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ABSTRACT 

By using our newly defined measure, we detect and quantify asymmetries in the 
volatility spillovers of petroleum commodities: crude oil, gasoline, and heating oil. 
The increase in volatility spillovers after 2001 correlates with the progressive fin
ancialization of the commodities. Further, increasing spillovers from volatility 
among petroleum commodities substantially change their pattern after 2008 (the 
financial crisis and advent of tight oil production). After 2008, asymmetries in 
spillovers markedly declined in terms of total as well as directional spillovers. In 
terms of asymmetries we also show that overall volatility spillovers due to negative 
(price) returns materialize to a greater degree than volatility spillovers due to posi
tive returns. An analysis of directional spillovers reveals that no petroleum com
modity dominates other commodities in terms of general spillover transmission. 
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1. INTRODUCTION, MOTIVATION, AND RELEVANT LITERATURE 

Research on the interdependencies observed on financial and commodities markets has led 
to analyzing not only returns and volatility, but also their spillovers (Dimpfl and Jung, 2012). The 
global financial and economic crisis, sharp fluctuations in commodity prices, the rapid financiali
zation of petroleum commodities1 and tight oil production from shale formations prompted a fresh 
surge of interest in how the dynamic links among commodities work (the relevant literature is 
shown presently). In this paper, we focus on petroleum commodities and analyze volatility spillovers 
across petroleum markets. In doing so we differentiate between spillovers due to negative and 
positive returns (negative and positive spillovers) as the asymmetry has been proven to play an 
important role in many economic and financial issues related to our analysis (Ramos and Veiga, 
2013; Du et al., 2011; Nazlioglu et al., 2013; Bermingham and O’Brien, 2011). 

Why do we care about volatility spillovers, and what are the implications for investors, 
regulators, and facility operators? Since volatility serves as a proxy measure of risk, substantial 
changes in volatility and its spillovers across markets are able to negatively impact risk-averse 
investors. Hence, knowledge of volatility spillover dynamics has important implications for inves
tors and financial institutions in terms of portfolio construction and risk management as these 
spillovers and their direction may greatly affect portfolio diversification and insurance against risk 

1. The term “financialization” relates to investments in commodities made by investors to diversify their portfolios. 
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(Gorton and Rouwenhorst, 2005). Analyzing volatility spillovers also has important implications 
for the development of accurate asset pricing models, hedging strategies, and the forecasting of 
future equity and the volatility of oil price returns (Malik and Hammoudeh, 2007). Besides being 
used in risk management for a long time, volatility has recently become even more important as it 
is now directly tradable using swaps and futures (Patton and Sheppard, 2014). Further, volatility 
spillovers are closely associated with market co-movements and this phenomenon becomes quite 
pronounced during crisis events when, usually, financial market volatility sharply increases and 
spills across markets (Reinhart and Rogoff, 2008). Analyzing and measuring volatility spillovers 
enables providing “early warning systems” for dormant crises and to map the development of 
existing crises (Diebold and Yilmaz, 2012). Knowledge of volatility spillovers then becomes a 
segment of information useful for regulators, operators, and policy makers that may lead to the 
introduction of regulatory and institutional rules to reduce the cross-market impact of excessive 
price movements. 

Petroleum-based commodities form an asset class where spillovers historically play a 
prominent role (Haigh and Holt, 2002), given the importance of these commodities for the economy 
and economic development (Hamilton, 1983) and the fact that shocks’ transmission into oil prices 
significantly affects the U.S. and the global economy (Kilian, 2008; Hamilton, 1996; Gronwald, 
2012). However, the research on volatility spillovers among petroleum commodities is rather limited 
and the asymmetric aspect of spillovers is not adequately explored yet. In our paper we make two 
key contributions. First, we use high-frequency data to extend the literature on volatility spillovers 
among key petroleum commodities: crude oil, heating oil, and gasoline. Second, by augmenting 
the current methodology of Diebold and Yilmaz (2009, 2012), we are able to quantify negative and 
positive asymmetries in spillovers, including the directions and magnitudes over time. Among other 
results, we rigorously show that negative volatility spillovers are larger than positive spillovers 
across petroleum-based commodities. Such negative asymmetry is most visible before 2008 while 
later asymmetries in spillovers considerably decline. 

Petroleum-based commodities are essential to our economies primarily from an industrial 
perspective.2 Accordingly, crude oil prices are driven by distinct demand and supply shocks (Kilian, 
2008; Hamilton, 2009; Lombardi and Van Robays, 2011). Further, Kilian (2009) shows that shifts 
in the price of oil are driven to different extents by aggregate or precautionary demand related to 
market anxieties about the availability of future oil supplies. Kilian and Vega (2011) support this 
finding by showing that energy prices do not respond instantaneously to macroeconomic news but 
Mason and Charles (2013) argue that the spot price of crude oil and its futures prices do contain 
jumps. Finally, Sari et al. (2011) argue that global risk perceptions have a significantly suppressing 
effect on oil prices in the long run. 

Besides the above forces, oil prices might also be linked to large speculative trades (Ham
ilton, 2009; Caballero et al., 2008) and short run destabilization in oil prices may be caused by 
financial investors (Lombardi and Van Robays, 2011). These findings are in line with petroleum’s 
increasing financialization after 2001 as shown in Fratzscher et al. (2013) and the expanding fin
ancialization of commodities in general (Mensi et al., 2013; Creti et al., 2013; Dwyer et al., 2011; 
Vivian and Wohar, 2012). 

2. The importance of crude oil can be documented by the 89.4 million barrels of global daily consumption in 2012 as 
reported by the U.S. Energy Information Administration. The corresponding figures for the largest consumption regions in 
millions of barrels daily are 29 for Asia, 18.5 for the US, and 14.4 for Europe; U.S. Energy Information Administration, 
accessed on April 24, 2014 (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid = 5&pid = 5&aid = 2). 
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Due to their real economic importance and their ongoing financialization, petroleum-based 
commodities are naturally sensitive to economic development as well as market volatility. The 
evidence in Vácha and Barunı́k (2012) indicates that during periods of recession there exists a much 
higher downside risk to a portfolio formed from oil-based energy commodities. The asymmetric 
risk and accompanying volatility spillovers are thus a feature one would like to measure and monitor 
effectively. The research related to volatility spillovers among energy commodities is surprisingly 
limited, though. On weekly data, Haigh and Holt (2002) analyze the effectiveness of crude oil, 
heating oil, and unleaded gasoline futures in reducing price volatility for an energy trader: uncer
tainty is reduced significantly when volatility spillovers are considered in the hedging strategy. 
Using daily data for the period 1986–2001, Hammoudeh et al. (2003) analyzed the volatility spill-
overs of three major oil commodities (West Texas Intermediate, heating oil, and gasoline) along 
with the impact of different trading centers. Spillovers among various trading centers were also 
analyzed by Awartani and Maghyereh (2012), who investigated the dynamics of the return and 
volatility spillovers between oil and equities in the Gulf region. The spillover effect between the 
two major markets for crude oil (NYMEX and London’s International Petroleum Exchange) has 
been studied by Lin and Tamvakis (2001), who found substantial spillover effects when both mar
kets are trading simultaneously. More recently, Chang et al. (2010) have found volatility spillovers 
and asymmetric effects across four major oil markets: West Texas Intermediate (USA), Brent (North 
Sea), Dubai/Oman (Middle East), and Tapis (Asia-Pacific). 

