The more co-operation, the more competition?

Possible effects of Market Integration of the Belgian and Dutch power markets

26th IAEE Conference, Prague, 7 June 2003 Fieke Rijkers (ECN)

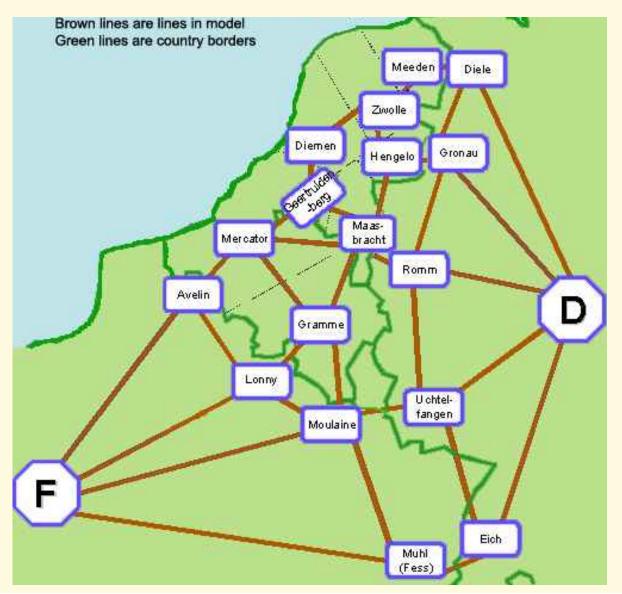
Ben Hobbs (Johns Hopkins University) Adrian Wals (ECN)

Overview of the presentation

- Introduction to COMPETES model
 - Questions addressed
 - Model structure
- Congestion management B ↔ NL
 - Current auction system
 - Proposed market integration
- Effects of Market Coupling
- Sensitivity analysis on physical capacity: Value under different policies

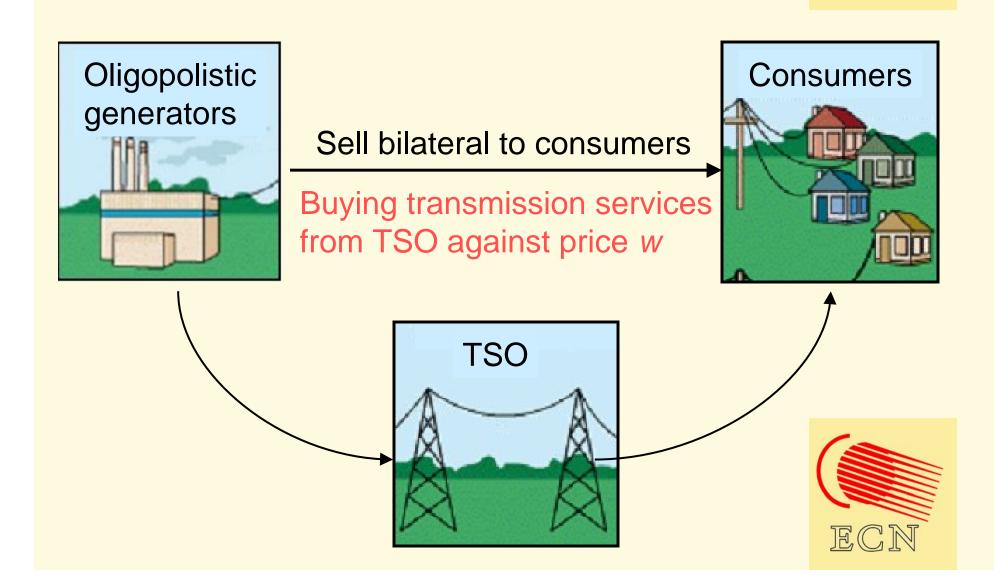
Questions to be addressed

- Assessment of the liberalised Northwestern European electricity market
- Questions: What is the effect of energy market design & structure, considering generator strategic behaviour, upon:
 - ✓ Electricity market prices
 - ✓ Transmission prices
 - ✓ Income distribution (TSO revenues, profits, consumer surplus)

