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1. The analysis in this paper is equally relevant for estimating dynamic demand or dynamic supplies elasticities. For
specificity, this paper focuses on demand estimation.

2. Examples include Baughman and Joskow (1976, p.315, Table2), Chern and Just (1980, p. 40, Table 1), Chang and
Hsing (1991, p.1255, Table 2), Arsenault et al. (1995, p.167, Table 3), Joutz and Trost (2007, p.5, Table ES2), and Huntington
(2007, p. 755, Table 5).

3. A referee comments that “Quite often these need to be dropped for publication constraints. Authors will mention in
the text that they are available upon request, posted on a web-site as a working paper, or respond to requests when readers
ask. In fact, I would argue the opposite point. More often, firms and government agencies that use the published numbers
and or obtain the additional information do two things. First they do not acknowledge the work of the researchers and or
use the results incorrectly. This occurs frequently in public documents submitted before regulatory bodies and even in
journals.”
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ABSTRACT

Many empirical exercises estimating demand functions, whether in energy eco-
nomics or other fields, are concerned with estimating dynamic effects of price
and income changes over time. This paper first reviews a number of commonly
used dynamic demand specifications to highlight the implausible a priori restric-
tions that they place on short and long-run elasticities. Such problems are easily
avoided by adopting a general-to-specific modeling methodology. Second, it dis-
cusses functional forms and estimation issues for getting point estimates and
associated standard errors for both short and long-run elasticities—key informa-
tion that is missing from many published studies. Third, our proposed approach
is illustrated using a dataset on Minnesota residential electricity demand.
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INTRODUCTION

Many empirical exercises estimating demand and supply functions are concerned with
estimating dynamic effects of price and income changes over time.1 Researchers are typically in-
terested in estimating both short-run (SR) and long-run (LR) elasticities, along with their standard
errors. Energy demand analysis offers many applications; see Dahl (1993) for a comprehensive
survey of energy elasticity estimates. For example, consider a public utility requesting a rate increase
from the public service commission. The utility and regulators want to know how a proposed price
hike will impact demand in the SR and the LR. Searching the literature on energy demand elasticity
estimates, one finds that authors often fail to provide standard errors for either their short or long-
run elasticity estimates, or both.2,3 Thus, it is hard to know whether the LR elasticities are statistically
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4. Other demand drivers include population or number of households and weather variables. The empirical example in
Section III includes them.

5. Juselius (2006, Chapter 19: “Specific-to-General and General-to-Specific”) advocates the use of general-to-specific
for model selection, but specific-to-general for variable inclusion: “[C]ontrary to the ‘general to specific’ approach of the

different from their SR counterparts. Moreover, it is difficult to determine whether elasticity esti-
mates across studies are really statistically different from each other.

Section I of this paper first reviews a number of commonly used dynamic demand speci-
fications and highlights the implausible a priori restrictions that they place on short and long-run
elasticities. We emphasize that these restrictions are easily avoided, and are indeed testable, when
a general-to-specific modeling approach is employed. Section II discusses estimation issues, in-
cluding a simple way to get standard errors as well as point estimates for both short and long-run
elasticities. Section III provides an empirical application—estimating residential demand for elec-
tricity in Minnesota. Section IV concludes.

I. ALTERNATIVE DYNAMIC DEMAND SPECIFICATIONS AND IMPLICATIONS FOR
SR AND LR ELASTICITIES

Modern time-series econometricians emphasize the merits of beginning with a hypothe-
sized data generating process (DGP) for all variables in the data sample being analyzed. In the case
of sectoral supply and demand analysis, the DGP will typically involve a system of potentially
simultaneous equations. As Andrew Harvey (1990, p. 2) has stressed: “Econometric models typi-
cally consist of sets of equations which incorporate feedback effects from one variable to another.
Treating the estimation of a single equation from such a system as an exercise in multiple regression
will, in general, lead to estimators with poor statistical properties.”

In many cases, however, a system of equations can be reduced to a single equation. The
assumptions needed to reduce the empirical analysis to a single-equation exercise (or so-called
partial system) with no loss of information regarding the parameters of interest are often testable
within a systems framework. Even when there is some loss of information, a limited information
approach may have merits. According to Juselius (2006, p. 198): “Note, however, that in order to
know whether we can estimate from a partial system we need first to estimate the full system and
test in that system. But if we need to estimate the full system, why would we bother to discuss
estimation in a partial system? Two reasons come to mind: (1) by conditioning on weakly exogenous
variables, one can often achieve a partial system which has more stable parameters than the full
system and (2) it is sometimes very likely a priori that weak exogeneity holds. In particular when
the number of potentially relevant variables to include in the VAR model is large it can be useful
to impose weak exogeneity restrictions from the outset.”

Studies of energy demand elasticities have often used a single-equation DGP by assuming
“that the particular market conditions of electrical and natural gas energy favor single equation
analyses free from any endogeneity problem” (Balestra 1967; Uri 1975; Bohi 1981). The most
common justification given is that the supply of electricity and natural gas may be considered
perfectly elastic because supply is rarely, if ever, interrupted, and construction of pipeline and
transmission and distribution lines are made with the purpose of satisfying not only immediate but
also future consumption. As a result, most of the time there is excess capacity (Balestra 1967).
Most studies implicitly assume that all regressors are (weakly) exogenous, so that these estimation
approaches yield asymptotically valid statistical inference.

Suppose the empirical task at hand is to estimate a demand function for residential elec-
tricity demand (q) using time series data. For expositional simplicity, demand is assumed to depend
only on own real price (p), the real price of substitutes (ps), and real income (y).4,5
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statistical modeling process (i.e. of imposing more and more restrictions on the unrestricted VAR), it appeared more ad-
vantageous to follow the principle of ‘specific to general’ in the choice of information set.” (p.11)

6. The iterative Cochrane-Orcutt method was used to estimate such equations before the advent of econometric software
that can easily carry out NLS estimation.

7. The PAM has also been called the stock adjustment model, the Koyck model, the lagged endogenous variable model,
and the flow adjustment model.

q = β + β p + β ps + β y + e (1.1)t 0 p t s t y t t

where all variables are in natural logs. Typically, this equation will have serially correlated errors,
which is taken as prima facie evidence that dynamic considerations are important when modeling
demand for many commodities. Here, four popular approaches for modeling the dynamics in order
to estimate SR and LR price and income elasticities are considered. The first three are, in fact,
nested as special cases of the general autoregressive distributed lag (ADL) model. After discussing
these approaches, we emphasize the merits of a general-to-specific methodology.

Approach 1: Estimate the LR Demand Function with an AR(1) Error Process

q = β + β p + β ps + β y + e (1.2)t 0 p t s t y t t

where

e = ρe + ut t–1 t

In this specification, the error term can be interpreted as the deviation of quantity demanded fromet

the LR demand equation. The speed of adjustment toward the LR equilibrium is given by .1– ρ
To estimate the AR(1) model in (1.2), a generalized least squares (GLS) estimator is

typically used. Alternatively, the long-run relationship is quasi-differenced to yield the following
regression:

q = β (1– ρ) + β p + β ps + β y – ρβ p – ρβ ps – ρβ y + ρq + u (1.3)t 0 p t s t y t p t–1 s t–1 y t–1 t–1 t

This equation is then estimated using non-linear least squares (NLS) regression to obtain estimates
of the LR price, cross-price, and income elasticities and other structural parameters(β ,β ,β )p s y

.6(β ,ρ)0

Approach 2: Estimate a Partial Adjustment Model (PAM)7

In the partial adjustment model (PAM), the long-run level of demand q∗ is:

∗q = β + β p + β ps + β y + e (1.4)t 0 p t s t y t t

A partial adjustment mechanism describes how actual quantity qt adjusts gradually towards q∗ with
speed of adjustment where :k 0�k�1

∗q = q + k(q – q ) + u (1.5)t t–1 t t–1 t
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8. Strict exogeneity is sufficient for consistent estimation. Since our goal is to conduct valid conditional inference,
however, we want to rely on the less restrictive condition that our variables are weakly exogenous (Engle et al., 1983).