It is not surprising that different classes of petroleum commodities are affected by similar 
shocks given their potential substitution effect (Chevallier and Ielpo, 2013) or economic linkages 
(Casassus et al., 2013). However, the spillovers might evolve differently depending on the quali
tative nature of the shocks. In terms of volatility spillovers, it is of key importance to identify how 
negative or positive shocks transmit to other assets. Changes in the volatility of one commodity are 
likely to trigger reactions in other commodities. We hypothesize that such volatility spillovers might 
exhibit substantial asymmetries and we aim to quantify them precisely. 

Much of the research studying volatility spillovers among markets have employed multi
variate GARCH family models, VEC models, etc. However, these methods have interpretative 
limitations as, most importantly, they are not able to quantify spillovers in sufficient detail. In our 
analysis we utilize more efficient techniques. Recently, Diebold and Yilmaz (2009) introduced a 
methodology for the computation of a spillover index (the DY index) based on forecast error 
variance decomposition from vector autoregresssions (VARs).3 The methodology was further im
proved in Diebold and Yilmaz (2012) who introduced spillover direction and variable ordering in 
VARs. Another improvement of the original DY index has been introduced by Klößner and Wagner 
(2014), who developed a new algorithm for the fast calculation of the index along with the com
putation of the minimum and maximum values of the index. Finally, based on the idea of realized 
semivariance due to Barndorff-Nielsen et al. (2010), Barunı́k et al. (2013) extended the information 
content of the DY index with the ability to capture asymmetries in spillovers that materialize due 

3. While the DY index has been widely adopted to analyze spillovers on financial markets, to the best of our knowledge, 
only one study applies the methodology to measuring volatility spillovers on commodity markets, albeit without assessing 
asymmetries in spillovers. Using daily data, Chevallier and Ielpo (2013) find that volatility spillovers among commodities 
have been increasing in the period 1995–2012. They even show that the inclusion of commodities in a broad portfolio of 
assets increases total spillovers. Among the commodities, the biggest net contributors to spillovers are precious metals and 
energy commodities. Hence, exploring asymmetry in spillovers among key energy commodities represents an important 
area that has not been explored yet. 
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to negative and positive returns/shocks—negative and positive spillovers. We employ this meth
odology for our analysis. 

Our contribution is centered on finding substantial asymmetries in volatility spillovers 
across petroleum commodities, but our results are much richer. During the 1987–2014 period we 
document considerable volatility spillovers among petroleum commodities that substantially change 
their character after 2008: an increase in the magnitude of spillovers but a decline in their asym
metries. The increase in volatility spillovers seems to correlate with two important factors. First, 
the progressive financialization of the commodities has occurred since the beginning of the 21st 
century and the 2008 financial crisis deeply affected financial markets; the observed correlation 
resonates well with the findings of Tang and Xiong (2012), Creti et al. (2013), or Mensi et al. 
(2013). Second, the year 2008 is fundamentally important because it brought about much more 
activity in tight oil exploration and an increase in U.S. oil production that later resulted in a supply 
shock in global markets as documented by the International Energy Agency (IEA) Medium Term 
Oil Market Report-2013 (IEA, 2013).4 In terms of asymmetries in spillovers we show that overall 
volatility spillovers due to negative returns occur across petroleum commodities to a much larger 
extent than positive volatility spillovers. Further, after 2008 the asymmetries in spillovers markedly 
declined for both total spillovers as well as directional spillovers. Analysis of directional spillovers 
also reveals that no commodity dominates other commodities in terms of spillover transmission. 

The paper is organized as follows. In Section 2 we introduce the methodology to quantify 
asymmetries in volatility spillovers, namely the spillover index with realized variance and semi-
variance, and an intuitively appealing spillover asymmetry measure. Data of the used energy com
modities are described in Section 3. We display our results and inferences in Section 4. Finally, we 
briefly conclude. 

2. MEASURING ASYMMETRIES IN VOLATILITY SPILLOVERS 

To define a measure of asymmetries in volatility spillovers, we begin with a description 
of the two methodological frameworks that we finally combine into a new spillover asymmetry 
measure. 

2.1 Realized Variance and Semivariance 

Consider a continuous-time stochastic process for log-prices pt evolving over a time ho
rizon [0 ≤ t≤ T] , which consists of a continuous component and a pure jump component, pt = 

∫0 

t
lsds + ∫0 

t
σsdWs + Jt, where l is a locally bounded predictable drift process and σ is a strictly 

positive volatility process, and all is adapted to a common filtration F. The quadratic variation of 
the log-prices pt is 

2 2[pt,pt] =  ∫0 

t
σs ds + ∑ (Dps) , (1) 

0 s≤ t

4. Tight oil is an industry convention that generally refers to oil produced from very low permeability shale, sandstone, 
and carbonate formations. The prospects of the tight oil impact on petroleum production are analyzed and documented in 
Maugeri (2013) and EIA (2014). 
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where Dps denotes the size of the jump, if present. A natural measure for quadratic variation has 
been formalized by Andersen et al. (2001) and Barndorff-Nielsen (2002), who propose to estimate 
it as the sum of squared returns and coined the term “realized variance” (RV). Formally, let us 
suppose that the natural log prices p0, . . . ,pn are equally spaced on the interval [0,t]. Then, 

n

RV = ∑ (pi – pi– 1)2 (2) 
i = 1  

converges in probability to [pt,pt] with nr∞. More recently, Barndorff-Nielsen et al. (2010) intro
duced estimators that capture the variation only due to negative or positive returns (p – p ) usingi i–1 

an estimator of realized semivariance: 

n

RS– = ∑ (pi – pi– 1)2 I(p – p 0) (3)
i i– 1 

i = 1  

n
+ 2RS = ∑ (p – p ) I . (4)i i–1 (p – p e 0)i i– 1 

i = 1  

The realized semivariances provide a complete decomposition of the realized variance, as RV = 
RS– + RS + , and can serve as measures of downside and upside risk. The decomposition holds 
exactly for any n. Barndorff-Nielsen et al. (2010) show the limiting behavior of the realized se

2mivariance, which converges to 1/2∫0 

t
σs ds and the sum of the jumps due to negative and positive 

returns. 

