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Uncertainty: It is Costly to Avoid Outages! 
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abstract

We show how electricity storage is operated optimally when the load net of re-
newable output is uncertain. We estimate a diurnal Markov-process representation 
of how Germany’s residual load changed from hour to hour and design a sim-
ple dynamic stochastic electricity system model with non-intermittent generation 
technologies and storage. We derive the optimal storage, generator output and ca-
pacity levels. If storage capacity replaces some generation capacity, the optimal 
storage strategy must balance arbitrage (between periods of high and low marginal 
cost) against precautionary storage to ensure energy is available throughout a long 
peak in net demand. Solving the model numerically under uncertainty (only the 
transition probabilities to future loads are known), we compare the results to per-
fect foresight findings. The latter over-estimate the cost-saving potential of energy 
storage by 27%, as storage can take up arbitrage opportunities that would not be 
chosen if there was a need for precautionary storage. 
Keywords: Electricity Storage, Uncertainty, Stochastic Electricity System 
Model, Precautionary Storage
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1. INTRODUCTION

Electricity storage has the technical potential to increase the efficiency of electrical systems 
significantly—especially in the context of integrating intermittent renewable technologies. This is 
achieved by shifting energy from periods with a low valuation of electricity (due to low demand or 
high renewable generation) to periods of high valuation (high demand and low renewable genera-
tion). Thus, the share of electricity generated in expensive peak load power plants can be reduced 
and the share generated by cheaper medium-load power plants can be increased. Additional effi-
ciency gains can come from adapting generation capacity to the post-storage load—with a higher 
base load and lower peak load share. 

As capacities are adapted to high levels of electricity storage, the available generation 
capacity will sometimes fall below peak load level, because the storage is a substitute for peak load 
generation and cutting capacity reduces system costs. But since electricity storage technologies are 
limited both in the amount of power (MW) they can discharge and the amount of energy (MWh) that 
they can store, a prolonged demand peak coinciding with low renewable generation raises the risk of 
outages. The per-MWh costs of unanticipated load-shedding are far higher than the per-MWh gains 

a	 Imperial College Business School, London, SW7 2AZ, United Kingdom.
*	 Corresponding author. E-mail: r.green@imperial.ac.uk.
 
The Energy Journal, Vol. 41, No. 2. This is an open access article under the terms of the Creative Commons Attribution
License (CC-BY), which permits use, distribution and reproduction in any medium, provided the original work is properly
cited. All rights reserved.



2 / The Energy Journal

Open Access Article

from adjusting generation capacity and scheduling. Furthermore, electricity demand and renewable 
generation are uncertain.

Arbitrage from storage requires charging when prices are low and discharging when they 
are high. We show that it is optimal to limit discharging, or even to charge the store at times of high 
prices, if it is holding relatively low amounts of energy. This reduces the risk of a future power cut 
in the event of an extreme demand pattern, even if it forgoes the arbitrage profit and immediate cost 
saving that could be made in the short term. As an anonymous referee has pointed out, this could 
be seen as a strategy of patient arbitrage—holding back energy in the hope of the very high prices 
likely to accompany extreme demands—but we give it the name “precautionary storage”, since it is 
a response to the uncertainty of electricity demand that would not be seen in a deterministic model. 
We show the relevance of this precautionary storage in a stochastic model that integrates short-term 
operations and long-term investment decisions. We model explicit technologies with a step function 
for marginal cost, even though this makes derivative-based approaches to the solution of stochastic 
dynamic problems impossible.

While there are numerous stochastic modelling approaches in electricity systems (see over-
views by Wallace and Fleten (2003), Kallrath et al. (2009), Möst and Keles (2010) or Rebennack 
and Kallrath (2017)), relatively few deal with storage. Sioshansi et al. (2009) and Teng et al. (2012) 
apply the price taker assumption thus abstracting from the endogenous character of precautionary 
storage in the energy system. A literature overview of the value of storage can be found in Zucker et 
al (2013). Cruise and Zachary (2015) and Durmaz (2016) explicitly deal with precautionary storage. 
However, the endogenous capacity component is not considered. Powell et al. (2012) do consider 
capacity expansion in a stochastic model, comparing solution techniques. They find that precaution-
ary storage is optimal when using Approximate Dynamic Programming, but is not seen when using 
a scenario-based approach and taking advantage of perfect knowledge within each scenario. 

We set up a stochastic welfare maximization model for the electricity system with stor-
age and derive a jointly optimal strategy for storage, for the (perfectly coordinated) conventional 
generation outputs and for capacity decisions under residual load uncertainty. We solve the model 
numerically and analyse the optimal strategy and capacities. To keep things simpler, residual load is 
considered as the only stochastic driver.