Substituting (1.4) into (1.5) produces an equation that is nonlinear in the five structural parameters
:(β ,β ,β ,β ,k)0 p s y

q = kβ + kβ p + kβ ps + kβ y + (1– k)q + m (1.6)t 0 p t s t y t t–1 t

Again, this specification is easily estimated using NLS regression, yielding both parameter estimates
and their associated standard errors. With the PAM, however, authors typically just apply OLS
regression involving the regressors in the (just-identified) equation above, and then reverse engineer
the long-run elasticities. Getting their associated standard errors is tricky, however, so they are often
not calculated or not reported.

Note that both the AR(1) and PAM specifications include the contemporaneous price pt

on the right-hand side, suggesting a need to use instrumental variables (IV) estimation to avoid the
possibility of endogeneity bias.

Approach 3: Estimate an Error Correction Model (ECM)

A single-equation error-correction model (as opposed to a vector error-correction system)
is similar to the PAM except that the long-run demand q∗ enters with a one-period lag:

∗Dq = k(q – q ) + e (1.7)t t–1 t–1 t

= k(β + β p + β ps + β y – q ) + e0 p t–1 s t–1 y t–1 t–1 t

Rewriting (1.7) with the log-level of q rather than the log-difference as the dependent variable for
comparability to the previous specifications yields:

q = kβ + kβ p + kβ ps + kβ y + (1– k)q + e (1.8)t 0 p t–1 s t–1 y t–1 t–1 t

The PAM and the ECM are quite similar: pt, pst, and yt enter the PAM specification, whereas the
one-period lags, pt –1, pst –1, and yt– 1, are included in the ECM. k provides information about the
speed of adjustment in both models.

The absence of the contemporaneous price among the regressors in the ECM is a restrictive
a priori assumption when estimating demand or supply equations for most commodities. Even
though we may presume that the very-short-run price elasticity is low, forcing it to be zero seems
questionable with quarterly or annual frequency data, at least. Omitting contemporaneous price
from the demand equation might seem to legitimize the use of OLS or non-linear LS rather than
IV estimation, but it may merely replace the criticism of simultaneity bias with that of omitted
variable bias. Moreover, consistency of the OLS estimator in demand equations typically requires
the assumption of weak exogeneity of the regressors.8

The “simple” ECM in (1.7) assumes that the error term is serially uncorrelated. After
discussing the ADL model below, more general ECMs with lagged differences of the regressors
will be considered.
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Table 1: Dynamic Demand Specifications: Restrictions on Estimated Parameters

ADL(1,0–1,0–1,0–1) AR1 error PAM Simple ECM

Intercept γ0 γ0 = (1–ρ)β0 γ0 = kβ0 γ0 = kβ0

pt γp0 γp0 = βp γp0 = kβp γp0 = 0

pt– 1 γp1 γp1 = –ρβp

γp1 = –γq1γp0

γp1 = 0 γp1 = kβp

pst γs0 γs0 = βs γs0 = kβs γs0 = 0

pst – 1 γs1 γs1 = –ρβs

γs1 = –γq1γs0

γs1 = 0 γs1 = kβs

yt γy0 γy0 = βy γy0 = kβy γy0 = 0

yt– 1 γy1 γy1 = –ρβy

γy1 = –γq1γy0

γy1 = 0 γy1 = kβy

qt– 1 γq1 γq1 = ρ γq1 = 1–k γq1 = 1–k

Approach 4: Estimate an Autoregressive Distributed Lag (ADL) Model

The autoregressive distributed lag or ADL(L,R,V,S) model regresses quantity demanded
on L lags of itself, R lags of prices, V lags of cross prices, and S lags of income:

L R V S

q = γ + γ q + γ p + γ ps + γ y + u (1.9)∑ ∑ ∑ ∑t 0 ql t– l pr t– r sv t– v ys t– s t
l = 1 r = 0 v = 0 s = 0

Sometimes, ADL models include contemporaneous values of the additional regressors, as shown
above. Other times, only lagged values are included. We’ll allow contemporaneous (not just lagged)
values of the explanatory variables to enter the demand equation for reasons just discussed above.
To make the lag intervals explicit, we might label an ADL model as ADL(1-L,0-R,0-V,0-S), this
implies that lags 1 to L, 0 to R, 0 to V, and 0 to S of q, p, ps, and y, respectively, enter the equation.

Note that the ADL(1-L,0-R,0-V,0-S) model is the most general of the four specifications
above. Indeed, even the ADL(1,0-1,0-1,0-1) model nests the other three specifications as special
cases in the sense that all involve some subset of the following regressors: an intercept plus

. Table 1 shows the (unrestricted) coefficients in the ADL(1,0-1,0-1,(q ,p ,p ,ps ,ps ,y ,y )t–1 t t–1 t t–1 t t–1

0-1) specification in column 1. The cells in the subsequent columns show the zero and nonlinear
coefficient restrictions that the other models—AR(1), PAM, and ECM—impose on the ADL(1,
0-1,0-1,0-1) specification. These restrictions may be expressed either in terms of the ADL coeffi-
cients or in terms of the underlying structural parameters in the respective models. Table 1 shows
both.

Implausible A Priori Restrictions on Elasticities

One might think that the restrictions that the AR(1), PAM and ECM impose on the
ADL(1,0-1,0-1,0-1) model are innocuous enough, and have the advantage of parsimony, especially
when the basic models are extended to allow for additional regressors such as weather and seasonal
dummies, etc. We show here, however, that all three specifications impose very implausible a priori
restrictions on the relationships between short and long-run elasticities. These restrictions are easily
avoided by estimating the general ADL specification using a general lag selection criterion such as
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the Akaike or Schwarz criterion. Given that the first three approaches are nested as special cases
within the ADL model, we first calculate the elasticities in that model.