2.2 Measuring Volatility Spillovers 

Diebold and Yilmaz (2009) introduce a volatility spillover measure based on forecast error 
variance decompositions from vector auto regressions (VARs). Variance decompositions record how 
much of the H-step-ahead forecast error variance of some variable i is due to innovations in another 
variable j, hence the measure provides a simple intuitive way of measuring volatility spillovers. 
The methodology, however, has its limitations. First, it relies on the Cholesky-factor identification 
of VARs, and thus the resulting variance decompositions can be dependent on variable ordering. 
Second, a more crucial shortcoming of this methodology is that it allows measuring total spillovers 
only. Both limitations were successfully eliminated in their subsequent work, Diebold and Yilmaz 
(2012), which uses a generalized vector autoregressive framework in which forecast error variance 
decompositions are invariant to variable ordering, and explicitly includes the possibility to measure 
directional volatility spillovers. 

Third, and most important to us, Diebold and Yilmaz (2009, 2012) use the daily or weekly 
range-based volatility of Garman and Klass (1980) to compute spillovers. While range-based esti
mators provide an efficient way of estimating volatility, it is appealing to take advantage of the 
availability of high-frequency data to improve the understanding of the transmission mechanism. 
While it is extremely easy to analyze volatility due to negative and positive returns using high 
frequency data (as described in our paper), daily data does not fully allow this decomposition. 
While we know from the literature that variance can be computed efficiently from the data using 
range-based estimators, to the best of our knowledge, feasible semivariance estimation based on 
high frequency data has not been established in the literature yet. Hence, following Barndorff-
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Nielsen et al. (2010), we can conveniently decompose daily volatility into negative and positive 
semivariance providing a proxy of downside (upside) risk. Replacing the total volatility that enters 
the computation by the measure of downside or upside risk will allow us to measure the spillovers 
due to negative and positive returns and test if they are transmitted in the same magnitude. Thus, 

– we consider RV = (RV , . . . ,RV ), to measure total volatility spillovers, and RS = t 1t nt t 
– – + + +(RS , . . . ,RS ), and RS = (RS , . . . ,RS ), to measure volatility spillovers due to negative and 1t nt t 1t nt

positive returns, respectively. For ease of exposition we label them as negative and positive (vol
atility) spillovers. 

To measure negative and positive spillovers, we use the Diebold and Yilmaz (2012) di
rectional spillover measure, which follows directly from the variance decomposition associated 
with an N-variable vector autoregression fitted to volatility (in our case semivariances). To set the 
stage, consider an N-dimensional vector RV = (RV , . . . ,RV ), holding the realized variance of t 1t nt

N assets, which is modeled by a covariance stationary vector autoregression VAR( ) asp

p

RV = ∑ U RV + E , (5)t i t– i t
i = 1

with Et� N(0,RE) being a vector of independently and identically distributed disturbances and Ui

for i =  1, . . . ,p coefficient matrices. Provided that the VAR process is invertible, it has the moving 
average representation RV = ∑∞

W E , where the NX N matrices holding coefficients W cant i = 0  i t– i i

be obtained from the recursion W = ∑p
U W with W being the identity matrix; W = I andi j = 1  j i– j 0 0 N

Wi = 0  for i 0. The moving average representation is key to understanding the dynamics of the 
system as they allow the computation of variance decompositions. These in turn allow decompo
sition of the forecast error variances of each variable in the system into parts, which are attributable 
to various system shocks. Diebold and Yilmaz (2012) build the spillover index on the idea of 
assessing the fraction of the H-step-ahead error variance in forecasting the i th variable that is due 
to shocks to the j th variable for j ≠ i, for each i. In order to obtain variance decompositions, which 
are invariant to variable ordering in the VAR system, Diebold and Yilmaz (2012) use the framework 
of the generalized VAR of Koop et al. (1996) and Pesaran and Shin (1998). The framework allows 
for correlated shocks but accounts for them by using the observed distribution of the errors, under 
a normality assumption. In this way, the shocks to each variable are not orthogonalized. Hence the 
resulting sum of the contributions to the variance of the forecast error may not necessarily equal 
one. 

2.2.1 Total spillovers

To define the spillover index, Diebold and Yilmaz (2012) consider a H-step-ahead gen-
Heralized forecast error variance decomposition matrix X, which has following elements xij for 

H =  1,2, . . .  

H–1–1 2 
H

σ ∑ (e,W R e )jj h = 0  i h E j
xij = H–1 , (6)∑ (e,W R W,e )h = 0  i h E h i

where RE is the variance matrix for the error vector Et, σjj is the standard deviation of the error term 
for the j th equation, ei is selection vector, with one as the i th element and zero otherwise, and 
Wh moving average coefficients from the forecast at time t. The sum of the elements in each row 
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Hof the variance decomposition table is not equal to one, ∑j

N

= 1  xij ≠ 1, as the shocks are not nec

essarily orthogonal in this framework. Hence we need to normalize each element by the row sum 
Hxijas x̃ij

H = N H
. Using the contributions from the variance decomposition, Diebold and Yilmaz ∑j = 1  xij

(2012) then define the total spillover index, which measures the contribution of spillovers from 
volatility shocks across variables in the system to the total forecast error variance as 

H ˜ HS = 100 X x . (7) 
1 ∑

N

ijN i,j = 1  
i ≠ j

Note that by construction, ∑j

N

= 1  x̃
H
ij = 1  and ∑i

N

,j = 1  x̃
H
ij = N, thus the contributions of spillovers from 

volatility shocks are normalized by the total forecast error variance. 

2.2.2 Directional spillovers

The spillover index as defined by Eq. (7) helps us understand how much the shocks to the 
volatility spill over across the studied assets. The main advantage of the generalized VAR framework 
is, however, the possibility to identify directional spillovers using the normalized elements of the 
generalized variance decomposition matrix. Directional spillovers allow us to further uncover the 
transmission mechanism, as we can decompose the total spillovers to those coming from, or to, a 
particular asset in the system. 

