrelation correlation are also run and fail to reject the hypothesis that there
is no autocorrelation in the residuals for each model.

I divide the results into several sections which consider the differences in pattern asym-
metry among different price relationships, across cities and in the national regression, by the time
aggregation of the data, for branded versus unbranded wholesale gasoline, and over time. I show
formal F-tests of pattern asymmetry for each type of model and provide evidence of city-specific
factors that are correlated with the magnitude of asymmetry.

4.1 Price Relationships

I investigate pass-through asymmetry for combinations of the crude oil price, the gasoline
spot price, the branded and unbranded rack prices, and the retail price series. The following tables
and figures summarize the results of the national specification. The long-run coefficients are esti-
mated separately for each city and then equation 1 is estimated for all the cities combined.

The relationships include the following:

1. the crude oil price to the gasoline spot price, the rack prices, and the retail price,22

2. the closest gasoline spot price to the rack prices and the retail price, and23

3. the rack price to the retail price.

Complete results for one of these regressions (rack to retail) is shown in table 4. In this
specification, I include five lags of the rack and retail price changes. Similar results are found using
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Table 4: Regression Results: Branded Rack to Retail Prices,
All Cities

Variable Coeff. t-stat

+ (Rack(t)–Rack(t-1)) 0.220*** 102.179
+ (Rack(t-1)–Rack(t-2)) 0.072*** 29.990
+ (Rack(t-2)–Rack(t-3)) 0.011*** 4.653
+ (Rack(t-3)–Rack(t-4)) 0.038*** 15.662
+ (Rack(t-4)–Rack(t-5)) 0.035*** 14.706
–(Rack(t)–Rack(t-1)) 0.088*** 42.023
–(Rack(t-1)–Rack(t-2)) 0.061*** 26.775
–(Rack(t-2)–Rack(t-3)) 0.031*** 13.472
–(Rack(t-3)–Rack(t-4)) 0.028*** 12.088
–(Rack(t-4)–Rack(t-5)) 0.029*** 12.904
+ (Retail(t-1)–Retail(t-2)) 0.352*** 108.684
+ (Retail(t-2)–Retail(t-3)) –0.141*** –41.429
+ (Retail(t-3)–Retail(t-4)) –0.032*** –9.257
+ (Retail(t-4)–Retail(t-5)) –0.029*** –9.080
–(Retail(t-1)–Retail(t-2)) 0.331*** 44.340
–(Retail(t-2)–Retail(t-3)) 0.052*** 6.566
–(Retail(t-3)–Retail(t-4)) 0.086*** 10.890
–(Retail(t-4)–Retail(t-5)) 0.066*** 9.241
+ EC Term –0.023*** –31.896
–EC Term –0.053*** –61.667
Observations 130,421

Durbin-Watson 2.01

R2 0.40

Dependent varible: Retail(t)–Retail(t-1). Significant at the 1% (***) level.

24. Adjusting the number of lags included in the regression only slightly affects the results.
25. To account for possible nonlinearities in the relationships between the upstream and downstream prices, I consider

an upstream price increase from 200 cpg to 210 cpg and a corresponding decrease from 210 cpg to 200 cpg.

a larger number of lags. Though a complete picture of pass-through asymmetry can only be seen
from an impulse response graph, the contemporary coefficients on the change in the rack price
embodies the speed of pass-through if we think of the model as approximating a first-order differ-
ence equation. In this specification, the positive and negative coefficients are 0.22 and 0.09 respec-
tively. This means that based on the contemporary coefficients, retail prices rise 2.4 times as fast
when the rack price increases, than they fall when the rack price declines.24 The asymmetry persists
for the other lags, but the difference quickly becomes small. The coefficients on the error correction
terms are negative and significant as expected and rockets and feathers asymmetry is evident here
as well: when retail prices are above their level predicted by the rack price ( ), retail pricesz �0t–1

fall more slowly compared with the speed at which retail prices rise when they are below their
predicted level.