ADL(1-L,0-R,0-V,0-S) Model Elasticity Calculations

Let equal the cumulative percentage response of q to a permanent percentageg(q,p,k)
point change in p after k periods. These are so-called ‘dynamic multipliers’, or ‘dynamic elasticities’
when working with log-log specifications. The SR and LR price elasticities implied by the ADL
model are easily calculated. The SR elasticity is simply the coefficient on the first price term:

dqt
g(q,p,0)≡ = γ (1.10)p0dpt

Assuming stability, the LR elasticity can be found by first setting q in all time periods equal to q̄
and all price terms equal to . Next calculate the total derivative:p̄

R

γ∑ prdq̄ r = 0
g(q,p,∞)≡ = (1.11)Ldp̄

1– ∑ γl = 1 ql

Note that stability of the demand function requires the denominator is positive:

L

1– γ �0. (1.12)∑ ql
l = 1

The corresponding SR and LR income elasticities are:

dqt
g(q,y,0)≡ = γ (1.13)y0dyt

S

γ∑ ysdq̄ s = 0
g(q,y,∞)≡ = (1.14)Ldȳ

1– ∑ γl = 1 ql

In general, the SR price elasticity may be bigger than, smaller than, or equal to its LR counterpart.
Consider a special case, however, where only a single price term enters the ADL. In this case the
short-run price elasticity must be less than the LR price elasticity (or equal to it, if there are no lags
of the dependent variable):

γp0
g(q,p,0) = γ ≤ g(q,p,∞) = (1.15)p0 L

1– ∑ γl = 1 ql
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Suppose, in addition, that there is just a single income term (and one or more lags of the dependent
variable) in the ADL. Then the SR income elasticity must be less than the LR income elasticity:

γy0
g(q,y,0) = γ ≤ g(q,y,∞) = (1.16)y0 L

1– ∑ γl = 1 ql

In general, it is unwise to impose a priori restrictions on the relative magnitudes of short-run vs.
long-run price, income, or cross-price elasticities. Pindyck and Rubinfeld (2005, Ch. 2.5) have a
useful discussion of relative magnitudes of short-run and long-run price and income elasticities:
“For many goods [e.g. gasoline], demand is much more price elastic in the long run than in the
short run. . . . On the other hand, for some goods [e.g. automobiles and other durable goods] just
the opposite is true—demand is more elastic in the short run than in the long run. . . . Income
elasticities also differ from the short run to the long run. For most goods and services, the income
elasticity of demand is larger in the long run than in the short run. . . . For a durable good, the
opposite is true.” (pp. 39–40) For many mineral and energy products, the short-run income elasticity
in the face of business cycle fluctuations, say, is presumed to be high, while the long-run income
elasticity (reflecting trend growth in income) is generally considered to be near unity.

Note that if the ADL contains one price term and one income term, the ratio of the LR to
SR elasticities is identical for both demand determinants:

g(q,p,∞) g(q,y,∞) 1
= = (1.17)Lg(q,p,0) g(q,y,0)

1– ∑ γl = 1 ql

The same ‘ratio restriction’ applies to the cross-price elasticity! This ratio restriction is an extremely
implausible one to impose a priori when estimating demand functions. How can it be avoided?
Here’s our recommendation: Make sure that each determinant of demand (e.g. price, cross-price,
and income) enters with at least two time subscripts and that no non-linear restrictions are placed
on their coefficients. Typically lags 0 and 1 or lags 1 and 2 will be used. (The number of lags of
the dependent variable does not matter.) Note that the ADL(1,0-1,0-1,0-1) specification is general
enough to accomplish this, whereas the three special cases above are not. The same general rule
holds when estimating dynamic supply functions. Each supply determinant (except the lagged de-
pendent variable) should enter twice with different time subscripts in the supply equation.

We now calculate the SR and LR price elasticities implied by the other three specifications:
the AR(1) model, PAM, and ECM.

AR(1) Model Elasticity Calculations

From (1.3), it is easy to compute the short-run and long-run own-price elasticities for the
AR(1) error model:

dqt
g(q,p,0)≡ = β �0 (1.18)pdpt

dq̄ β (1– ρ)p
g(q,p,∞)≡ = = β �0pdp̄ (1– ρ)
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9. Intermediate-term elasticities are also equal to the SR = LR elasticities, as one can confirm by simulating dynamic
elasticities for this model.

Surprisingly, the AR(1) model imposes the a priori restriction that the SR and LR price elasticity
must be equal to each other!9 The same feature holds for income (and cross-price elasticities) as
well:

dqt
g(q,y,0)≡ = β (1.19)ydyt

dq̄ β (1– ρ)y
g(q,y,∞)≡ = = βydȳ (1– ρ)

These are hardly restrictions that one would want to impose a priori when estimating demand
functions to compare the SR and LR effects of price or income changes. Indeed, Mizon (1995)
argues that AR corrections for the error process are almost never appropriate, in part because of
the COMFAC (common factor) restrictions that they impose on dynamic regression equations.

This result—the forced equality between SR and LR elasticities—also holds when the
error term in (1.2) is a higher-order AR(p) error process. The resulting price elasticities in this case
equal:

dqt
g(q,p,0)≡ = β �0 (1.20)pdpt

dq̄ β (1– ρ – ρ – ρ – . . . )p 1 2 3
g(q,p,∞)≡ = = β �0pdp̄ (1– ρ – ρ – ρ – . . . )1 2 3

The PAM Elasticity Calculations

As Table 1 shows, the partial adjustment model contains only a single price term and a
single income term. Therefore, it follows immediately from the discussion of the ADL(1,0-1,0-1,0-
1) model above that this specification also contains the implausible LR/SR ratio restriction:

dqt
g(q,p,0)≡ = kβ (1.21)pdpt

dq̄
g(q,p,∞)≡ = βpdp̄

dqt
g(q,y,0)≡ = kβydyt

dq̄
g(q,y,∞)≡ = βydȳ
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Note that the partial adjustment coefficient should be between zero and one: . This being0�k�1
the case, all short-run elasticities (price, cross-price, and income) are necessarily less than their LR
counterparts. As argued above, this is not a reasonable a priori restriction to impose on price, cross-
price or income elasticities. These shortcomings of the PAM were highlighted by Fisher, Cootner,
and Baily (1972). See also, Pei and Tilton (1999) and Chan and Lee (1997).

The ECM Elasticity Calculations

Comparing the ECM to PAM yields an interesting conclusion. Because (1.8) contains only
lagged (not contemporaneous) regressors, the SR elasticities take effect with a one-period lag. Stated
differently, the very SR elasticities are forced to equal zero by omission of the contemporaneous
terms. The instantaneous, SR (i.e., one-period ahead), and LR price elasticities are:

dqt
g(q,p,0)≡ = 0 (1.22)

dpt

dqt
g(q,p,1)≡ = γ = kβp1 pdpt–1

dq̄ γp1
g(q,p,∞)≡ = = βpdp̄ 1– γq1

The instantaneous, one-period, and LR income elasticities are:

dqt
g(q,y,0)≡ = 0 (1.23)

dyt

dqt
g(q,y,1)≡ = γ = kβy1 ydyt–1

dq̄ γy1
g(q,y,∞)≡ = = βydȳ 1– γq1

As there is only a single lag term for both price and income, the undesirable features of the PAM
also appear in the ECM. Namely, SR elasticities are forced to be less that their LR counterparts for
all (own-price, cross-price, and income) elasticities. Moreover, the ratio of LR/SR elasticities is
equal for all elasticities (e.g. price, cross-price, income, etc.).

How can we estimate SR and LR price and income elasticities of demand in a way that
imposes no a priori restrictions on their relative magnitudes? The practical implication of the fore-
going calculations bears repeating: Estimate an ADL model using a standard lag selection criterion
(e.g., the Schwarz or Akaike information criterion) but be sure to allow for at least two terms
involving p, ps, and y; the number of lags of the dependent variable (q) does not matter. More
generally, in specifying dynamic regression equations, it is essential to adopt a general-to-specific
modeling methodology—beginning with sufficient lags of each variable to insure that serial cor-
relation has been expunged from the error process. Avoid the use of AR (or ARMA) error processes
in multivariate regression models, per Mizon’s (1995) recommendation.
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10. David Hendry elaborates on this in a number of papers. See, e.g., Hendry (2008, Section 2.3): ADLs as Equilibrium-
Correction Models.