Diebold and Yilmaz (2012) propose to measure the directional spillovers received by asset 
i from all other assets j as: 

N
H

1 
S = 100 X ∑ x̃H . (8)iR • ijN j = 1

i ≠ j

In a similar fashion, the directional spillovers transmitted by asset i to all other assets j can be 
measured as: 

H ˜ HSir • = 100 X
1 ∑

N

xji . (9)
Nj = 1  

i ≠ j

2.2.3 Net spillovers and net pairwise spillovers

Directional spillovers can also be used to obtain the net volatility spillover from asset i to 
all other assets j as a simple difference between gross volatility shocks transmitted to and received 
from all other assets: 

H H HS = S – S . (10)i ir • iR • 

The net volatility spillover tells us how much each asset contributes to the volatility in other assets, 
in net terms. 
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Finally, it is also interesting to define the pairwise volatility spillover between asset i and 
j as the difference between the gross shocks transmitted from asset i to asset j and those transmitted 
from j to i: 

1
H H HSij = 100 X (x̃ji – x̃ij ). (11)

N

2.3 Measuring Asymmetric Spillovers 

Finally, we describe how to capture and measure asymmetric volatility spillovers. Specif
–ically, we are able to account for spillovers from volatility due to negative returns S and positive 

+ – –returns S , as well as directional spillovers from volatility due to negative returns S , S , and iR • ir • 

positive returns S + , S + . Based on the previous exposition, to isolate asymmetric volatility spill-iR • ir • 

overs, we need to replace the vector of volatilities RVt = (RV1t, . . . ,RVnt), with the vector of negative 
– – – +semivariances RS = (RS , . . . ,RS ), or the vector of positive semivariances RS = t 1t nt t 

(RS1
+ 
t , . . . ,RSnt

+ ), . Please note that we drop the H index to ease the notational burden from here 
–on, but it remains a parameter for the estimation of spillover indices. If the contributions of RS

and RS + are equal, the spillovers are symmetric, while the differences in realized semivariance 
result in asymmetric spillovers. Moreover, we assume that the values of the volatility spillover 
indices differ over time. To capture the time-varying nature, we compute indices using a 200-day 
moving window that runs from point t–199 to point ; more details are provided in Section 4.1. t

2.3.1 Spillover Asymmetry Measure

In order to better quantify the extent of volatility spillovers we introduce a spillover asym
metry measure (SAM) that is formally defined as 

S + – S– 

SAM = 100 X
+ – 

, (12)
1/2(S + S ) 

where S– and S + are volatility spillover indices due to negative and positive semivariances, 
RS– and RS + , respectively, with a H-step-ahead forecast at time t. SAM defines and illustrates 
the extent of asymmetry in spillovers due to RS– and RS + . When SAM takes a value of zero, 
spillovers coming from RS– and RS + are equal. When SAM is positive, spillovers coming from 
RS + are larger than those from RS– and the opposite is true when SAM is negative. 

2.3.2 Directional Spillover Asymmetry Measure

While the spillover asymmetry measure (SAM) defined by Eq. (12) measures to what 
extent the spillovers from volatility are asymmetric, we can decompose this measure and study the 
source of asymmetry among the studied assets. We define the asymmetry measure for directional 
spillovers received by asset i from all other assets j as 

S + – S– 
iR • iR •SAMiR • = 100 X

+ – 
. (13)

1/2(SiR • + SiR •) 
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Table 1: Descriptive Statistics for Realized Volatility of Crude Oil, Heating Oil, and 
Gasoline over the Sample Period from September 1, 1987 through February 12, 
2014 

Mean St.dev. Skewness Kurtosis Minimum Maximum 

Crude oil 
Heating oil 
Gasoline 

0.3199 
0.3042 
0.3543 

0.3465 
0.2857 
0.3519 

4.5004 
5.7352 
4.7872 

35.3530 
88.6317 
42.1653 

0.1778 
0.1780 
0.1960 

0.0056 
0.0074 
0.0060 

– 3X10 – 3X10 – 4X10 

In a similar fashion, we can measure the degree of asymmetry in directional spillovers transmitted 
by asset i to all other assets j: 

+ – –S Sir • ir •SAMir • = 100 X
+ – 

. (14)
1/2(S + S )ir • ir • 

SAMiR • and SAMir • allow us to identify the extent to which volatility from (or to) the i th asset 
spills over to (or from) other assets symmetrically. For example, if a negative spillover from one 
asset in the system is larger than a positive spillover, SAMir • will be different from zero, and we 
expect it to be negative. This information would stay hidden in the original Diebold and Yilmaz 
(2012) framework. 

3. DATA 

The data set consists of transaction prices for crude oil, heating oil, and gasoline traded 
on the New York Mercantile Exchange (NYMEX); the data were obtained from Tick Data, Inc. We 
use the data from Globex during the main trading hours of 9:00–14:30 EST. From the raw irregularly 

–spaced prices we extract 5-minute logarithmic returns using the last-tick method for the RV, RS , 
and RS + estimators. The 5-minute choice is guided by the volatility signature plot and previous 
literature employing the same data. The sample period goes from September 1, 1987 through 
February 12, 2014; the time span is based on (high-frequency) data availability and not on the end 
of OPEC’s administrative pricing. In 2006, NYMEX changed the grade of gasoline, and instead of 
unleaded gasoline (HU) contracts, started to trade reformulated gasoline blendstock for oxygen 
blending (RBOB) futures. For the gasoline data, we use unleaded gasoline until late 2006, and 
RBOB gasoline from 2006. We eliminate transactions executed on Saturdays and Sundays, U.S. 
federal holidays, December 24 to 26, and December 31 to January 2, due to the low activity on 
these days, which could lead to estimation bias. 

Table 1 reports the summary statistics for the estimated realized measures. The daily prices 
are plotted in Figure 1. 

4. RESULTS 

This section summarizes the results of the volatility spillover analysis of petroleum com
modities. For easier orientation we divide our results into three parts. The first part shows the 
dynamics of spillovers and uncovers important patterns in the volatility transmission mechanism. 
The second part introduces asymmetries and shows the importance of understanding the differences 
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Figure 1: Normalized Prices of Crude Oil, Heating Oil, and Gasoline over the Sample 
Period Extending from September 1, 1987 through February 12, 2014. 

