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Research Topic and Related Research
Given the need to limit the increase in global average temperatures to avoid unacceptable impacts on the climate system, the development of new carbon-free energy technology should be a priority (Stern, 2007). However, in liberalized energy markets the circumstances are often unfavourable for such technologies since they tend to be more expensive than the incumbent technologies. For this reason there exists a need to understand more closely the process of technological progress, and how different policy instruments can be used to influence this process and thus support the development of new energy technologies. 

In recent years energy researchers have shown an increased interest in introducing endogenous (induced) technical change into energy system models, often with the purpose of analyzing explicitly the impact of technological change on energy systems (Gillingham et al., 2008). Thus, in such representations technological change is allowed to be influenced over time by energy market conditions, policies as well as expectations about the future. In bottom-up energy models endogenous technological change is increasingly being introduced by implementing so-called technology learning rates (Berglund and Söderholm, 2006),
 thus specifying the quantitative relationship between the cumulative experiences of the technology on the one hand and cost reductions on the other. In contrast to early learning curve studies, when the focus was on production planning or strategic management, the centre of attention in more recent energy technology applications has shifted to endogenous technical change and the use of reliable estimates of technological learning rates as inputs in energy system models (Jamasb, 2007). The basic idea is that investments in new carbon-free energy technologies are more expensive than those in existing technologies, but the costs of the former can be assumed to decrease with increases in their market share so that at some point they will become a more attractive choice than the old technologies, which are (it is often argued) more mature and experience fewer potentials for future cost reductions (Grübler et al., 2002).
 Cost reductions are thus the result of learning-by-doing, i.e., performance improves as capacity and production expands.

The introduction of endogenous technological change through the use of technology-specific learning curves may have important implications for both the timing and the cost of climate policy. High learning rates for new carbon-free versus old (and more carbon-intensive) technologies tend to support early, upfront investment in the new technologies to reap the economic benefits of technological learning. Specifically, the shadow cost of early climate action is reduced since the mitigation effort itself generates the knowledge required to abate future emissions at low costs.
 If the investment decision is deferred, the positive effects of learning appear later as well (e.g., Grübler and Messner, 1998), and the energy system risks being locked-in to a carbon-intensive energy supply mix. Addressing endogenous technological change also implies that the estimated gross cost of climate policy may be comparatively low (e.g., Gritsevskyi and Nakicenovic, 2000). Naturally, in the long-run differences in learning rates across technologies will also influence the mix of technologies in use. For instance, bottom-up models of the power generation sector typically assume that learning rates for wind and solar power are higher than the corresponding rates for, say, coal and nuclear power. This means that – given the implementation of sufficient technology support policies – the generation share of the renewable energy sources can increase substantially over time even if their current costs are high.  

The above suggests that if energy system models are to generate meaningful and policy-relevant results, reliable estimates of the learning rates are needed. However, it is probably fair to conclude that previous empirical studies of learning rates provide few uniform conclusions about the magnitude of these rates. For instance, McDonald and Schrattenholzer (2000) conclude that the estimated learning rates for various energy supply technologies show evidence of substantial differences across studies.
 Increased knowledge about the sources of these variations is thus called for. 
Methods

In the present paper the purpose is therefore to conduct a meta-analysis of wind power learning rates, thus permitting an assessment of some of the most important model specification and data issues that influence the estimated learning impacts. A meta-analysis is a statistical technique that combines the results of a number of studies that deal with a set of related research hypothesis. Since meta-analysis extends far beyond an ordinary literature review by analyzing the results of several studies in a statistical manner its potential usefulness as an analytical tool for economic estimation in areas where there is quite a broad study-to-study disparity is widely discussed (Stanley, 2001).

The choice of wind power is motivated by the facts that: (a) it represents a key energy supply technology in complying with existing climate policy targets; and (b) there exists a large number of empirical learning curve studies on wind power while corresponding studies on other energy technologies are more scarce. The econometric analysis in the paper relies on 113 learning rate estimates presented in 35 studies conducted during the time period 1995-2010. These studies concern only the cost of onshore wind power; learning curve studies on offshore wind power are much scarcer (e.g., Junginger et al., 2004) and these are not addressed here. To our knowledge this is the first quantitative meta-analysis of energy technology learning rates, and in spite of the focus on wind power it should also generate important general insights into the determinants of energy technology learning rates. 
Results and Conclusions

The empirical results indicate that the choice of the geographical domain of learning, and thus implicitly of the assumed presence of learning spillovers, is an important determinant of wind power learning rates. Most notably, wind power studies that assume the presence of global learning generate significantly higher learning rates than those studies that instead assume a more limited geographical domain for the learning processes. This issue is further complicated by the fact that technology learning in wind power (and presumably in other renewable energy technologies as well) is deemed to have both national and global components. We also find that that the use of extended learning curve concepts, thus integrating most notably public R&D effects into the analysis, tends to result in lower learning rates than those generated by so-called single-factor learning curve studies. 

The empirical findings suggest that future studies should pay increased attention to the issue of learning and knowledge spillovers in the renewable energy field, as well as to the interaction between technology learning and R&D efforts. For instance, learning and R&D are not necessarily independent processes. Technological progress requires both R&D and learning, and for this reason R&D programs can typically not be designed in isolation from practical application. In addition, the gradual diffusion of a certain technology can reveal areas where additional R&D would be most productive (Arrow et al., 2009). 
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� In top-down models (e.g., general equilibrium and neoclassical growth models) endogenous technological change is instead introduced by assuming that technical progress is the result of investment in R&D and the ensuing accumulation of a knowledge stock (Gillingham et al., 2008). The quantity of R&D is determined both by relative price changes but also by the opportunity cost of R&D. 


� Still, McVeigh et al. (2000) show that even though the costs of renewable energy technologies in the past have fallen far beyond expectations, they have often failed to meet expectations with respect to market penetration. This suggests that the costs of the traditional energy sources have fallen as well and apart from cost disadvantages there exists additional legislative and institutional obstacles to increased renewable energy diffusion.


� This result does not necessarily appear in all types of learning-by-doing models. For instance, Goulder and Mathai (2000) show that the impact of learning-by-doing on the timing of climate policy is ambiguous. 


� See also Ibenholt (2002), who analyzes the causes of variation in learning rate estimates for the wind power technology. 