More General ECMs with Lagged Differences

Oftentimes the simple ECM specification above is generalized to include a number of
lagged differences of the various regressors in order to ‘mop up’ serial correlation in the error
process. Do the implausible restrictions on the ECM elasticities still hold if the ECM contains
lagged differences as recommended by the general-to-specific methodology? The answer is “no.”
Adding lagged differences to the ECM is a simple way to eliminate the implausible a priori restric-
tions! Indeed, every ADL—whether it includes contemporaneous regressors or not—can be always
rewritten as an equivalent ECM.10 The two are isomorphic, but the ECM parameterization is es-
pecially useful when cointegrated I(1) variables are involved. Moreover, the ECM variant of the
ADL is particularly useful, because it allows us to identify the SR and LR elasticities directly. When
the SR and LR elasticities in this equation are estimated with a consistent estimation approach, the
associated standard errors for both are obtained automatically—that is to say, without auxiliary
‘hand’ calculations.

Panel Data Estimation

Most panel data sets used in energy demand studies are short panel data sets. Hence to be
able to estimate SR versus LR elasticities most of these studies simply add a lagged dependent
variable to the regression. The resulting model is thus the PAM, which suffers from the same
weaknesses noted above. Alberini et al. (2011) provide a thorough exposition of the PAM in a panel
framework. See also Bernard et al. (2011) and Garcia-Cerrutti (2000).

Recently, new developments in dynamic panel techniques have allowed some researchers
to apply panel ADL models. See Baltagi (2008) for a good discussion of the panel ADL. However,
to our knowledge no energy demand studies have yet used these techniques.

A General Functional Form for Estimating SR and LR Demand Elasticities

The estimated SR price elasticity and its associated standard error can be obtained directly
from the point estimates on the first price term in the ADL(1-L,0-R) model in (1.24), , and itsγ̂p0

standard error:

L R

q = γ + γ q + γ p + u (1.24)∑ ∑t 0 ql t– l pr t– r t
l = 1 r = 0

To simplify the math in what follows (without impacting the generality of the results), we ignore
the distributed lags on income and the price of substitutes.

Is there a simple way to estimate both the SR and LR elasticities and their standard errors
directly? The answer is yes and involves the use of the isomorphic ECM. First, consider the ADL(1-
L,0-R) where there is a contemporaneous (unlagged) price term. As Appendix I shows, the ADL
can always be written in canonical form as an ECM:
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R–1 L–1

Dq = γ + k(q – β p ) + γ Dp – γ Dp – γ Dq + u (1.25)∑ ∑t 0 t–1 p t–1 p0 t p,r + 1 t– r q,l + 1 t– l t
r = 1 l = 1

where

k≡ γ + γ + . . . + γ –1�0 (1.26)q1 q2 qL

and

γ + γ + . . . + γp0 p1 pRβ ≡ (1.27)p 1– γ – γ – . . . – γq1 q2 qL

Note that the total number of lags of the dependent variable drops by one when the ADL in levels
is rewritten in canonical form. This re-parameterization is particularly useful because the coefficient
on is the SR price elasticity and the coefficient on pt –1 in the error-correction term is the LRDpt

elasticity shown in (1.27). The parameters in the ECM, along with their associated standard errors,
can be estimated directly using NLS.

For an ADL(1-L,1-R) that does not contain a contemporaneous price term:

L R

q = γ + γ q + γ p + u , (1.28)∑ ∑t 0 ql t– l pr t– r t
l = 1 r = 1

the canonical form needed to identify the SR and LR price elasticities is slightly different:

R–1

Dq = γ + k(q – β p ) + γ Dp – γ Dp (1.29)∑t 0 t–2 p t–2 p1 t–1 p,r + 1 t– r
r = 2

L–1

+ (γ –1)Dq – γ Dq + u .∑q1 t–1 q,l + 1 t– l t
l = 2

The coefficient on is the SR price elasticity and the coefficient on pt– 2 in the error-correctionDpt–1

term is the LR elasticity analogous to (1.27), but with .γ = 0p0

Here’s a summary of the procedure.

1. Estimate an ADL(1-L,0-R,0-V,0-S) model using a standard lag selection method such
as AIC, SC, or sequential likelihood ratio tests. Selection of lag lengths (L,R,V,S) can
be based on a grid search using the Schwarz or Akaike information criterion. Note
that there are many, many cases to consider (i.e. the product L*R*V*S). Thus many
algorithms only consider symmetric cases where L = R = V = S, as in the standard VAR
approach. This drastically reduces the number of regressions to be considered. We
adopt this simplification below. Be wary about lag choices that involve only a single
term of a given demand determinant, as this will impose the magnitude restriction on
SR and LR elasticities: SR � LR.

2. Re-estimate the chosen ADL(1-L,0-R,0-V,0-S) model as an equivalent ECM with L-1,
R-1, V-1 and S-1 lagged differences of (q, p, ps, y). The standard error of regression
for the ADL and ECM should be identical, as the specifications are isomorphic.
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11. Indeed, Hendry and Juselius (2000 part I, p.2) make a more general claim: “It seems clear that stationarity assump-
tions must be jettisoned for most observable economic time series.”

12. It is well-known that OLS estimation of the coefficient on an endogenous variable (i.e. one that is correlated with
the error term) results in biased and inconsistent parameter estimates.

13. A recent study that uses only stationary variables but allows for contemporaneous effects is Huntington’s (2007)
paper on industrial natural gas consumption in the USA. He finds all variables (i.e. the price of natural gas, the price of
distillate fuel oil, heating degree days, structural output, and capacity utilization) are stationary. OLS regressions that allow

3. The LR elasticities and their standard errors are read directly from the coefficients in
the error correction term of the ECM, while the SR elasticities and their standard
errors are read from the coefficients of the first difference terms in the ECM.

II. ESTIMATING SR AND LR ELASTICITIES AND THEIR STANDARD ERRORS

There are several important factors that determine the appropriate estimation technique for
an ADL: (i) the presence or absence of contemporaneous terms where simultaneity bias may be an
issue, (ii) the stationarity of variables, and (iii) the presence or absence of a common stochastic
trend (cointegration) among non-stationary variables. We briefly examine the different cases below.

Case 1: Only Lags of the Independent Variables (not contemporaneous values) Appear in
the ADL and All Variables are Stationary

This case is not commonly encountered in energy demand analysis, because non-stationary
regressors are typically present.11 Nonetheless, we briefly discuss how to proceed when all variables
appear to be I(0). The omission of contemporaneous prices is quite widespread. It is often justified
in analyses of residential demand for electricity or natural gas, for example, by arguing that most
end-users only learn of a price change when they receive their monthly bill, i.e. typically a month
after the price change occurs. See, e.g., Munley et al. (1990), Joutz and Trost (2007), and Dagher
(2011). This becomes less plausible when working with lower frequency data. Moreover, one can
test this hypothesis, rather than making an a priori assumption that it holds.

If the ADL contains only stationary and lagged regressors (and the model is correctly
specified in the sense that there are no omitted variables and the functional form is correct), then
it is well known that OLS estimates of the dynamic demand coefficients are consistent. If the White
robust coefficient covariance matrix is used when carrying out hypothesis tests, F and t tests will
have their standard asymptotic distributions. See Stock and Watson (2007, Ch. 14) for details.