Table 2: Volatility Spillover Table: Rows (To), Columns (From). Panel (a) Shows Results 
Using RV, Panel (b) Shows Results Using Range-based Volatility 

Panel (a) Crude Heating Oil Gasoline FROM 

Crude 
Heating Oil 
Gasoline 

49.9025 
25.3731 
25.1333 

21.9881 
44.7523 
21.3211 

28.1094 
29.8746 
53.5456 

50.0975 
55.2477 
46.4544 

TO 50.5064 43.3092 57.9839 TOTAL 
50.5998 

Panel (b) Crude Heating Oil Gasoline FROM 

Crude 
Heating Oil 
Gasoline 

48.8572 
29.9725 
28.6242 

22.9206 
41.8485 
21.5623 

28.2223 
28.1790 
49.8135 

51.1428 
58.1515 
50.1865 

TO 58.5967 44.4829 56.4012 TOTAL 
53.1603 

in information transmission from volatility spillovers due to negative and positive shocks. The last 
part examines directional spillovers along with asymmetries. 

4.1 Extent to Which Uncertainty Spills Over Petroleum Markets 

As an initial observation, average spillovers are reported in Table 2: total volatility spill-
overs exhibit values of 50% for the high-frequency-based volatility measure (panel a) and 53% for 
the daily range-based volatility measure (panel b). By reporting both measures we are able to 
compare our results using high frequency data to the original approach of Diebold and Yilmaz 
(2009, 2012), who utilize daily range-based data; see our earlier discussion in Section. Both mea
sures deliver quantitatively similar results but this outcome is because the reported values are 
average spillovers. 

More refined observations can be gauged from the total volatility spillover plot in Figure 
2 that captures the dynamics of the volatility spillovers among the three commodities over the 
examined time period. The plot is constructed as a series of volatility spillover estimates employing 
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Figure 2: Total Spillover Plot: Spillovers from RV-based (bold) and Range-based (thin) 
Volatility. Crude Oil, Heating Oil, and Gasoline over the Sample Period 
Extending from September 1, 1987 through February 12, 2014. 

200-day rolling windows, horizon h = 10, and VAR lag length of 2.5 As the time span is 26 years, 
rich dynamics and important patterns emerge. 

In Figure 2 we present the total volatility spillovers based on high frequency data (bold 
line) as well as spillovers from range-based volatility (thin line). Despite the fact that often both 
measures evolve similarly, some marked differences are visible. First, when both measures follow 
the same direction, spillovers based on high frequency data are of larger magnitude. Second, often 
both measures follow opposite directions; in this case spillovers based on high frequency data are 
mostly of a larger magnitude than those from range-based volatility. Hence, spillovers estimated 
with daily data are less pronounced than spillovers estimated from high frequency data. In our 
further account we report results based solely on high frequency data. 

The first intriguing observation is the strong dynamics of the spillovers between the vol
atility of the commodities under study. As heating oil and gasoline are products of crude oil, we 
would expect that any information from one of the commodities will transmit quickly to the other 
one.6 Interestingly, Figure 2 shows a different pattern. In total, spillovers from volatility are not so 
large. Moreover, the time-varying spillover index exhibits a great degree of fluctuation, ranging 
from about 25% to 65% (Figure 2). This means that the volatility of one commodity does not 
necessarily excessively impact the volatility of other commodities all the time, although the petro
leum commodities are fundamentally tied through the production process.7 An implication emerges: 

5. The rolling window runs from point t–199 to point t. In addition to a 200-day window, we constructed the spillover 
index with rolling windows of 150 and 100 days to check the robustness of our results. We have also experimented with 
different h values, and we find that the results do not materially change and are robust with respect to the window and 
horizon selection. The VAR lag length was chosen based on AIC to produce the most parsimonious model; in addition, 
Diebold and Yilmaz (2012) provide a sensitivity analysis of the of the Diebold-Yilmaz index to the VAR lag structure and 
show that results do not materially change for lags of 2 to 6. We obtained similar results (for lags of 2 to 4) that are available 
upon request. In addition, we run the usual residual diagnostics to check for possible departures from assumptions on VAR. 
There is no dependence left in the residuals and our estimates are consistent. 

6. In effect, all three petroleum commodities are tightly connected. Casassus et al. (2013) explicitly define the production 
relationship between crude oil (input) and heating oil (output), and the complementary relationship (in production) between 
gasoline and heating oil. Further, heating oil is produced as a by-product when crude oil is cracked to produce gasoline. 
This implies another production relationship between crude oil (input) and gasoline (output). About 40 and 20 percent of 
crude oil is refined into gasoline and heating oil, respectively. 

7. This result is not totally surprising when paired with the pattern of the daily price returns of the three contracts (crude 
oil, heating oil, and gasoline), which show marked differences: heating oil and gasoline exhibit jumps, but they more spaced 
out than crude oil. Each of the three commodities has a rather distinct short-term behavior, although ultimately prices do 
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when trading petroleum futures, the above evidence may be used to increase the benefits from 
portfolio diversification during periods of low spillovers. We will study this interesting observation 
later by looking at directional spillovers, which could potentially uncover the source of the uncer
tainty in petroleum markets. 

Second, we are able to identify two distinct periods during which spillovers behave dif
ferently. During the first period, before 2008, the average value of spillovers is 45.4% and fluctuates 
within a 7% standard deviation, while after 2008, it is 58.3% with a considerably lower fluctuation 
of a 5% standard deviation. Hence 2008 is a dividing point: we can observe a structural break that 
is behind a change in the volatility transmission mechanism.8 The differences between pre-2008 
and post-2008 periods are even more striking when we consider some details. The lowest levels of 
spillovers in 1989, 1993, 1997, and 2001 are in sharp contrast to the rest of the plotted spillovers, 
but at the same time the highest peaks of the spillovers before 2008 reach only the average level 
of the post-2008 period. 