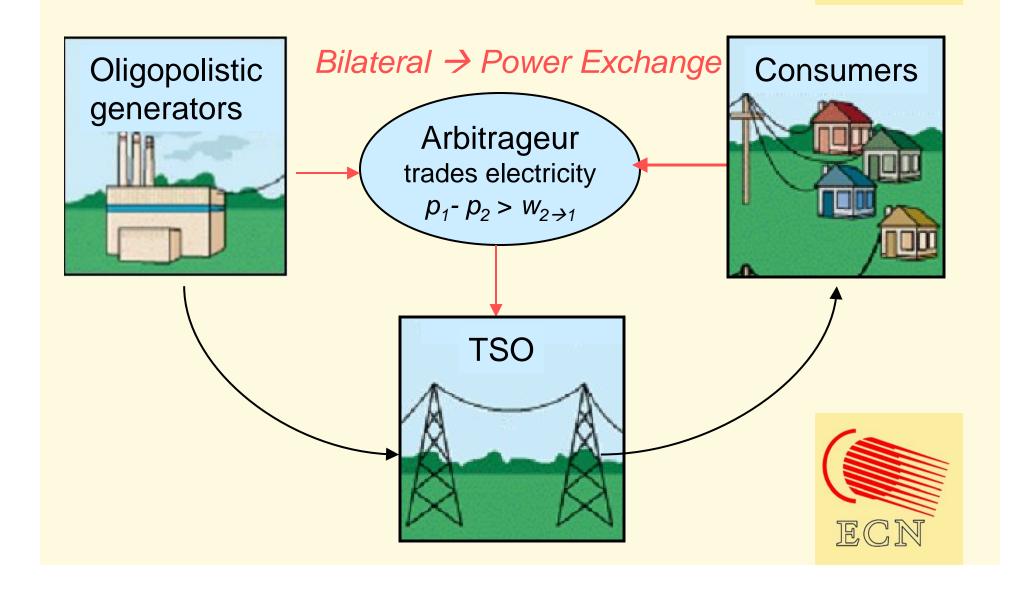

Value added

Why has ECN developed COMPETES?

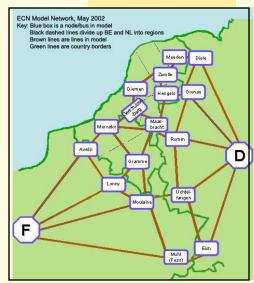
- Endogenous modelling of strategic behaviour
- Integrating exchanges with neighbouring countries
- Taking into account of (congestion in) the electricity network → Nodal Pricing

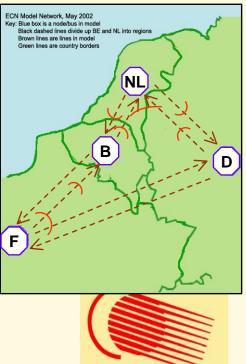


Geographic scope of the model



Market structure - Transmission operator




Market structure - Arbitrageur

Transmission network

- Type of Game ≈ Cournot
- Physical representation network
 - 1. Linearized DC Load Flow
 - 2. Several nodes per country (6 NL, 2 Be)
- Path based representation
 - One node per country →
 one market price per country
 - Interfaces defined between countries
 - Crediting for counterflows (netting vs. no-netting)

Solution properties

- Complementarity formulation
 - Direct solution of equilibrium conditions
 - Solves large models (1000s of variables)

Methodology

- Derive the first-order conditions for each player
- Formulate market clearing conditions
- Solve resulting system of conditions

Inputs

Demand

- 12 periods → 3 seasons, 4 load periods
- Allocated to the different nodes
- Source: TSOs and UCTE

Generation

- 15 large power generators (4 NL, 1 B, 2 F, 8 G)
- 5272 generating units in total
- Marginal costs based on efficiency and fuel type

What are the impacts of a reformed Congestion Management system for B ↔ NL ?

Congestion management B ↔ NL

Current Auction System

- Yearly, monthly and daily auctions
- Available capacity for auction [www.tso-auction.nl]
 - Belgium Netherlands: 1150 MW
 - Germany Netherlands: 2200 MW
- Total import capacity to NL ≤ 400 MW per party
- Price set by lowest accepted bid
- Daily auction takes place before APX settles

Congestion management B ↔ NL

Proposal for market integration

- Single market
 - One market price
 - TSO responsible for re-dispatch
 - Payments for constrained-off or -on
- Market Coupling (Splitting)
 - Similar to the NordPool
 - If Congestion: two separate market prices
- Brattle advice (February 2003):
 - Market Coupling with divestiture of generating capacity in Belgium

What are the impacts of Market Coupling between B ↔ NL ?

Effects of Market Coupling

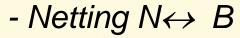
Differences with the current situation

- 1) Increased market access into Belgium
 - For (foreign) Generators and
 - For Traders → Introduce arbitrage
- 2) Netting of transmission capacity
- 3) Efficient co-ordination of 'Auction' and APX

Effects of Market Coupling

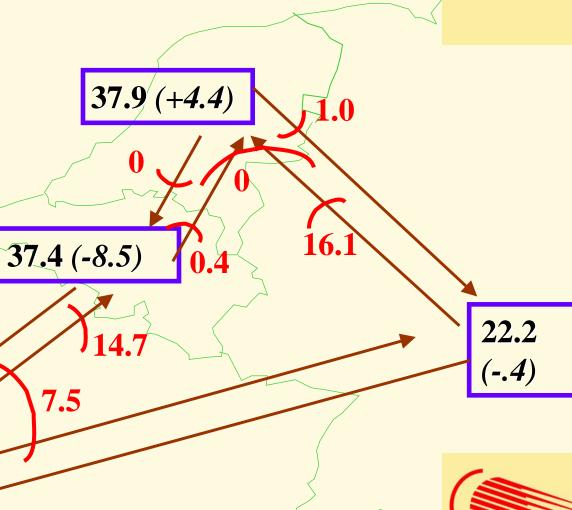
Definition of scenarios

		Import cap on firms		Import cap on arbitrageurs			Netting	
		B → NL	NL → B	NL → B Electrabel	B → NL	NL → B	$G \leftrightarrow NL$	
Competitive		No limit	No limit	No limit	No limit	No limit	No limit	Yes
COURNOT	Current situation	400	0	950	0	200	No limit	No
	Market splitting	None*	None*	None*	No limit	No limit	No limit	B ↔ NL



