
   

USAGE DISAGGREGATION OF SMART METER DATA OF JAPANESE 

COMMERCIAL CUSTOMERS USING RANDOM FOREST REGRESSION 
Minao Watanabe and Kenta Ofuji, The University of Aizu, Phone +81-242-37-2577, o-fu@u-aizu.ac.jp 

Overview 

Following European electricity industry, Japan also 

has started retail-level deregulation. In tandem with 

that, rapid deployment of smart meters for both 

residential and non-residential consumers is under way. 

Among various potential opportunities associated with 

smart meter data, usage disaggregation based on the 

whole-building power demand data is expected to 

promote energy efficiency, because it may discover 

important energy waste patterns. In this research, we 

take Japanese supermarket customer as an example 

(Figure 1), and establish a basic forecasting 

methodology to disaggregate the whole-building 

hourly smart meter data into several usages. 

Specifically, we used random forest regression (RFR) 

to predict demand for "refrigeration / cooling" across a year, which 

is the main temperature sensitive demand of this building. The 

remaining usage was then calculated by subtracting the predicted refrigeration / cooling usage from the entire 

demand. Lastly, we discuss the prediction accuracy by seasons.  

Methods 

Figure 2 shows the methods for prediction. First, taking 

a consumer data of a supermarket located in the Tohoku 

(northern east) region of Japan [1] as an example, we built 

three models to predict usage-specific demand using linear 

regression, decision tree and RFR. We compared the 

model performance across the three algorithms. Since 

RFR performed the best, the results of RFR are mainly 

described in the following. 

    The used feature values are shown in Figure 2. As 

described in 1-2, the prediction model incorporated AR (1) 

(first-order auto-regression) concept by including the 

target variable itself one hour before. After considering 

various feature values for better prediction performance, we 

finally chose, based on the feature importance values, the 

interaction terms between the hour of day (1 o'clock to 24 o'clock) 

dummy variables and each of the hourly outside air temperature 

data of Sendai city [2] and the whole-building demand.  

    To divide the dataset into test data and training data, we 

extracted samples on a daily basis instead of random sampling, 

because it can consider the data’s continuous nature. As a result, 

we decided to choose 71 days from the year for the test data, so 

that the chosen days are the multiples of five each month. This 

also ensured uniformity across the year. The resultant number of 

the test data samples was 71 days × 24 hours = 1,704, and the 

training data was the remaining 7,056 hours. The ratio is about 2 

(test): 8 (training). 

Results 

Figure 3 plots the measured (real) values on the horizontal 

axis and the predicted values on the vertical axis. The closer to the 

45-degree line, the better the prediction. For prediction evaluation,  Mean Squared Errors (MSE) was calculated 

using the measured values yreal, predicted values ypred, and the sample size n. (Equation (1)). The MSE for this model 

was 15.724, implying reasonable accuracy across seasons.  

Figure 1. Annual daily volume transition 

[1] (Building ID: B110000181) 

Figure 2. Outline of prediction method 

Figure 3. The scatter plot of real values and predicted values 
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    A box plot of the prediction error yerror, calculated from 

Eq. (2), was drawn to understand the size and the 

variation of the prediction errors (Figure 4).   
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The median is close to 0 and spans only within ± 0.1 between the first and third quartiles. This means the model 

can predict within ± 10% of the error in more than half of the cases. 

    Finally, typical daily measured values and predicted values in four different seasons are shown in Figure 5. The 

change in the amount used in summer (represented by 2012/8/15), on the right-top panel, is smaller than in any other 

seasons because the demand forecast is the closest to the real values.  

    In spring (2013/4/15) and autumn (2012/10/15), the by-hour demand varies greater than in summer, making the 

prediction for our AR(1)-based model more challenging, because the forecast cannot catch up the hourly variation 

quickly enough. However, in winter (2013/1/15), even with the large increase and decrease in the data, the overall 

forecast looks to be reasonable. 

Conclusions 

Our current results are summarized as follows:  

a) In the example supermarket taken this time, it was possible to predict with an error of less than ± 10% in more 

than half of the cases by the RFR model, using 20% of the 8,760 hours as training data. 

b) However, in seasons when the data’s rise and fall are steep, prediction can be difficult. 

c) Temperature sensitive demand such as "refrigeration / cooling" can be predicted using the proposed model. Based 

on this, there is a possibility that simple disaggregation can be made. 

d) Future works include validating the proposed method by applying it to a greater number of supermarkets and 

other commercial buildings. Establishing a general approach to choose effective feature values, especially the 

interaction terms, are among foremost challenges.  
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Figure 5. Forecast results for each four seasons, on representative dates 

Figure 4. The box plot of yerror 