Case 2: The ADL Contains Contemporaneous as Well as Lagged Regressors; All Variables
are Stationary

As mentioned above, one rarely encounters an energy demand regression in which all
variables are stationary. If the ADL contains stationary, contemporaneous as well as lagged regres-
sors, the regressors must be weakly exogenous for OLS estimates to be consistent and conditional
inference to be valid.12

While it may be reasonable to assume that this condition holds for the contemporaneous
income and cross-price terms in a dynamic demand specification, it is typically not reasonable for
own-price effects. To overcome simultaneity bias, one needs to use an instrumental variables esti-
mator such as two stage least squares or generalized methods of moments.13
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for contemporaneous effects are used in order to estimate SR and LR demand elasticities. Yet there are no tests of the weak
exogeneity condition needed to validate parameter estimation and inference using OLS.

14. If only the regressand and one of the regressors are I(1) while all other regressors are I(0), then all of the estimated
coefficients will still have their standard asymptotic distributions (West, 1988; Hamilton, 1994, p.555).

15. Chan and Lee (1997) consider such a case. Using annual data for the years 1953 to 1990, they find that their
regression variables are all I(1) and cointegrated. They use both an ECM and an ADL model to estimate short-run and
long-run demand elasticities for coal in China, but they restrict all variables to have the same number of lags and they go
up to a maximum of three lags only. Moreover, they do not provide standard errors for their long-run estimates. The
methodology proposed here provides a simple way to obtain SR and LR elasticity estimates with their standard errors in
similar cases without imposing the above-mentioned restrictions.

16. The OLS estimates in the case of cointegration are said to be ‘superconsistent’ because their order of convergence
is T and not T0.5 (Stock, 1987; Engle and Granger, 1987).

Case 3: Some Variables are Nonstationary, but are not Cointegrated14

This section discusses the validity of OLS estimation of the ADL(L,R,V,S) model and the
equivalent ECM(L-1, R-1, V-1, S-1) when some but not necessarily all of the variables are I(1), but
not cointegrated. Note that, if there is no long-run equilibrium relationship among the variables,
then any empirical quest to estimate LR elasticities is misguided! The researcher might, nonetheless,
be interested in SR elasticities. An appropriate approach would be to estimate an ADL using first-
differenced (i.e., stationary) variables simply by differencing the non-stationary variables and then
estimating the resulting regression equation.

We have assumed that all independent variables are weakly exogenous. As usual, endog-
enous regressors require that instrumental variables estimation be used.

Case 4: Variables are Non-stationary and Cointegrated

We now turn to examining the ADL model where the I(1) variables are cointegrated.15

Here the validity of OLS is less sensitive to the presence of contemporary (unlagged) first-differ-
ences of potentially endogenous variables, notably the own-price effects. In case of cointegration,
the cointegrating vector can be estimated consistently16 by running an OLS regression in levels—
the first-stage of the Engle-Granger two-step procedure—without the need for IV estimation, even
if some or all of the variables are not strictly exogenous (Stock and Watson, 1988; Diebold and
Nerlove, 1990; Hamilton, 1994 p.588). This property should not be affected with the addition of
lagged variables in an ADL, since if Xt and Yt are cointegrated, then Xt and Yt – i will also be
cointegrated because Yt and Yt – i are cointegrated for all i (Cuthbertson et al., 1992 p.133). Hence,
when estimating an ADL that includes both the contemporaneous terms of the cointegrated variables
and their lags, OLS should give consistent estimates. Pesaran and Shin (1999) show that OLS
estimation of ADL model coefficients yields consistent short-run parameter estimates and super-
consistent long-run parameter estimates, provided there exists a unique cointegrating relationship
among these variables in the ADL. Moreover, valid inferences can be made using the standard
distributions if the variables are weakly exogenous. One might wonder: how can standard asymp-
totical distributions apply for the estimated long-run relationships? Doesn’t superconsistency imply
nonstandard sampling distributions, even asymptotically? Pesaran and Shin (1999, pp. 381–389)
show that when written in ADL form, the coefficients have a ‘mixture normal distribution asymp-
totically and standard inferences are therefore asymptotically valid.’ See also Hamilton (1994, p.
602), Sims, Stock and Watson (1990), or Watson (1994). If, however, there is more than one long-
run relationship among the I(1) variables in the ADL model, then the estimated coefficients might
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17. Note that throughout this Section, we limit ourselves to cases where all variables have the same number of terms.
This dramatically reduces the number of cases to consider and matches the standard approach in the literature.

18. Some variables are very likely to be weakly exogenous to a system, such as the monthly dummies and weather
variables in our case. Juselius (2006 p.198) suggests that testing might not be necessary in those cases and a partial system
can thus be used from the outset.

be a linear combination of the true underlying parameters. Hence, the desirable properties of the
OLS estimator described no longer hold.

Turning now to the equivalent ECM equation, if q, p, ps, and y are I(1) and cointegrated,
then all terms in the ECM are I(0). That is, the lagged differences are I(0) and the error correction
term is I(0) as well. Hence, if q, p, ps, y are I(1) but cointegrated,q – β – β p – β ps – β yt–1 0 p t–1 s t–1 y t–1

the error term will be stationary and standard OLS is valid, as was the case when all three variables
are I(0). If the variables are not cointegrated, however, the coefficients of the error correction term
will have nonstandard distributions and hence the usual methods of statistical inference will be
invalid. In an ECM it does not matter if some of the variables are endogenous, because no contem-
poraneous terms appear in the equation.

Rather than beginning with a single-equation error-correction model, we estimate a vector-
error correction model, and then test whether this system can be reduced to a single-equation
conditional ECM with no loss of information. This null hypothesis is not rejected in our application.

III. EMPIRICAL APPLICATION

This section illustrates the approach to estimating short-run and long-run price and income
elasticities discussed in the previous sections. We estimate residential electricity demand over the
period 1998:1 to 2006:12 in Xcel Energy’s Minnesota service area. Electricity demand, Qe, is posited
to be a function of the real price of electricity Pe, the real price of natural gas Pg, real income Y,
the number of customers N, cooling degree days CDD, heating degree days HDD, and monthly
dummy variables. All variables, except CDD and HDD and monthly dummies, are in logs.

The order of integration of each series is considered first. The ADF test results presented
in Table 2 suggest that, at the 5% level of significance, the null hypothesis of (one or more) unit
roots is not rejected for any of our series Qe, Pe, Pg, Y, N, CDD, and HDD. After first differencing,
however, all become stationary. We conclude that all of the stochastic series are I(1). The dummies,
on the other hand, are I(0).