Following the literature on asymmetric pass-through, it is helpful to graphically present
the full impact of these results. The reason is that a one-time change in the upstream price will
have an immediate effect on the downstream price, but the total effect may be drawn out over a
period of days and include both the short-term speed of adjustment (the terms in equation 1),β1

the own-lag effects (the terms), and the long-term error correction effects (the terms). Forβ β2 3

this reason, I present impulse response functions that trace out the effects of a ten cent per gallon
change (positive or negative) in the upstream price on the downstream price over a period of several
days following the shock. The 95% confidence bands are also shown in each graph.25
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Figure 1: Impulse Response Function: WTI to Spot, National

Figures 1, 2, and 3 display the impulse response function tracing out the effect on the
downstream price of a 10 cpg change in the upstream price. I have shown the relationships between
the crude oil and spot prices, the spot and branded rack prices, and the branded rack and retail
prices. The appendix includes impulse response functions for four other price relationships: crude
oil to branded rack prices (figure A2), crude oil to retail prices (figure A3), spot to retail prices
(figure A4), and unbranded rack to retail prices (figure A5) . All of these impulse response functions
reflect a national-level regression with prices from all cities included.

The impulse response functions plot the changes in the downstream price in the 21 days
following the change in the upstream price. For a negative shock to the upstream price, the absolute
value of the change in the downstream price is shown so a comparison can be made between the
two response paths. Figures 1 and 2 show relatively little asymmetric adjustment. The 95% confi-
dence intervals often overlap meaning the response paths are not statistically different from each
other. In the case of the spot to branded rack price, the asymmetry disappears after about three
days. However, as shown in figure 3, the rockets and feathers type of asymmetry (where the response
time of positive shocks exceeds negative shocks) is strongest in the branded rack to retail relation-
ship. The rapid rise in the retail price following a positive shock is reflected in the steep slope of
the response path. The asymmetry persists until approximately ten days following the shock at
which time the response paths are not statistically distinguishable. Note that full pass-through is
achieved for positive and negative shocks after about three weeks so there is no amount asymmetry
as was discussed in section 2.

A convenient way to quantify the asymmetry is to calculate the following:

+ –Impact = D P(t)– D P(t) dt, (8)∗ ⎪ ⎪∫t∈T
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Figure 2: Impulse Response Function: Spot to Branded Rack, National

Figure 3: Impulse Response Function: Branded Rack to Retail Prices, National
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Figure 4: Impact Estimates

26. The confidence interval on the WTI to Gulf gasoline spot relationship is larger than the others due to fewer obser-
vations. Other specifications estimate the average impact over multiple retail and wholesale market areas.

27. The rack (wholesale) to retail impact estimate in BCG is 1 cpg while I estimate the impact to be 1.57 cpg. The
estimate in BCG is based on 164 bi-weekly observations, while I am fortunate to have over 130,000 daily observations.

where defines any time period where the response paths are significantly different from each∗T
other. and are simply the (absolute) changes in downstream prices at time+ –D P(t) D P(t) t⎪ ⎪
following positive and negative shocks respectively. In figure 3, the estimate of impact simplifies
to calculating the average price following a positive shock and subtracting the average price fol-
lowing a negative shock where the average is taken over the first ten periods.

Impact estimates for each price series are shown in figure 4. The largest impact of 2.27
cpg is for the branded rack to retail relationship. Other relationships show a positive and significant
impact between 1 and 1.5 cpg.26 The real-world interpretation of this result is as follows. Consider
two 3-week periods, one following a one-time rack price increase from 200 cpg to 210 cpg and
one following a one-time rack price decrease from 210 cpg to 200 cpg. Assume consumers randomly
purchased retail gasoline over the course of each period. With symmetric pass-through, consumers
would on average pay the same amount for retail gasoline over both periods. However, with asym-
metric pass-through, consumers purchasing retail gasoline following a rack price increase will pay
2.27 cpg more than consumers purchasing retail gasoline following a decrease in the rack price.