There are two fundamental issues related to the year 2008. One is the financial crisis and 
its effect on financial markets and the economy. This issue has already received much attention in 
the literature and, without a doubt, plays an important role in our results. However, there is a second 
issue that profoundly impacts petroleum commodity markets in a direct manner. Exploration and 
production of crude oil from shale formations with very low permeability—tight oil—began to 
emerge in 2008 at a quantitatively new level in the U.S. The dramatic increase in tight oil production 
and its proportion in overall U.S. production is well documented by the U.S. Energy Information 
Administration (2014). It is well documented that the “growth in crude oil production from tight 
oil and shale formations supported by identification of resources and technology advances have 
supported a nearly fourfold increase in tight oil production from 2008, when it accounted for 12% 
of total U.S. crude oil production, to 2012, when it accounted for 35% of total U.S. production.” 
(EIA, 2014; ES-2).9 In his comprehensive analysis Maugeri (2013; p.1) also documents a rising 
trend in U.S. tight oil production and specifically emphasizes that “the correlation between drilling 
intensity and shale oil production will shape the evolution of U.S. oil production more than any 
other factor”. Since the drilling intensity to a large extent depends on the oil price, significant 

realign after big price jumps. Further, rather than interpreting the results presented in Table 2 and Figure 2 we present them 
as useful observations. The reason is that the NYMEX crude oil contract is for light sweet crude (West Texas Intermediate 
crude (WTI) or other deliverable light sweet crudes). This is the U.S. benchmark, but not necessarily what has been mostly 
refined in the U.S. The majority of crude oils refined in the U.S. are heavy sour ones (especially in Texas which has the 
majority of complex refining capacity). Hence the correlation between crude oil, heating oil, and gasoline may not necessarily 
reflect what happens in the physical market. In addition, WTI has had its own issues of suppressed prices due to excess 
domestic supply and the inability to export any of it. Refined products do not have the same restrictions (they can be 
exported freely) and may take longer to adjust to WTI prices as their pricing should be closely correlated to heavier crudes 
from Venezuela, Saudi Arabia, Canada, etc. We are thankful to an anonymous referee for the above valuable insights. 

8. As in Zeileis et al. (2003), we employ the supF testing methodology to formally identify an endogenous break in the 
spillover index on September 14, 2008; the date precedes the official collapse of Lehman Brothers by one day. The structural 
break in the volatility transmission mechanism may be due to the advent of tight oil production rather than the financial 
crisis, though. 

9. The great potential of tight oil is boldly documented also in Miller et al. (2008), who argue that “In recent years, the 
formation known as the Bakken Shale in eastern Montana and western North Dakota has seen enormous growth in oil and 
gas production. Scientists from the United States Geological Survey have commented that the area has the potential to 
become “the next Saudi Arabia”. The above statement might sound like a gross exaggeration but according to the data from 
the North Dakota Industrial Commission (Department of Mineral Resources, Oil and Gas Division) Inglesby et al.(2012; 
p.33) note that the growth of oil production in the Bakken formation “rose from less than 30,000 barrels per day (bbl/d) in 
2008 to 469,000 bbl/d by the end of 2011.” 
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changes and volatility in oil prices may substantially impact tight oil exploration and production. 
This is yet another reason why an understanding of volatility spillovers on petroleum markets is 
worthwhile. 

Similar to the evidence on the post-2008 tight oil production we also offer quantitative 
support in terms of petroleum commodities financialization. The increase in volatility spillovers in 
2002 and mainly 2008 has a parallel in rising energy commodity prices after 2002 (Figure 1). These 
patterns are deeply related to the financialization of the commodities during the previous years. 
Increased demand for commodities as portfolio investments resulted in a dramatic surge of their 
portfolio weights and energy commodities became important parts of index portfolios (Tang and 
Xiong, 2012). According to Cheng and Xiong (2013), investment inflows to various commodity 
futures indices totaled $200 billion between 2000 and mid-2008. Henderson et al. (2013) document 
that between 2003 and 2011, financial commodity investments increased from $15 to 400 billion. 
Increased demand for financial commodity investments, as a key source behind increases in energy 
commodity prices, have also been advocated by Singleton (2013); Tang and Xiong (2012); Hen
derson et al. (2013), and Hamilton and Wu (2014), among others. 

We pair the above evidence with the presented development of spillovers and claim that 
the process of the advancing financialization of energy commodities highly correlates with the 
increase of spillovers from the early 2000s on, and this pattern is especially strong after 2008. The 
increased correlation of energy and non-energy commodities through the increasing presence of 
index investors (Tang and Xiong, 2012) further enlarges the grounds for volatility to spill over 
among other classes of commodities. 

4.2 Asymmetric Transmission of Information in Petroleum Markets 

Having a full picture of how uncertainty spills over the petroleum markets, we proceed to 
study possible asymmetries in the transmission mechanism. Earlier we argued that volatility spill-
overs might differ in their magnitude based on whether the shock originates from negative or 
positive returns. Based on the methodology proposed in earlier sections, we aim to compute negative 
and positive volatility spillovers, and quantify to what extent petroleum markets process information 
asymmetrically. 

In panel (a) of Figure 3 we present two total spillover plots that are based on negative and 
positive semivariances. Hence, the plot captures patterns of total volatility spillovers that materialize 
due to negative and positive returns. Closer inspection of the plot reveals that both negative and 
positive spillovers share a common path but their developments are not identical. We can identify 
several periods during which spillovers due to negative and positive volatility diverge to various 
extents. The differences are better visible using the Spillover Asymmetry Measure (SAM) in panel 
(b) of Figure 3. 

SAM quantifies the differences in total volatility spillovers due to negative and positive 
returns and allows portraying the extent of asymmetry that is independent of the spillover levels. 
Positive values of SAM indicate that volatility spillovers due to positive returns are larger than 
spillovers due to negative returns. Negative values of SAM indicate that volatility spillovers due 
to negative returns are larger than spillovers due to positive returns. A zero SAM means that the 
impact of both negative and positive spillovers is equal and their effects cancel each other out. A 
direct observation is that this neutral position of markets is very rare. The principal evidence is that 
asymmetry in total spillovers is overwhelmingly driven by negative returns (shocks) and the extent 
of asymmetricity is not only in magnitude but also in duration. 
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–Figure 3: Total Spillover Plot using (a) RS + (thin) and RS (bold) Semivariance for Crude 
Oil, Heating Oil, and Gasoline over the Sample Period Extending from 
September 1, 1987 through February 12, 2014. (b) Spillover Asymmetry Measure 
(SAM) 

The first period of negative returns driving volatility spillovers in petroleum markets 
(1989–1990) is associated with a decrease in total spillovers. Then, in 1991, a large supply shock 
due to the first Gulf War doubled crude oil prices in a few months; total volatility spillovers doubled 
as well. The most notable asymmetric effect is visible during the end of 1995 and 1996. The year 
1995 was for many years the last year when the U.S. produced more oil than it imported.10 Eco
nomically this is an important issue that had to be absorbed by markets and that is also in line with 
one of the oil-specific demand shocks peaking in 1995 and evidenced in Kilian (2009). The even 
larger extent of negative spillovers in 1996 should be paired with the Energy Information Admin
istration (EIA) data showing that in “March 1996 primary inventories of crude oil were the lowest 
recorded in almost 20 years”11 and the trend continued for some time. Low inventories of crude oil 
force refineries to buy extra crude oil and may also lead to supply problems of gasoline and other 
petroleum products. Low inventories of crude oil then likely cause price volatility and spillovers 
in petroleum commodities markets. The issue of the volatility in petroleum markets in connection 

10. U.S. Energy Information Administration (EIA) (http://www.eia.gov/countries/country-data.cfm?fips = US#pet). Ac
cessed on September 23, 2014. 