This residual load exhibits diurnal, weekly and seasonal patterns which make the stochas-
tic optimization time inhomogeneous. These problems are almost insolvable with numerical tech-
niques, not to mention analytical ones. Commonly-used approaches to the solution focus on numer-
ical solutions taking either the short- or the long-run perspective. As these exclusive approaches 
are not well suited to this analysis we abstract from seasonal, (e.g. Simonsen et al., 2004) time 
inhomogeneity and unit commitment modelling and apply a Markov Decision Process framework 
with a diurnal structure to a merit order stack. The Markovian approach and its efficient handling 
of stationarity opens a feasible way to interpret the long term as the “sum” of many short periods 
thereby neatly unifying short and long-term perspectives.

To be specific, the expected costs of generation with storage under capacity constraints to 
meet a stochastic residual load are approximated by an infinitely repeated “representative” 24-hour 
average cost minimization problem. This “representative” stage is scaled up to a year in length and 
the resulting total operating costs are combined with the annualised capacity cost. The model allows 
the expected system cost to be minimized under uncertainty, considering simultaneously the optimal 
generation investment and operating decisions for generation and storage.

Unfortunately, the optimization problem as stated here is non-convex. To determine the 
global optimum we propose the following algorithm: In the short-term stage, the storage strategy 
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and generation (by merit order dispatch of a set of conventional generation technologies) are op-
timised as a stationary Markov Decision Process given the generation capacities. The resulting 
expected load-duration curve is submitted to the long-term stage and capacities are incrementally 
updated according to a screening-curve approach.1 These two steps are iterated until a fixed point 
is reached. A fixed point is a solution candidate for the global optimization problem; we compare it 
with any other fixed points and select the best. In this paper, we take the capacity of storage as fixed, 
but a further iterative process could find its optimal value, given costs and loads.

This algorithm is applied to solve two case studies. First, we specify the model to a simple 
case with only two generation technologies. We compare a strategy that takes every opportunity for 
arbitrage with the optimal strategy. In some states of the world, it is optimal to keep more energy in 
the store than under full arbitrage, in order to reduce the risk of losing load once the store is fully 
discharged. We show how the optimal strategy depends on the Value of Lost Load. If power cuts 
are cheap, it may not be worth missing out on arbitrage profits to reduce the risk of running out of 
energy, while if losing load is costly enough, it will be optimal to keep enough generating capacity 
to always meet demand in full. This in turn would allow storage to follow an arbitrage strategy with 
no risk of causing power cuts.

Our second case study represents Germany in 2011–15, with 300 GWh of storage capac-
ity (6 hours average load), and five conventional generation technologies with empirical fixed and 
variable cost. The Markov process for the residual load is estimated from five years of hourly data. 
Under these more realistic conditions precautionary storage occurs as capacity is reduced below 
peak load. The strategies are qualitatively similar to those in the simple case but the quantitative ex-
tent could be determined more realistically. In comparison to perfect foresight analyses, uncertainty 
reduces the gain from storage by 27%, as energy is held back for precautionary reasons. This could 
be an overestimate of the difference, as some more information on future loads will be available due 
to weather forecasts, an issue we explore in follow-up work (Geske and Green, 2018); on the other 
hand, we ignore uncertainty over generator outages.

The article is structured as follows: First in section 2 the general setting of a stochas-
tic dynamic electricity system model with fossil generation technologies and storage as a Markov 
Decision Process is introduced and the solution algorithm is proposed. We show in Section 3 that 
the residual load can be estimated as a Markov Process, using hourly load data for 2011–2015 in 
Germany. Based on the modelling environment of Section 2 and a simplified version of the esti-
mated Markov process in Section 3, in Section 4 a two-technology storage and generation model is 
presented. This analysis is empirically refined in Section 5 with our calibration to Germany in 2011–
2015. The model is solved numerically and the optimal storage strategy is presented. Sensitivities 
with respect to storage capacities and a comparison to perfect foresight deepen the understanding 
of the storage strategy and the impact of the uncertainty. In Section 6 we draw conclusions for the 
implementation of the optimal strategy in a market environment. 