Model results Competitive scenario €/MWh 29.1 18.9 4.6 14.3

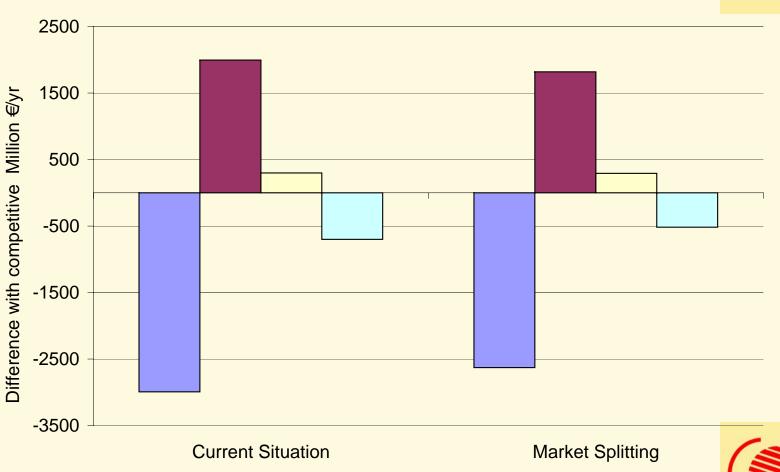
Model results Current Situation vs. Competitive €/MWh - No netting 33.5 (+5.5) - Arbitrage N↔ G - Belgium 'closed' - Imports NL 400 MW per party **45.9** (+16.9) 22.5 (+3.6)**7.9** 14.0 (-.3)


Model results

Market Splitting vs. Current Situation €/MWh

- Arbitrage N↔ G Belgium open:

- Arbitrage N↔ B



14.1 (+.1)

Effects of Market Coupling

Welfare comparison compared to Perfect Competition

■ Consumer Surplus ■ Generators profit □ Transmission revenue □ Welfare

Effects of Market Coupling

Relevant conclusions

- Market Coupling affects prices and increases
 overall welfare (+ 182 mln €/yr more than current)
 - Induced by lower prices in Belgium
 - Increased welfare is mainly in Belgium
- What is "in it" for the Netherlands?
 - Profits Dutch generators increase
 - But consumer surplus decreases more
 - Increase of spot market volume

What if marginal costs in Belgium are lower than assumed?

Lower marginal cost in Belgium

All Belgian power plants decreased by 3 €/MWh

- Only marginal changes
- Belgian exports to France increase a little
- Conclusions on Market Splitting still apply:
 - Overall welfare increase
 - Decrease of welfare in NL
 - Prices in NL up, prices in BE down (to similar level)

What if large 'Belgian incumbent' is regulated <acts competitively> in Belgium but Cournot elsewhere?

Regulated prices Belgian incumbent

Electrabel modeled as a price-taker in Belgium

- Current Market Structure
 - Prices lower in both BE and NL (- 14.5 and 1.3 €/MWh)
 compared to unregulated prices in BE
 - Belgian price now lower than in NL
- Market splitting
 - Increases welfare
 - Lowers prices both in BE and NL
- Reduced market power of Belgian incumbent results in overall price reduction

Does the value of additional Transmission Capacity depend on the market design?

Value of transmission

10% increase of capacity B ↔ NL

Euro/MW/yr	Competitive	Current Situation	Market Splitting
Valuation Transmission	12658	-8694	734

- Competitive: large increase of consumer surplus
- Current market structure: increase of arbitrage to BE, generators' profits decreases
- Market Splitting: decrease of consumer surplus is offset by increase of generators' profit

General conclusions

Based on COMPETES model results

- The current market structure in Northwestern EU hampers competition → prices above competitive
- Market Coupling increases overall welfare → Increases prices in Netherlands
- Lowering MC in BE has marginal effect → 3 €/MWh decrease only lowers BE prices ~ 0.3 € /MWh
- Price regulation in Belgium → Market Coupling reduces prices in both Netherlands and Belgium
- Valuation of transmission capacity depends significant on market design

Address

Fieke Rijkers
 Rijkers@ecn.nl
 fiekerijkers@zonnet.nl

 Website of ECN www.ecn.nl

