Time of Use Pricing and Electricity Demand Transfer: A Long Run Analysis of Capacity and Prices

Pierre-Olivier Pineau School of Public Administration University of Victoria, Canada Stephan Schott School of Public Policy and Administration Carleton University, Canada

Concurrent Session 16. Energy Demand & Efficiency California Room – Capital Hilton Hotel, Washington D.C. **24rd IAEE North American Conference** Saturday, July 10, 2004, 8:30 - 10:00 am

Plan

- 1. Introduction & Model
- 2. Analytical Results
- 3. Numerical Application: Ontario (Canada)
 - Capacity reduction
 - Prices
 - Energy consumption & Technologies

1. Introduction & Model

1. Introduction & Model

- 1. When do we get a firm or a shifting peak?
- 2. What are the **capacity**, **price** and **energy consumption** changes?
- 3. How do different price **elasticities** influence the results?
- What about cross-price elasticities? (transfer of demand from peak to off-peak periods)

1. Introduction & Model

- 2 time periods: peak (ω) and off-peak
- 1 technology: c = variable cost

r = fixed cost

• Demand functions:

Off-peak (Low) period $Q_L = a P_L^b$ Peak (High) period $Q_H = a Z P_H^{\alpha b}$

a and Z: parameters scaling demand

b : price elasticity

 $0 < \alpha < 1$: parameter adjusting elasticity (peak)

ACP conditions

Revenue constraint

$$(P-c)[(1-\omega)Q_L+\omega Q_H]=rQ_H$$
$$Q_H=K$$

• TOU conditions: Firm peak $P_L = c; P_H = c + r/\omega; Q_H = K$ Revenue constraint $(P_L - c)(1 - \omega)Q_L + (P_H - c)\omega Q_H = rQ_H$ • TOU conditions: Shifting peak $Q_L = Q_H = K$ Revenue constraint $(P_I - c)(1 - \omega) + (P_H - c)\omega = r$

• ACP solution $(P-c)[P^{b(1-\alpha)}(1-\omega)+\omega Z]=rZ$ • TOU solution: Firm peak $P_{I}=c$

• TOU conditions: Shifting peak $P_{L} = Z^{1/b} P_{H}^{\alpha}$ $(1-\omega) Z^{1/b} P_{H}^{\alpha} + \omega P_{H} = c + r$

Firm peak or Shifting peak?

Firm peak means $Q_H > Q_L$. This is true when $r < \omega \left[\left(\frac{c}{Z^{\frac{1}{b}}} \right)^{\frac{1}{\alpha}} - c \right]$ $Z > \left(\frac{c}{\left(c + \frac{r}{\omega}\right)^{\alpha}}\right)^{b}$ Or alternatively

Transfer of demand

Demand functions:

Peak (High) period	$Q'_{H} = aZP_{H}^{\alpha b} - \gamma aZP_{H}^{\alpha b}$
	= $(1-\gamma)aZP_{H}^{\alpha b}$
Off-peak (Low) period	$Q'_{L} = aP_{L}^{b} + \gamma aZP_{H}^{\alpha b}$

 $0 < \gamma < 1$: exogenous parameter representing the percentage of demand transferred from the peak to the off-peak period

Firm peak or Shifting peak?

Firm peak means $Q'_{H} > Q'_{L}$. This is true when

$$r < \omega \left[\left(\frac{c^b}{Z(1-2\gamma)} \right)^{\frac{1}{\alpha b}} - c \right]$$

- Result 2. It can be shown that a Firm peak is less likely when there is transfer of demand.
- **Result 3.** $P_H = P_L = c + r$ when

$$\gamma = \frac{Z - (c+r)^{b(1-\alpha)}}{2Z}$$

• Nuclear: c=22.80+37=59.80/MWh

r=31.56/MW (per hour)

• Na.Gas: *c*=53.59+37=90.59/MWh

r=9.15/MW (per hour)

- *b*=-1.29 α=0.667
- Z=0.17 a=3,192,468 ω=0.22
- $\gamma = 0.05$ equal prices for $\gamma = 0.094$ (nuclear) and $\gamma = 0.109$ (natural gas)

	Average Cost Pricing			TOU Pricing % of change			
	1	2	3	1	2	3	
	Nuc	Gas	=inelas	Nuc	Gas	=inelas	
Capacity	10,994	10,607	11,945	-8.09	-13.79	-8.90	
MW							
P _L	97	101	95	-11.16	-7.93	-11.06	
P _H	97	101	95	10.30	18.84	20.51	
Total Energy TWh	80	76	93	10.00	4.54	2.33	

	Average Cost Pricing			TOU Pricing (% of change) with transfer			
	1	2	3	1	2	3	
	Nuc	Gas	=inelas	Nuc	Gas	=inelas	
Capacity	10,994	10,607	11,945	-6.33	-12.23	-6.41	
MW							
P _L	97	101	95	-8.71	-5.32	-6.11	
P _H	97	101	95	1.66	9.64	3.06	
Total Energy TWh	80	76	93	12.10	6.43	5.12	

	TOU Pricing % of change			TOU Pricing (% of change) with transfer			
	1	2	3	1	2	3	
	Nuc	Gas	=inelas	Nuc	Gas	=inelas	
Capacity	-8.09	-13.79	-8.90	-6.33	-12.23	-6.41	
MW							
P_L	-11.16	-7.93	-11.06	-8.71	-5.32	-6.11	
P _H	10.30	18.84	20.51	1.66	9.64	3.06	
Total Energy TWh	10.00	4.54	2.33	12.10	6.43	5.12	

Summary

Analytical results

- **Result 2.** With transfer of demand, full capacity is used in all periods under less stringent conditions.
- **Result 3**. There is a specific level of transfer for which prices will be equal with TOU pricing.

Numerical results

- With transfer of demand, the reduction in capacity is limited.
- With transfer of demand, the increase in consumption is even greater.
- Technology has a tremendous impact on capacity, prices and energy consumption.
- Elasticity and transfer of demand are very important factors.

Pierre-Olivier Pineau & Stephan Schott

Conclusion

TOU pricing (and real time pricing) have perverse effects, that create other problems:

higher prices in some periods & overall increase in consumption

The dilemmas that electricity policy creates are far from being easily solved.