2. STOCHASTIC ELECTRICITY SYSTEM MODEL

In the following section, welfare-maximizing capacities, outputs and storage decisions are 
determined to derive the social value of electricity storage. Welfare is interpreted in terms of min-
imising the annualised system cost of meeting the demand for electricity, or occasionally leaving 
some unserved at a cost of VoLL, the Value of Lost Load. The demand to be met, Dt, is the load net of 

1.  Powell et al. (2012) use a related approach, breaking a large problem into a sequence of small linear programs, in 
solving their SMART model.
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the output of variable renewable generators such as wind and solar plants. Electricity can be gener-
ated by a portfolio of non-intermittent technologies, which we model as a merit order stack, deploy-
ing them in order of increasing variable cost without considering dynamic constraints. The vector 

0≥tx  describes production levels for each non-intermittent generation technology in hour t. tx  is 
limited by capacities k that have to be set in advance, so that ≤tx k. ts  corresponds to the charging 
(positive values) or discharging (negative) of the storage in hour t. We follow the common practice 
and include a lost load option thus demand need not be met in full if this would lower system costs.2 
The cost of any shortfall is modelled as a term in the objective function: ( )+⋅ + −∑t t tVoLL D s x .

Generators have fixed costs per unit of capacity, given by the vector cfix, and variable costs 
per unit of output, given by the vector cvar. As we are interested in expected cost over a year, we use 
annualised fixed cost plus a year’s worth of the expectation of variable costs over an infinite period.3

The residual load is assumed to evolve according to a Markov process represented by the 
diurnal transition probabilities ( )| ,′i jProb D D h . To introduce a diurnal residual load structure an 
additional “time of the day” state variable ( )h t  is introduced, making the transition matrix vary with 
the time of day. This reflects the way in which diurnal patterns of load and renewable generation 
will affect the optimal storage strategy. Its quantification and the adequacy of this assumption will 
be discussed in the following Section 3. Thus, the time homogenous laws of motion of the dynamic 
state variables are described as transition probabilities

( ) ( )( ) ( ) 1 , 1  mod24
, , | , , , | ,

0
′ = + = +′ ′ ′ ′= 



′i j
i i j j i j

S S s h h
Prob D S h D S h s Prob D D h

else
 (1)

Unlike in the perfect foresight model, in the case of uncertainty after retrieving information 
on the latest residual load many different following residual load states have to be considered. These 
requirements are met in the Markov Decision Process approach by the determination of an optimal 
strategy (policy).4 This will depend upon the state of the system ( ), , , , ˆ

t tS D k h S , described by the 
state of charge tS  [GWh] ( ˆ 0≥ ≥tS S ), the residual load level tD , the initially determined technolo-
gy-specific generation capacities k and the capacity of storage Ŝ. The hour of a day is associated to 
the period number t via the function ( ) ( )1  mod24 1= − +h t t .5 

A strategy π  consists of a set of decision rules tf , one for each time period, ( )1 2, ,π = …f f .  
Each decision rule assigns in practice a single action—the level of non-intermittent generation tx  
and the change of the state of charge (SOC) ts  ( ) ( ), , , , , ˆ=t t t t ts x f S D k h S  at each state ( ), , , , ˆ

t tS D k h S .  
The formalism follows Ross (1983) and Puttermann (1994) including a distribution (probably de-
generate) over the admissible actions. MDP analyses focus on finding a time homogenous (station-
ary) decision rule ( ), ,π = …f f .6 Using these definitions, the optimization of the energy system, 
with residual load modelled by the Markov Chain ( )1 |+t tP D D  can be described as a Markov Deci-

2.  Modeling the VoLL reminds us of the “penalty” approach to the numerical solution of constrained nonlinear optimi-
zation problems. This analogy can be used to apply an (intuitive) theorem that sheds light on the modelling approach: The 
penalty solution converges to the solution of the constrained problem, as VoLL tends to infinity. Proof: penalty methods e.g. 
Luenberger (1984).

3.  Tijms (2003, p.234) explains: “For many applications of Markov decision theory this criterion is the most appropriate 
optimality criterion. The average cost criterion is particularly appropriate when many state transitions occur in a relatively 
short time.”

4.  For an introduction to the topic see (e.g.) Puterman (1994), Hernandez-Lerma and Lasserre (1996), Bertsekas (2001, 
2005), Feinberg and Shwartz (2002) or Baeuerle and Rieder (2011).

5.  The modulo (mod) operation finds the remainder if dividing the number of the hour by 24. The plus 1 and minus 1 in 
the equation ensure that time runs from hour 1 to hour 24, and not from hour 1 to hour 0 (via hour 23).