Bacon (1991) found a similar asymmetry in rack to retail prices, while Bachmeier and
Griffin (2003) find no evidence of asymmetry in the crude oil to gasoline spot price transmission,
consistent with my results. BCG (1997) do not find any significant asymmetry in the gasoline spot
to rack relationship, but they do find significant asymmetry in the crude to gasoline spot and the
rack to retail relationships. Since BCG relies on bi-weekly data, I have also run my specifications
using only prices from every other week and my impact results are larger though the estimates are
based on different cities over a different period of time.27
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Table 5: Difference in First Coefficients on Lagged Upstream Price
+β1 t-stat –β1 t-stat + –β –β1 1 t-stat

Atlanta 0.21*** 30.94 0.04*** 6.15 0.17*** 17.63
Boston 0.16*** 33.24 0.05*** 10.92 0.11*** 16.40
Chicago 0.22*** 31.84 0.07*** 11.02 0.15*** 14.97
Cleveland 0.41*** 27.61 0.13*** 8.73 0.29*** 13.86
Dallas 0.17*** 30.79 0.07*** 13.03 0.10*** 12.90
Denver 0.12*** 23.78 0.03*** 6.79 0.09*** 12.23
Detroit 0.42*** 48.75 0.16*** 19.11 0.26*** 21.53
Washington DC 0.14*** 12.76 0.03*** 2.75 0.11*** 7.18
Washington MD 0.14*** 29.16 0.04*** 9.05 0.10*** 14.50
Washington VA 0.13*** 27.25 0.05*** 9.89 0.08*** 12.48
Washington WV 0.10*** 9.76 0.06*** 6.05 0.04*** 2.65
Houston 0.16*** 42.73 0.05*** 13.00 0.12*** 21.57
Los Angeles 0.30*** 39.24 0.06*** 8.24 0.24*** 22.78
Louisville IN 0.27*** 15.42 0.07*** 4.40 0.20*** 8.17
Louisville KY 0.43*** 16.60 0.12*** 4.93 0.31*** 8.57
Miami 0.16*** 37.19 0.04*** 9.68 0.12*** 20.17
Minneapolis St Paul MN 0.43*** 26.51 0.12*** 7.31 0.32*** 14.00
Minneapolis St Paul WI 0.13*** 14.73 0.06*** 6.63 0.07*** 5.98
New Orleans 0.17*** 30.72 0.06*** 11.77 0.11*** 14.26
Newark 0.14*** 24.11 0.06*** 10.96 0.08*** 10.23
New York 0.09*** 16.61 0.05*** 9.66 0.04*** 5.61
Phoenix 0.20*** 18.65 0.06*** 5.93 0.13*** 8.78
Salt Lake City 0.16*** 12.84 0.08*** 6.58 0.08*** 4.73
San Francisco 0.25*** 27.70 0.08*** 8.49 0.17*** 13.64
Seattle 0.21*** 32.28 0.06*** 9.38 0.15*** 16.65
St Louis IL 0.24*** 18.20 0.12*** 8.84 0.12*** 6.57
St Louis MO 0.37*** 16.94 0.15*** 7.05 0.21*** 6.97

National Specification 0.23*** 100.00 0.08*** 34.13 0.15*** 47.83

Estimates from the branded rack to retail specification, by city. Estimates of the first difference in positive and negative
rack price coefficients. Positive and significant differences are evidence of rockets and feathers. Significant at the 1% (***)
level.

28. The data feature several periods when the observed retail price is less than the rack price. This may result from
short-term shortages at the wholesale level. This happens sporadically and primarily in four areas (Louisville-KY, Phoenix-

4.2 Individual City Results

The evidence of asymmetry found in the previous section is mostly confirmed by regres-
sions run at the individual city level. I focus only the branded rack to retail price relationships
analyzed in the last section. Table 5 shows the estimates and t-statistics for the contemporaneous
coefficients on the positive and negative rack changes. The positive and significant difference be-
tween each set of coefficients shows evidence of rockets and feathers asymmetry in every city in
the sample.

While I find evidence of asymmetric pass-through from branded rack to retail prices in
every city, the overall impact of the asymmetry can only be achieved by estimating the impulse
response function and calculating the impact as shown in equation 8. These results are reported in
figure 5. Salt Lake City features the largest asymmetry with an impact of about 4.5 cpg (even
though the largest differential in the estimates was in Minneapolis-MN). Other cities, such as,β1

Louisville-IN, Cleveland, and Minneapolis-MN also show relatively more asymmetry, while Min-
neapolis-WI, St. Louis-IL, and New York have the least asymmetry.28 I also calculate the speed of
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Figure 5: Impact of Asymmetric Adjustment, By City, Branded Rack to Retail

AZ, StLouis-IL, and StLouis-MO). I have run the national specification and individual city models excluding these periods
and the estimates of asymmetry are essentially unchanged.