11. U.S. Energy Information Administration (EIA) (http://www.eia.gov/petroleum/archive/abohn1.pdf). Accessed on 
September 23, 2014. 
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with the low inventories of crude oil was specifically addressed by the EIA in its 1997 Report on 
Petroleum, chapter 5 (EIA, 1997). 

The following years are marked by resumed growth after the short-lived Asian Crisis. 
Crude oil prices rose quickly during 1999–2000 due to a large increase in consumption, and peaked 
before the beginning of the U.S. recession in 2001. Interestingly, the periods 1993–1994 and 2001– 
2002, time-wise related to these large increases in prices, were themselves marked by large decreases 
in prices. Positive values of SAM during both periods point at positive spillovers being transmitted 
to a larger extent than negative ones. Still, the extent of positive asymmetries is much lower when 
compared to negative asymmetries. 

Finally, we emphasize the negative SAM during 2003–2004 that is associated with the 
second Gulf War and unrest in Venezuela. These two exogenous geopolitical events contributed to 
the last period during which bad news had a substantially larger influence on petroleum markets 
compared to good news. After 2004, oil prices increased due to increasing demand and the markets 
were still influenced by negative returns-based volatility spillovers more than by positive ones. 
However, after 2004 the magnitude of the asymmetries decisively declined. After the 2007–2008 
financial crisis the absence of excessive fluctuations of volatility spillovers is even more pronounced. 
The low fluctuations in the SAM measure can be partly caused by increasing financialization. As 
commodities become significant parts of diversified portfolios (for example via index commodity 
vehicles), risk-sharing increases and the room for risk premia shrinks (Tang and Xiong, 2012). 
Further, an impressive increase in the financialization of the petroleum commodities does not mean 
a proportional increase in the number of stocks or related assets futures. Rather, financialization 
propagates via increases in portfolio sizes and the number of transactions. Increases in trading 
activities in particular might well induce a decline in spillover asymmetries via the price-setting 
mechanism on the market. As a consequence, higher total volatility spillovers occur simultaneously 
with lower asymmetries between volatility spillovers induced by positive or negative shocks. 

Another reason for the post-2008 symmetrical transmission of information may be that oil 
markets are currently in a very long period of calm volatility. After 2008, the volatility of petroleum 
markets decreased steadily, and currently it is at the lowest levels since the crude futures markets 
were established in the early 1980s. Oil prices have rarely been so stable for such a long period 
since the 1970s. An important factor is also the fact that OPEC suppliers’ ability to exert market 
power was reduced in the 2008 turmoil and its aftermath as argued by Huppmann and Holz (2012) 
and the availability of crude oil has been increasing with tight oil production. 

Overall we may conclude that the asymmetric effects in spillovers are substantial and 
volatility due to negative shocks drives the total spillovers. 

4.3 Directional Asymmetric Spillovers 

Earlier, we established that asymmetry in volatility spillovers among petroleum commod
ities is a phenomenon that does matter. We now proceed with results on asymmetries in directional 
spillovers; e.g. spillovers going FROM one commodity TO other commodities. The basis for the 
importance of directional spillovers lies in production and complementary links among petroleum 
commodities. Casassus et al. (2013) show that economic linkages among commodities create a 
source of long-term correlation between futures returns. Cross-commodity relationships and feed
back-based co-movements among them form a ground for why changes in the volatility of one 
commodity are likely to trigger strong reactions in other commodities, and even more so in com
modities of the same class. 
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Figure 4: Directional Spillover Plots: Directional Spillovers FROM (first row), TO (second 
row), and Net Spillovers (third row) on RV. 

In Figure 4, we present directional spillovers FROM and TO a specific commodity. In the 
first row of the figure, we show the dynamic patterns of how a specific commodity transmits 
volatility to other commodities. In the second row, we demonstrate the extent of spillovers that 
commodities receive. In the third row we provide the net effect of the directional spillovers: a 
difference between “contribution from” and “contribution to” plotted in the first two rows. The net 
spillovers in the positive domain represent the position when a commodity is a “spillover giver”: 
it transmits net volatility spillovers to other commodities. The negative domain contains net spill-
overs that a specific commodity receives from other ones: in this case the commodity is said to be 
a “spillover receiver”. Some patterns emerge. Until 1995 crude oil was predominantly a spillover 
giver, then chiefly a net receiver until 2003, and again a net giver until 2008. The post-crisis period 
is characterized by crude oil being a spillover receiver virtually until the present. Gasoline behaves 
differently: it is a spillover receiver until the mid-1990s and then from 2004 on, including the 2007– 
2008 financial crisis period. Heating oil seems to be quite moderate in terms of transmitting and 
receiving net spillovers from other commodities. The net effects alternate very often and during 
most of the period under research net spillover values do not exceed the 5% mark. Only after 2005 
heating oil becomes a net giver and the extent of net spillovers significantly increases when com
pared to the previous period. 

In Figure 5, we present net pairwise spillovers that show the dynamics of the net spillovers 
between specific pairs of commodities. The transmission of pairwise net spillovers is quite balanced 
in all three pairs. The key information in Figure 5 is that no commodity dominates other commod
ities in terms of spillover transmission in general. The patterns of net pairwise spillovers reflect 
production and complementary relationships between commodities as well. 

Finally, the directional spillovers described above can be further decomposed to the effects 
that the negative and positive returns exert on volatility spillovers. In panels (a) and (b) of Figure 
6, we present the asymmetric directional spillovers in the form of plots of the directional spillover 
asymmetry measures ( SAMiR •; panel (a) and SAMir •; panel (b)). 
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Figure 5: Net Pairwise Spillover Plots 

Figure 6: Asymmetric Directional Spillover Plots. Panel (a): Direction FROM ( SAMir •). 
Panel (b): Direction TO ( SAMiR •). 