Are the variables above cointegrated? Using the Johansen trace and maximum eigenvalue
tests, the null hypothesis of no cointegration is easily rejected.17 Both the trace and maximum
eigenvalue tests suggest one cointegrating relationship at the 1% level. However, at the 5% level,
the trace test implies that there are two cointegrating relations, while the maximum eigenvalue test
still suggests one cointegrating relationship. See Table 3 for the test results. Based on economic
theory, it seems reasonable to expect a single long-run relationship linking consumption, prices,
income, and number of customers. Note that the monthly dummies and the weather variables have
been treated as exogenous variables in the test.18

In the unrestricted VAR setting, the AIC selected a specification with 2 lags, implying a
VECM of order 1. The estimates are reported in Appendix II. (The arbitrary normalization sets Qe

equal to unity). We also carried out weak exogeneity tests with respect to the LR coefficients by
testing the statistical significance of the loading factors or speed-of-adjustment coefficients on de-
viations from the long-run equilibrium conditions in the VECM. The results suggest that Pe, Pg, Y,
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Table 2: ADF Tests on (Log) Levels and First Differences

Series ADF t-Stat P-Value AIC Lag Choice

Qe –1.03 0.74 12
Pe –0.75 0.83 11
Pg –2.05 0.27 12
Y –0.94 0.77 2
N –0.66 0.85 1

CDD –1.95 0.31 12
HDD –2.09 0.25 12

D(Qe) –6.29 0.00 11
D(Pe) –3.64 0.01 12
D(Pg) –5.90 0.00 8
D(Y) –6.51 0.00 1
D(N) –8.59 0.00 0

D(CDD) –13.59 0.00 10
D(HDD) –5.94 0.00 11

Table 3: Johansen Cointegration Test Results

Sample: 1998M01 2006M12
Included observations: 106
Series: Qe, Pe, Pg, N, Y
Exogenous series: S1 S2 S3 S5 S6 S7 S8 S9 S10 S11 S12 CDD HDD
Lags interval: 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.01
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.77 211.37 77.82 0.00
At most 1 0.23 53.50 54.68 0.01
At most 2 0.17 26.22 35.46 0.12

Trace test indicates 1 cointegrating eqn(s) at the 0.01 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.01
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.77 157.87 39.37 0.00
At most 1 0.23 27.29 32.72 0.05
At most 2 0.17 19.91 25.86 0.07

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.01 level
* denotes rejection of the hypothesis at the 0.01 level
**MacKinnon-Haug-Michelis (1999) p-values

and N are all weakly exogenous for the long-run elasticities. Thus it is possible to estimate a fully-
efficient conditional demand function that includes contemporaneous values of the changes in all
weakly exogenous variables using OLS estimation. If Pe had turned out to be weakly endogenous,
any attempt to estimate the conditional model with OLS would be plagued by endogeneity bias.
The full model would have to be estimated in that case.

Given that all variables except D(Qe) appear to be weakly exogenous in the VECM, we
proceed in the text by estimating a demand equation that includes contemporaneous variables when
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Table 4: OLS Estimates of the Equivalent ECM

Cointegrating Eq. Coefficient Std. Error Prob.

Qe(–1) 1.000
Pe(–1) –0.61 1.04 0.56
Pg(–1) 0.26 0.29 0.37
Y(–1) –0.35 3.16 0.91
N(–1) 0.41 5.73 0.94

Error Correction Coefficient Std. Error Prob.

Cointegrating Eq. 0.13 0.09 0.19
C 0.84 6.83 0.90

D(Qe(–1)) –0.13 0.08 0.13
D(Qe(–2)) 0.01 0.08 0.89
D(Qe(–3)) 0.11 0.06 0.05

D(Pe) –0.16 0.08 0.05
D(Pe(–1)) –0.04 0.11 0.70
D(Pe(–2)) –0.06 0.09 0.52
D(Pe(–3)) –0.02 0.08 0.85

D(Pg) 0.01 0.03 0.76
D(Pg(–1)) 0.02 0.04 0.57
D(Pg(–2)) –0.07 0.04 0.06
D(Pg(–3)) –0.07 0.04 0.04

D(Y) –1.17 1.12 0.29
D(Y(–1)) 4.50 1.21 0.00
D(Y(–2)) –1.63 1.25 0.19
D(Y(–3)) –0.52 1.13 0.19

D(N) 1.12 1.97 0.57
D(N(–1)) –3.56 2.06 0.09
D(N(–2)) –1.23 1.86 0.51
D(N(–3)) 2.60 1.84 0.16

Adjusted R-squared 0.98
S.E. of regression 0.03

estimating the short-run elasticities. Both an ECM and its equivalent ADL model were estimated.
As discussed in Section II Case 4 (where there is a unique cointegrating relationship), the OLS
estimates will be consistent and hypothesis testing can be based on standard distributions. This is
the specification that minimizes the Akaike criterion when the maximum lag length is set at six and
the minimum lag is zero. Both the SR elasticities and the LR elasticities, along with their respective
standard errors, can be read directly from the ECM estimation output (see Table 4). The results for
the isomorphic ADL model are omitted here to save space.

Table 5 reports the results for the simple AR1 and PAM specifications so that they can be
compared to our chosen conditional ECM model. The ECM has a higher adjusted R-squared and
a lower standard error than the AR(1) and PAM. It is also the specification that minimizes the
Akaike value.

Table 6 summarizes the estimated SR and LR elasticities from the AR1, PAM, and ADL/
ECM specifications. As noted in Section 1, the AR1 specification imposes the restriction that each
SR elasticity be equal to its LR counterpart, while the PAM specification imposes the implausible
‘ratio restriction.’ We can see from the Table that the ratio of the LR elasticity to the SR elasticity
for the three determinants of demand is equal to (4.5) in all cases. The specification with the
minimum Akaike criterion is neither an AR1 nor a PAM, but a more general ADL(4,0-4,0-4,0-4,
0-4) model.
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Table 5: OLS Estimates of the AR(1) and PAM Specifications

Eq Name: AR(1) PAM
Dep. Var: Qe Qe

C –19.33 –2.67
(12.39) (5.23)

Pe –0.07 –0.04
(0.11) (0.07)

Pg 0.06 0.00
(0.04) (0.02)

Y –0.47 0.04
(0.75) (0.32)

N 2.57 0.37
(1.26) (0.56)

D(CDD) 0.00 0.00
(0.00) (0.000)

D(HDD) 0.00 0.00
(0.00) (0.000)

Qe(–1) 0.77
(0.07)

AR(1) 0.53
(0.09)

Observations 106 107
Adj. R-squared 0.95 0.97
S.E. regression 0.04 0.03

Table 6: Summary of Short-Run and Long-Run Elasticity Estimates from the Various
Dynamic Demand Specifications

epe,sr

SR own-
price

elasticity

epe,lr

LR own-
price

elasticity

ecp,sr

SR cross-
price

elasticity

ecp,lr

LR cross-
price

elasticity

ey,sr

SR
income

elasticity

ey,lr

LR
income

elasticity

Akaike
Criterion

AR1 –0.07
(0.11)

–0.07
(0.11)

0.06
(0.04)

0.06
(0.04)

–0.47
(0.75)

–0.47
(0.75)

–3.27

PAM –0.04
(0.06)

–0.19
(0.29)

0.00
(0.02)

0.01
(0.09)

0.04
(0.32)

0.18
(1.37)

–3.89

ECM/ADL –0.16
(0.08)

–0.60
(1.04)

0.01
(0.03)

0.26
(0.29)

–1.18
(1.12)

–0.39
(3.14)

–3.97

Standard errors in parentheses

IV. CONCLUSIONS

A review of the literature on energy demand reveals two common deficiencies: (i) the
omission of standard errors when reporting short-run and especially long-run elasticities and (ii)
the use of restricted models without testing the relevant restrictions. This paper first reviews a
number of commonly used dynamic demand specifications and highlights the implausible a priori
restrictions that they place on short and long-run elasticities. It then shows which specifications do
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not impose any restrictions. The discussion suggests that the ADL or corresponding ECM should
be employed in practice, rather than using the AR or PAM specifications. Second, we propose a
simple way to get standard errors as well as point estimates for both short and long-run elasticities.
Our approach is illustrated using data on Minnesota residential electricity demand.