29. The population density in the Minnesota counties around Minneapolis is over six times the population density in
the nearby Wisconsin counties based on the 2010 census. Washington-WV also has a population density less than half that
of the other Washington area metro areas, and it also shows relatively less asymmetric adjustment.

pass-through by comparing the slopes of the impulse response functions over the first three periods
following the cost shock. The speed of pass-through is between three and four times faster when
rack prices rise than when they fall.

Interestingly, while three of the retail areas that straddle state lines show similar levels of
asymmetry on both sides of the line (Louisville, St. Louis, and Washington), Minneapolis shows
significantly more asymmetry west of the Mississippi and less to the east. One potential explanation
is due to population density: Minneapolis, WI is much more rural than Minneapolis, MN. The other
state-straddling areas are more urban on both sides of the border.29

Finally, note that the national-specification impact estimate (2.27 cpg) is not a simple
average of the city-level estimates (3.28 cpg) because each impact is calculated as the difference
in the impulse response functions over days when they are statistically different. The number of
days in this calculation varies from city to city and for the national specification.

4.3 Time Aggregation

One of the major differences between the various studies in the extant literature is the
frequency of the data used. Many rely on less frequent, bi-weekly or monthly data simply because
it it more widely available. In this section, I consider the effect of using daily versus weekly data
on the likelihood of finding evidence of pass-through asymmetry.
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Figure 6: Frequency Analysis: Daily versus Weekly, Rack to Retail

30. The once-per-week specification generally uses the price on Wednesday of each week, though when that price is
missing, the Tuesday or Thursday price is selected.

31. Based on daily (weekly) data, complete pass-through is achieved in 28 (12) days following positive shocks and 17
(25) days following negative shocks.

Figure 6 shows the same impulse response function for branded rack to retail, but the top
panel uses daily data while the bottom panel uses average weekly prices. While, in general, both
show an asymmetric adjustment pattern, the day-to-day variation is being smoothed in the bottom
panel, which masks the pass-through dynamics between the two price series. The results are very
similar when using weekly prices based on a specific day of each week instead of weekly averages.
The impact of asymmetry is 2.80 cpg using average weekly prices and 2.77 cpg using once-per-
week prices.30

The weekly impact estimate is significantly higher than the impact based on daily price
changes (2.27 cpg). Comparing the impulse response functions, it is clear that using daily data,
retail prices are predicted to rise slower following a positive cost shock and fall faster following a
negative cost shock compared with weekly data.31 Both of these effects cause the impact estimate
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Figure 7: Impact of Asymmetric Adjustment, By City, Branded versus Unbranded

32. The impulse response function for the unbranded rack to retail relationship is shown in figure A5. The impact
estimate for the unbranded rack to retail national specification is 1.12 cpg, about half that found in the branded rack to retail
relationship (2.27 cpg).

to be larger based on the weekly data, but complete pass-through is achieved for both positive and
negative shocks by about four weeks using either frequency of data.

4.4 Branded versus Unbranded

Branded wholesale gasoline is generally a few cents more expensive than unbranded gas-
oline given the former has proprietary additives (and a brand-name premium) included. However,
at times, the unbranded price will exceed the branded price, and this occurs especially following
negative supply shocks. As shown in figure 7, the asymmetry for branded gasoline is significantly
higher than for unbranded gasoline in about one-half of the retail market areas.32

Therefore, while the unbranded price “rockets up” more quickly than the branded price
following a supply shock, the unbranded price also retreats back to equilibrium levels at a faster
pace than the branded price. In some cities, such as, Seattle, Cleveland, and Los Angeles, the
difference in asymmetry is very large with branded prices being more than twice as asymmetric
compared with unbranded prices. The result that unbranded gasoline prices exhibit less asymmetry
is consistent with the literature that claims heterogeneous consumer search costs are the cause of
asymmetric adjustment (e.g., Lewis (2011)). Consumers who buy branded gasoline are likely more
loyal to a single brand, while unbranded buyers are more likely to shop around for the best price.
A negative cost shock would be passed on more quickly to unbranded prices than to branded prices,
reducing the asymmetry in the unbranded price relationship.
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33. The 95% confidence interval for the 14-year average impact is (1.18 cpg, 3.72 cpg).