The plots in Figure 6, panel (a), portray the dynamics of the asymmetry in spillovers 
FROM specific commodities outwards. There is a clear pattern of negative asymmetry that is most 
pronounced for the direction from crude oil and from gasoline: the positive values of SAMiR • and 
SAMir • are small and infrequent and negative values, in the case of the direction from gasoline, 
on several occasions reach impressive values. The dominant negative spillovers in 1992–1993 are 
likely associated with the steps mandated by the Clean Air Act (CAA) Amendments adopted in 
1990 by the U.S. government. The specific provisions led to increases in the production of oxy
genated gasoline and a number of costly adjustments were forced on refineries and fuel distribution 
systems while industry profitability declined sharply and continued at low levels.12 Guo and Kliesen 
(2005; p.628) claim that “crude oil price volatility is mainly driven by exogenous (random) events 

12. The production of oxygenated gasoline rose chiefly in the U.S., but increases in oxygenate production capacities 
occurred in 1992 also in Canada, Europe, South America, and the Far East. About 31% of total gasoline sales were affected 
during the 1992–1993 winter oxygenated gasoline season. U.S. Energy Information Administration (US EIA), 2002. Petro
leum Chronology of Events 1970–2000. http://www.eia.gov/pub/oil_gas/petroleum/analysis_publications/chronology/petro
leumchronology2000.htm. Accessed on November 1, 2013. 
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such as significant terrorist attacks and military conflicts in the Middle East”. In this spirit, it would 
be tempting to attribute large negative spillovers from crude oil and gasoline in 1996 to the disaster 
of the supertanker Sea Empress that caused enormous environmental damage off the coast near 
Wales by spilling 70,000 tons of crude oil on February 15, 1996. This event, however, is only 
spuriously related to crude oil and product markets. The negative effect was for shipping’s image, 
rather than the returns on either shipping (freight) or oil. Large negative spillovers in 1996 should 
be rather attributed to factors impacting the U.S. crude oil inventories, of which “the net result was 
new record lows for stocks of crude oil, distillate, and gasoline, which, in turn, contributed to higher 
price volatility” (EIA, 1997; p. 99). 

For the rest of the period under research the spillovers are chiefly governed by negative 
semivariances but their asymmetries decline after 2008. This pattern is in line with our findings 
presented earlier. 

In Figure 6, panel (b), we present asymmetries in spillovers TO commodities: they provide 
clear evidence that the directional spillovers were induced mainly by negative returns (shocks). 
Lengthy and often profound periods when negative returns play a key role are most visible for the 
direction to crude oil. Further, spillovers to heating oil exhibit a massive asymmetric effect of 
prolonged and deep duration for about four years (1993–1997) that can be associated with the 
succession of events culminating in the Asian financial crisis coupled with a decline in oil prices. 
Spillovers to gasoline show a relatively balanced distribution of sources divided between negative 
and positive returns until 2006. Afterwards, spillovers due to negative returns dominate in a mild 
but persistent fashion until the end of our data span. 

For all three commodities a common pattern of large spillovers in the negative domain is 
visible for example in 1996, 2003, and 2013. As discussed earlier, the historically low level of U.S. 
crude oil inventories in 1996 correlates with the pressure and volatility spillovers on petroleum 
commodities markets (EIA, 1997). A less dramatic decline in U.S. crude oil inventories occurred 
in mid-2013 due to an increase in U.S. refinery runs, a decrease in crude oil imports, and other 
reasons.13 Because of the production relationship discussed in Casassus et al. (2013), both events 
are attested to by asymmetric directional spillovers from and to all three petroleum commodities. 
Finally, the invasion of Iraq in 2003 prompted the interest of investors in crude oil futures markets 
and the ensuing extent of speculation activity heightened volatility on various markets. Hence, the 
Iraq War in 2003 might be a reasonable cause behind the increased volatility on markets with crude 
oil (Zhang et al., 2009) and is also visible for other oil-based commodities. As before, asymmetries 
in directional spillovers decline after the financial crisis. 

5. CONCLUSION 

In this paper we study asymmetries in volatility spillovers due to negative and positive 
returns across petroleum commodities. To capture the asymmetric transmission mechanism, we 
combine two existing methodological approaches: the volatility spillover index of Diebold and 
Yilmaz (2009, 2012) together with realized semivariances due to Barndorff-Nielsen et al. (2010). 
As a result we are able to detect and quantify asymmetries in volatility spillovers in high frequency 
data within a specific class of assets: the major petroleum commodities crude oil, gasoline, and 
heating oil. Our data sample covers the 1987–2014 period. 

13. U.S. Energy Information Administration (US EIA), 2013. http://www.eia.gov/oog/info/twip/twiparch/2013/130725/ 
twipprint.html. Accessed on September 23, 2014. 
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We show that volatility spillovers began to rise from the early 2000s and substantially 
increased after 2008. At the same time, volatility spillovers became more stable. The increase in 
volatility spillovers correlates with the progressive financialization of petroleum commodities after 
2002. After 2008 the degree of (negative and positive) asymmetries markedly declines and negative 
and positive shocks exhibit quantitatively similar effects on volatility spillovers. Finally, an analysis 
of directional spillovers reveals that no commodity dominates other commodities in terms of spill
over transmission in general, and asymmetries in directional spillovers decline after the financial 
crisis. Thus, the results of directional spillovers are in line with those of total spillovers and resonate 
with economic relationships among petroleum commodities. 

Our results also form grounds for some less-than-orthodox implications. Our findings defy 
a common belief that the financial crisis should prompt spillovers to be more volatile. We provide 
evidence of just the opposite: spillovers from price developments in 2008 and later are less volatile 
than before the 2007–2008 financial crisis. Further, we show that the occurrence of negative vol
atility spillovers correlates with low levels of crude oil inventories in the U.S. and often with world 
events that hamper crude oil supply. Negative spillovers frequently indicate the extent of real or 
potential crude oil unavailability. 

Finally, the decline in asymmetries in volatility spillovers after 2008 correlates with the 
ongoing financialization of commodities and the advent of tight oil exploration and production in 
the U.S. The extent of financialization reached impressive levels in 2008 and the financial crisis 
had a substantial immediate impact on financial and commodities markets. In this respect, the 
increase in the crude oil supply due to the U.S. tight oil production since 2008 might be a factor 
that was beneficial in lowering asymmetry. The key reason is that the advent of the U.S. tight oil 
decreased oil market vulnerability to supply shocks as compared to the past. 
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