Although our focus is on demand estimation in the energy sector, the issues raised are also
relevant when estimating dynamic supply equations. Moreover, they apply in a wide variety of
contexts beyond the energy sector where estimating short and long-run elasticities is a recurring
topic of interest.
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APPENDIX I: ADL AND EQUIVALENT ECM

Here we prove that for every ADL(L,R) specification19

L R

q = γ + γ q + γ p + u∑ ∑t 0 ql t– l pr t– r t
l = 1 r = 0

there is an equivalent ECM with lagged differences:

L–1 R–1

Dq = d + k(q – β p ) + d Dq + d Dp + u∑ ∑t 0 t–1 p t–1 ql t– l pr t– r t
l = 1 r = 0
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20. This case is adapted from Baltagi (2008 p. 141) and Charemza and Deadman (1997).

The coefficients in the error correction term are equal to the long-run elasticities:

R

γ∑ pr
r = 0β =p L

1– ∑ γl = 1 ql

and the coefficient on the first difference term, Dpt, is equal to the SR elasticity.

d = γp0 p0

It is interesting to note that an ADL model can always be rewritten as a single-equation ECM that
includes lagged differences to capture serial correlation that may exist in the no-lag version. This
is discussed below.

1. ADL(1,1) Case20

q = γ + γ q + γ p + γ p + ut 0 q1 t–1 p0 t p1 t–1 t

Subtract qt –1 from both sides of the equation and add and subtract from the right-hand sideγ pp0 t–1

to get:

Dq = γ + (γ –1)q + γ Dp + (γ + γ )p + ut 0 q1 t–1 p0 t p0 p1 t–1 t

which can be rearranged as:

γ + γp0 p1Dq = γ + γ Dp + (γ –1) q – p + ut 0 p0 t q1 t–1 t–1 t� �1– γq1

2. ADL(2,2) case:

q = γ + γ q + γ q + γ p + γ p + γ p + ut 0 q1 t–1 q2 t–2 p0 t p1 t–1 p2 t–2 t

Subtract qt –1 from both sides of the equation, then add and subtract , , andγ p γ p γ qp0 t–1 p2 t–1 q2 t–1

from the right-hand side. This yields:

Dq = γ + (γ + γ –1)q – γ Dq + γ Dp + (γ + γ + γ )p – γ Dp + ut 0 q1 q2 t–1 q2 t–1 p0 t p0 p1 p2 t–1 p2 t–1 t

which can be rearranged as:

γ + γ + γp0 p1 p2Dq = γ + γ Dp – γ Dp – γ Dq + (γ + γ –1) q – p + ut 0 p0 t p2 t–1 q2 t–1 q1 q2 t–1 t–1 t� �1– γ – γq1 q2
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3. ADL(L,R) case

q = γ + γ q + γ q + . . . + γ q + γ p + γ p + . . . + γ p + ut 0 q1 t–1 q2 t–2 qL t– L p0 t p1 t–1 pR t– R t

Subtract qt –1 from both sides of the equation and add and subtract , and,γ p γ p , . . . γ pp0 t–1 p2 t–1 pR t–1

, from the right-hand side, and after rearranging we get the ECM:γ q γ q , . . . γ qq2 t–1 q3 t–1 qL t–1

Dq = γ + γ Dp – γ Dp – . . . – γ Dp – γ Dq – . . . – γ Dqt 0 p0 t p2 t–1 pR t–(R–1) q2 t–1 qL t–(L–1)

γ + γ + . . . + γp0 p1 pR+ (γ + γ + . . . + γ –1) q – p + uq1 q2 qL t–1 t–1 t� �1– γ – γ – . . . – γq1 q2 qL

which can be re-written as:

R–1 L–1

Dq = γ + γ Dp – γ Dp – γ Dq∑ ∑t 0 p0 t p,R + 1 t– r q,L + 1 t– l
r = 1 l = 1

γ + γ + . . . + γp0 p1 pR+ (γ + γ + . . . + γ –1) q – p + uq1 q2 qL t–1 t–1 t� �1– γ – γ – . . . – γq1 q2 qL

Note that due to the presence of a contemporaneous p term on the right-hand side of the ADL there
is an extra term of first differences of the independent variable in the ECM compared to(γ Dp )p0 t

the dependent variable.
A somewhat different transformation of the ADL(3,3) specification can be used when the

ADL contains no contemporaneous regressors in order to get an ECM that contains both SR and
LR elasticity estimates. Suppose the estimated ADL is ADL(1-3, 1-3):

q = γ + γ q + γ q + γ q + γ p + γ p + γ p + ut 0 q1 t–1 q2 t–2 q3 t–3 p1 t–1 p2 t–2 p3 t–3 t

Subtract qt –1 from both sides of the equation to get:

Dq = γ + (γ –1)q + γ q + γ q + γ p + γ p + γ p + ut 0 q1 t–1 q2 t–2 q3 t–3 p1 t–1 p2 t–2 p3 t–3 t

Next, add and subtract the following terms from the right-hand side of the equation: ,(γ –1)qq1 t–2

, , and to get:γ q γ p γ pq3 t–2 p1 t–2 p3 t–2

Dq = γ + (γ –1)(q – q ) + (γ + γ + γ –1)q – γ (q – q )t 0 q1 t–1 t–2 q1 q2 q3 t–2 q3 t–2 t–3

+ γ (p – p ) + (γ + γ + γ )p – γ (p – p ) + up1 t–1 t–2 p1 p2 p3 t–2 p3 t–2 t–3 t

Dq = γ + (γ –1)Dq – γ Dq + γ Dp – γ Dpt 0 q1 t–1 q3 t–2 p1 t–1 p3 t–2

(γ + γ + γ )p1 p2 p3– (1– γ – γ – γ ) q – p + uq1 q2 q3 t–2 t–2 t� �(1– γ – γ – γ )q1 q2 q3

where the coefficient in the error correction term is equal to the long-run elasticity and the coefficient
on the first difference term, Dpt– 1, is equal to the SR elasticity.
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For a general ADL(L,R), subtract qt– 1 from both sides of the equation and add and subtract
and, , from the right-hand side, to get theγ p ,γ p , . . . γ p (γ –1)q γ q , . . . γ qp1 t–2 p3 t–2 pR t–2 q1 t–2 q3 t–2 qL t–2

equivalent ECM.

R–1 L–1

Dq = γ + γ Dp – γ Dp + (γ –1)Dq – γ Dq∑ ∑t 0 p1 t–1 p,r + 1 t– r q1 t–1 q,l + 1 t– l
r = 2 l = 2

γ + . . . + γp1 pR–(1– γ – γ – . . . – γ ) q – p + uq1 q2 qL t–2 t–2 t� �1– γ – γ – . . . – γq1 q2 qL

APPENDIX II

Unrestricted and restricted Vector Error Correction Models (VECMs) are reported below
for interested readers. The conditional ECM reported in the text is fully efficient in our application.
All estimated equations also include the monthly dummies, but for brevity their estimated coeffi-
cients are not reported. By testing whether the cointegrating relationships are present in the various
equations or not, we can decide whether the variables Pe, Pg, Y, and N are weakly exogenous for
the long-run elasticities or not. Note that even if the parameters of interest are both the short-run
and long-run elasticities, this procedure is sufficient to reject weak exogeneity (Urbain, 1992, p.202).