4.5 Differences Over Time

While the previous results display the differences in asymmetry in different price relation-
ships and cities for a single permanent change in the upstream price, the actual impact of the rockets
and feathers phenomenon depends on how the variability of the price series being analyzed changes
through time. More data are required to identify how the pass-through relationship has changed
over time (i.e. the coefficients in equation 1), so in this section I quantify the amount of asymmetry
in each year of the sample using the same set of estimated coefficients. The extreme cases, when
prices always rise or always fall, result in complete rockets behavior or complete feathers behavior
respectively. If prices are fairly stable or upstream prices generally rise, the impact of asymmetric
pass-through will be small, while the feathering effect will be large if prices generally fall during
the sample period.

To quantify the impact of asymmetric pass-through over time, I use the actual upstream
(rack) price and estimate the downstream (retail) price under two regimes. First, I calculate the
predicted price using the estimates of my model (i.e., those that reflect the asymmetric pass-through
or the rockets and feathers regime). Assuming the model fits the data well, the predicted prices will
be very close to the actual retail prices. In the second regime, I estimate the retail prices if they
respond to negative shocks in the rack price at the same rate that they respond to positive shocks.
In practice, this means simply replacing the coefficients with the coefficients forˆ – ˆ +β β i =1i 1i

I call this the rockets and rockets regime (abbreviated RR in the figures). I can then1, . . . ,L .1

estimate the average downstream price under each regime and determine how much higher prices
are under rockets and feathers as compared with rockets and rockets.

Simulation based on the national specification for branded rack and retail prices, January-
December 2013. The mean RF price was 301.72 and the mean RR price was 298.37, a difference
of 3.35 cpg.

Figure 8 shows the results of the simulation for 2013. I run the national model over the
entire sample period from 2000 to 2013 and then simulate prices under the two regimes during
2013 alone. The red dashed line shows the predicted retail price under the rockets and feathers
regime and the blue dashed line shows the predicted prices under the rockets and rockets regime.
The graph shows that the retail prices increase at approximately the same rate when the rack price
is increasing, while the blue line falls back much slower than the red line. Overall the average retail
price is 301.72 cpg under rockets and feathers and 298.37 cpg under rockets and rockets, a difference
of 3.35 cpg. The reason this difference is larger than the impact estimate in section 4.1 is that rack
prices were volatile in 2013 with frequent periods of slowly falling retail prices.

Figure 9 shows the difference in the average retail price under the two regimes for each
year from 2000 to 2013. Again, these results are all based on the same set of coefficients (i.e., the
model run on all cities/years and not separate models for each year). The year-by-year variation is
due to the differences in the volatility of rack prices in each year. The spike in 2008 is due to a
long decline in rack prices in the second half of the year, which means there is significant feathering
of retail prices and the impact is large. All else equal, based on the average across all years, retail
prices would be about 2.45 cpg lower if retail prices fell as quickly as they rose.33

It is important to note that the simulated prices under the rockets and rockets regime may
not be the outcome one would expect under any model of competition. The simulation is simply a
counterfactual experiment to determine how much higher are prices when they feather down instead
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Figure 8: Simulation: Rockets and Feathers vs Rockets and Rockets, 2013

Simulation based on the national specification for branded rack and retail prices, January–December 2013. The mean RF
price was 301.72 and the mean RR price was 298.37, a difference of 3.35 cpg.

Figure 9: Simulation: Rockets and Feathers vs Rockets and Rockets, By Year
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34. See Ye, et. al. (2005) for a discussion of this issue.

35. Formally, the test statistic is of the usual form, where and are the number of
(RSS – RSS )/(K – K )r u u rF̃ = , K Ku rRSS /(N– K )u u

parameters to be estimated in the unrestricted and restricted models respectively.
36. The top and bottom quartiles correspond to the seven cities in figure 5 that show the largest and smallest impact

estimates, respectively.

of rocket down. If symmetric pass-through or a constant markup over the wholesale price was in
some way required, retail station owners may respond by changing their pricing strategy so the
average markup is the same under asymmetric or symmetric pass-through. In other words, by
requiring symmetric pass-through, it is not clear that consumers would necessarily benefit from
lower average retail prices. In fact, under the rockets and rockets counterfactual, the average markup
drops by 2.45 cpg, which may cause firms to exit. Thus the welfare consequences of eliminating
asymmetric pass-through are ambiguous and the counterfactual serves as an experiment to estimate
the magnitude of the impact that feathering has on retail prices, all else equal.

4.6 Formal Tests of Asymmetry

In order to formally test for asymmetry, I report F-statistics for the pattern asymmetry in
equation 5. I test the following hypothesis:

+ –H :β = β ∀ i0 1i 1i

+ –H :β ≠ β for some i.1 1i 1i

Note this is a two-sided test, so includes the possibility that the asymmetry is both the rockets and
feathers type and the opposite. To implement the test, I save the residual sum of squares, ,RSSu

from the full (unrestricted) model where the coefficients are allowed to vary separately for positive
and negative shocks. I then estimate a symmetric (restricted) model, with only one set of β1i

coefficients and save . Note that minimizing the BIC separately for each model would meanRSSr

that a different number of lags is included in each.34 Therefore, I again restrict the number of lags
to be 21 days in both regressions so the only difference between the models is the restriction on
the parameters.35 Results are reported in table 6.

The statistics reported in the tables confirm what has been shown in the impulse response
functions in the previous sections. There is strong evidence of asymmetry in all national specifi-
cations and in the rack to retail specifications for each city. The evidence is slightly weaker when
the upstream price is the crude oil price though I still reject the null hypothesis of symmetric pass-
through. The branded rack to retail price relationship again shows stronger evidence of asymmetry
compared with unbranded rack to retail prices.

4.7 Factors Related to Asymmetric Pass-through

I have shown that asymmetric pass-through appears strongest in the rack to retail price
relationship and the amount of asymmetry varies by city. In this section, I further investigate factors
that may be associated with more or less asymmetry. Table 7 summarizes the results for a three
select factors. I report the average value of each factor for cities in the top and bottom quartile in
terms of asymmetry as well as the correlation between the factor and the impact estimate for all
cities in my sample.36
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Table 6: F-Statistics on the Existence of Pattern Asymmetry,
By Price Relationship

City-Specific
F-Stat

Rack to Retail Branded Unbranded

Atlanta 16.82*** 14.56***
Boston 16.92*** 12.12***
Chicago 11.32*** 8.27***
Cleveland 9.73*** 5.30***
Dallas 11.45*** 9.44***
Denver 9.17*** 7.16***
Detroit 20.35*** 10.17***
Washington DC 6.83*** 6.29***
Washington MD 14.44*** 11.97***
Washington VA 14.87*** 14.10***
Washington WV 5.05*** 8.67***
Houston 19.74*** 10.01***
Los Angeles 24.25*** 9.56***
Louisville IN 5.28*** 4.63***
Louisville KY 4.92*** 6.27***
Miami 17.03*** 11.51***
Minneapolis MN 8.65*** 7.61***
Minneapolis WI 6.19*** 5.47***
New Orleans 9.15*** 4.73***
Newark 5.94*** 4.26***
New York 4.65*** 3.19***
Phoenix 5.88*** 2.61***
Salt Lake City 8.37*** 4.47***
San Francisco 10.76*** 4.11***
Seattle 14.66*** 5.14***
St Louis IL 4.31*** 3.76***
St Louis MO 5.78*** 5.31***

National F-Stat

WTI to Spot 6.26***
WTI to Branded Rack 22.14***
WTI to Retail 9.81***
Spot to Branded Rack 204.49***
Spot to Retail 40.40***
Branded Rack to Retail 123.27***
Unbranded Rack to Retail 70.49***
Branded Rack to Retail (W) 75.37***

National and city specifications with daily data and 21 lags. Significant at the 1% (***)
level.

37. Minneapolis, MN is in the top quartile of cities and shows evidence of cycling (median first difference = –0.77)
while Minneapolis, WI show relatively less asymmetry and little evidence of cycling (median first difference = –0.08).