Appendix Table 1: Estimates of the VECM with 1
Cointegrating Relationship

Vector Error Correction Estimates
Date: 11/09/13 Time: 15:41
Sample (adjusted): 1998M03 2006M12
Included observations: 106 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Cointegration Restrictions: B(1,1) = 1
Convergence achieved after 1 iteration
Restrictions identify all cointegrating vectors
Restrictions are not binding (LR test not available)

Cointegrating Eq: CointEq1

Qe(–1) 1.00

Pe(–1) 0.14
(0.06)
[2.30]

Pg(–1) –0.03
(0.02)

[–1.74]

Y(–1) –0.30
(0.25)

[–1.17]

N(–1) –1.35
(0.43)

[–3.13]

C 8.26

(continued)
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Appendix Table 1: Estimates of the VECM with 1
Cointegrating Relationship (continued)

Error Correction: D(Qe) D(Pe) D(Pg) D(Y) D(N)

CointEq1 –0.97 0.06 –0.14 –0.01 0.00
(0.06) (0.11) (0.28) (0.01) (0.00)

[–15.74] [0.52] [–0.51] [–0.69] [0.57]

D(Qe(–1)) –0.05 0.04 0.43 –0.00 0.00
(0.05) (0.08) (0.21) (0.01) (0.00)

[–0.99] [0.45] [2.05] [–0.50] [0.15]

D(Pe(–1)) 0.05 –0.29 –0.05 0.01 0.00
(0.06) (0.11) (0.27) (0.01) (0.00)
[0.90] [–2.75] [–0.18] [1.58] [0.05]

D(Pg(–1)) –0.01 0.09 –0.17 0.00 0.00
(0.02) (0.04) (0.10) (0.00) (0.00)

[–0.42] [2.18] [–1.66] [0.69] [0.48]

D(Y(–1)) 1.24 –0.26 –2.02 0.40 0.05
(0.77) (1.40) (3.51) (0.10) (0.06)
[1.60] [–0.18] [–0.57] [3.88] [0.88]

D(N(–1)) –2.97 –0.12 0.17 0.16 0.18
(1.47) (2.67) (6.70) (0.19) (0.11)

[–2.02] [–0.04] [0.02] [0.82] [1.69]

C –0.14 0.02 –0.19 0.01 –0.00
(0.03) (0.06) (0.14) (0.00) (0.00)

[–4.48] [0.28] [–1.34] [1.29] [–0.08]

CDD 0.00 0.00 0.00 –0.00 –0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

[20.09] [0.13] [0.54] [–0.98] [–0.44]

HDD 0.00 –0.00 0.00 –0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)
[6.45] [–0.24] [1.73] [–0.99] [0.70]

R-squared 0.98 0.73 0.34 0.47 0.28
Adj. R-squared 0.98 0.67 0.19 0.35 0.12
Sum sq. resids 0.06 0.18 1.16 0.00 0.00
S.E. equation 0.03 0.05 0.12 0.00 0.00
F-statistic 277.24 12.09 2.29 3.97 1.74
Log likelihood 249.42 186.44 88.72 464.20 526.41
Akaike AIC –4.33 –3.14 –1.30 –8.38 –9.55
Schwarz SC –3.83 –2.64 –0.79 –7.88 –9.05
Mean dependent 0.00 0.00 0.00 0.00 0.00
S.D. dependent 0.18 0.08 0.13 0.00 0.00
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Appendix Table 2: VECM estimation with Weak Exogeneity
Restrictions

Vector Error Correction Estimates
Date: 11/09/13 Time: 16:14

Included observations: 106 after adjustments
Standard errors in ( ) & t-statistics in []

Cointegration Restrictions: B(1,1) = 1, A(2,1) = 0, A(3,1) = 0, A(4,1) = 0, A(5,1) = 0
Convergence achieved after 6 iterations.
Restrictions identify all cointegrating vectors
LR test for binding restrictions (rank = 1):

Chi-square(4) 2.54
Probability 0.64

Cointegrating Eq: CointEq1

Qe(–1) 1.00

Pe(–1) 0.16
(0.06)
[2.49]

Pg(–1) –0.03
(0.02)

[–1.92]

Y(–1) –0.33
(0.26)

[–1.30]

N(–1) –1.26
(0.44)

[–2.89]

C 7.38

Error Correction: D(Qe) D(Pe) D(Pg) D(Y) D(N)

CointEq1 –0.97 0.00 0.00 0.00 0.00
(0.06) (0.00) (0.00) (0.00) (0.00)

[–17.12] [NA] [NA] [NA] [NA]

D(Qe(–1)) –0.05 0.04 0.43 –0.00 0.00
(0.05) (0.08) (0.21) (0.01) (0.00)

[–1.06] [0.49] [2.05] [–0.52] [0.15]

D(Pe(–1)) 0.06 –0.29 –0.05 0.01 0.00
(0.06) (0.11) (0.27) (0.01) (0.00)
[0.97] [–2.74] [–0.18] [1.58] [0.05]

D(Pg(–1)) –0.01 0.09 –0.17 0.00 0.00
(0.02) (0.04) (0.10) (0.00) (0.00)

[–0.52] [2.18] [–1.67] [0.69] [0.48]

D(Y(–1)) 1.30 –0.28 –2.00 0.40 0.05
(0.77) (1.40) (3.51) (0.10) (0.06)
[1.68] [–0.20] [–0.57] [3.89] [0.88]

D(N(–1)) –2.92 –0.11 0.17 0.16 0.18
(1.47) (2.67) (6.70) (0.19) (0.11)

[–1.98] [–0.04] [0.02] [0.82] [1.69]

C –0.14 0.02 –0.19 0.01 –0.00
(0.03) (0.06) (0.14) (0.00) (0.00)

[–4.44] [0.27] [–1.33] [1.30] [–0.09]

(continued)
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Appendix Table 2: VECM estimation with Weak Exogeneity
Restrictions (continued)

Error Correction: D(Qe) D(Pe) D(Pg) D(Y) D(N)

CDD 0.00 0.00 0.00 –0.00 –0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

[20.08] [0.14] [0.54] [–0.98] [–0.44]

HDD 0.00 –0.00 0.00 –0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)
[6.38] [–0.23] [1.72] [–1.00] [0.71]

R-squared 0.98 0.73 0.34 0.47 0.28
Adj. R-squared 0.98 0.67 0.19 0.35 0.12
Sum sq. resids 0.06 0.18 1.16 0.00 0.00
S.E. equation 0.03 0.05 0.12 0.00 0.00
F-statistic 276.78 12.08 2.29 3.96 1.74
Log likelihood 249.34 186.41 88.71 464.18 526.41
Akaike AIC –4.33 –3.14 –1.30 –8.38 –9.55
Schwarz SC –3.82 –2.64 –0.79 –7.88 –9.05
Mean dependent 0.00 0.00 0.00 0.00 0.00
S.D. dependent 0.18 0.08 0.13 0.00 0.00

The weak exogeneity restrictions are not rejected here, so the conditional single-equation
approach in the text is fully efficient.