For each city in the sample, I estimate a statistic on price cycling measured as the median
first difference of daily changes in the retail price. Larger (absolute) values of this statistic are
evidence of price cycling: if increases in price are relatively large and occur quickly while decreases
tend to be small and last for many periods, the median first difference will be more negative.
Asymmetry is negatively associated with this statistic, which implies that cities that show more
asymmetric adjustment also are more likely to cycle.37 Asymmetry is also negatively related to the
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Table 7: Factors Related to Asymmetric Pass-through

Factor

Cycling Speed Concentration

Top Quartile Asymmetric –0.52 9.79 1,620
Bottom Quartile Asymmetric –0.17 13.29 1,419
Correlation(Asymmetry, Factor) –0.26 –0.23 0.18

Notes: Cycling is measured by the median first difference of retail price changes.
Cycling is more prevalent in cities with larger (negative) estimates. Speed is calculated
as the number of days to reach 90% pass-through for positive and negative wholesale
cost shocks. Concentration is the brand-level HHI based on the total revenue sales by
gas stations in each city.

38. I have data on 22 of the 27 cities in the sample for one of the years between 1998 and 2001. Using total sales by
all gas stations that sell under each brand name, I calculate where is the share of brand .2HHI = s , s i∑ i ii

speed of pass-through, measured as the number of days to pass-through 90% of a cost shock
(positive or negative). In fact, cycling and pass-through speed are strongly correlated ( ),ρ = 0.88
consistent with the findings in Lewis and Noel (2011).

Finally, I calculate a brand-level concentration index for cities in my sample based on data
from New Image Marketing Research Corporation. I calculate the Herfindahl-Hirschman Index
(HHI) for each city based on the total dollar sales at all stations in a city around the first year in
my sample.38 Concentration is positively correlated with asymmetric pass-through, consistent with
the findings in Deltas (2008) and Verlinda (2008). The HHI is about 14% higher for cities in the
top quartile of asymmetry relative to the bottom quartile. Other factors, such as gasoline tax levels,
median household income, and percent of sales by channel (e.g., rack versus DTW), are uncorrelated
with the amount of asymmetric pass-through observed in each city.

5. CONCLUSION

The purpose of this study was to understand why so many researchers have studied asym-
metric pass-through in the gasoline industry and have come to varying conclusions about its exis-
tence and causes. Many of the discrepancies can be explained by variations in the data and the
model specification. I find that pass-through asymmetries do exist in all price relationships from
the price of crude oil, to spot, rack and retail gasoline prices. Pass-through asymmetry in the branded
rack to retail price relationship is shown to be larger than its unbranded counterpart, consistent with
the explanation that consumer search costs drive asymmetric pass-through. Averaging daily data to
obtain a weekly price series leads to a larger estimate of asymmetry as retail prices are predicted
to increase faster following a cost increase and fall slower following a cost decrease.

Estimating the model separately for each city in the sample shows that some cities expe-
rience more asymmetric pass-through than others, but in every city, the speed of pass-through is
between three and four times faster when rack prices rise than when they fall. I find that asymmetry
in pass-through rates is positively correlated with both the degree of price cycling and overall speed
of pass-through in a city. I also find evidence consistent with explanations of asymmetry based on
market power as the amount of asymmetry is positively associated with retail concentration.



176 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

39. The average retail price across all cities in 2013 was 305 cpg and the average rack price was 284 cpg.

The magnitude of the impact of asymmetric pass-through is economically significant. I
find that retail prices would be about 3.35 cpg lower in 2013 if retail price fell as quickly as they
rose. This is about 1% of the retail gasoline price, though it is 15.2% of the average markup of
retail over branded rack prices seen in the data.39 While significant, it is important to keep these
findings within the scope of the model, as estimating the welfare implications of eliminating asym-
metric pass-through would require a fully structural model of wholesale and retail gasoline pricing.
Determining the general equilibrium effects is an appropriate extension to this line of research and
may provide important insights into the effects of asymmetric pass-through in gasoline prices as
well as other markets.
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APPENDIX A: ADDITIONAL FIGURES AND TABLES

Figure A1: St. Louis Retail Market Areas
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Figure A2: Impulse Response Function: WTI to Branded Rack, National

Figure A3: Impulse Response Function: WTI to Retail, National
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Figure A4: Impulse Response Function: Spot to Retail, National

Figure A5: Impulse Response Function: Unbranded Rack to Retail Prices, National