6.  Note that since we use 24 different transition matrices, our decision rule does depend on the hour of the day (which 
appears as one of its state variables), but it is stationary between days.
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sion Process. Therefore, the simplifying approximation of a long but finite horizon by an infinite one 
is applied. The optimal strategy is a solution of the problem

( ), ,
1

1min  lim E  π
+

→∞
=

 
+ + ⋅ + −∑ 

 
∑

T
fix var

k x t t t tT
t

c k T c x VoLL D s x
T

 (2)

considering the state transitions (1) and the storage capacity Ŝ.
In absence of any dynamic restrictions the optimization of the generation outputs tx  follows 

a merit order. The cheapest technology—in terms of variable cost—is used first; once its capacity 
is exhausted (we need xt ≤ kt), then the second cheapest technology is applied and so on. This gives 
rise to an aggregated variable cost step function ( )varC L , where L is the (residual) load plus storage 
charging. Load (net of storage discharge) that exceeds the installed generation capacity is treated as 
having a cost of VoLL. Inserting both into (2) gives

( ) ( ) ( ),
1

1min ,  lim E  |π π +

→∞
=

 
= + + + ⋅ + −∑ 

 
∑

T
fix var

k t t t tT
t

C k c k T C D s k VoLL D s k
T

 (3)

Details of the numerical solution to the stochastic optimization problem can be found in the 
appendix. In section 5.5 this solution will be compared to an equivalent perfect foresight problem. 
In this case a period of five years in hourly resolution is simulated for specific draws of the residual 
load tD  generated by the Markov process defined in Section 3. The resulting costs are annualised 
as in the stochastic model. The welfare-maximizing capacity-, output- and storage-decisions under 
the perfect foresight assumption are the solution of the following problem with T = 365×24×5 and 
T  = 365×24:

( ), ,
1

min
=

+ + ⋅∑t t

T
fix var

x k s t t
t

Tc k c x VoLL y
T

 (4)

s.t.:  ≥ + −t t t ty D s x  (5)

1 0ˆ
−≥ = + ≥t t tS S S s

≥ ts s  (6)

0≥ ≥tk x  (7)

0≥ty  (8)

ty  is the amount of energy potentially not covered by generation capacities { }0,5,10,15,∈ …ik .  
tx  is the generation level, ts  the change in the state of charge tS . s  refers to the maximum charging 

and discharging capacity of storage. 

3. RESIDUAL LOAD

This section asks how valid it is to model the hourly residual load in Germany as a 24-hour 
or diurnal Markov Chain with 5 GW steps.7 Our data period is from 2011 to 2015. We start with the 
total hourly load on the power system as given by ENTSO-E, which excludes self-generation by in-
dustry. We subtract renewable generation—in the case of Germany, mainly wind and solar power—

7.  See Shamshad et al. (2003) and Brokish and Kirtley (2009) for a discussion of Markov Load modelling.
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to get our residual load (Table 1).8 To eliminate the impact of an increasing share of solar and wind 
generation, we use the actual hourly load factors scaled by the maximum generation in 2015.

The annual load in Germany amounts to 480 TWh. Wind stations generated 13% of this 
load and 7% came from solar PV panels. We model the residual load, which is thus reduced to 80% 
of the gross demand. The peak (gross) load is 79 GW. At their peaks, 33 GW of wind power and 26 
GW of solar electricity are produced. Nevertheless, the residual load for thermal generators peaks at 
78 GW, since high demand can coincide with very low levels of intermittent renewable generation. 
The gross load will never fall below 29 GW; the minimum of the residual load, however, is only one 
seventh of this lower bound (4 GW). It is obvious that renewables a) cover a substantial share of the 
load (20%), b) lower the minimum load to almost zero but c) hardly decrease peak load. The residual 
load duration curve is shown as the continuous line in Figure 1.

For this residual load a Markov process of transition matrices hP  with h = 1, …, 24 rounded 
to 5 GW steps is estimated. The (consistent) maximum likelihood estimators of the transition matrix 
of a homogeneous Markov chain are the numbers of state transitions normalized per line. The 16x16 
matrix P1 gives the probability of reaching each load step in period 2, given the load in period 1, and 
so on. The probability of reaching each load step in period 3, relative to the load in period 1, is thus 
P1 ∙ P2. The steady state distribution of load values at t=1, p1

*, is derived by solving the equation p1
* = 

p1
* ∙ P1 ∙ … ∙ P24. The stationary distributions for each hour are presented in Table 2A and visualized 

in Figure 2. It is clear that the residual load variance during the night is lower than during the day. 
There are 2 peaks at around 8 am and 5pm. Peak load (which is represented by a step at 80 GW) is 
reached at 5 pm (Table 2A). 

The stationary probabilities are weighted by 1/24 and aggregated over the day to give the 
load duration (Table 2B). The latter matches the average residual load of Table 1 to within 0.01 GW. 
In terms of the load-duration curve (Figure 1), the step function of our discretised load is a reason-
able approximation. When modelling energy storage, the pattern of load over time is critical, and an 
anonymous referee has wondered whether the Markov Chain contains enough serial correlation to 
properly model the risk of a low-wind weather regime (Staffell and Pfenninger, 2018) lasting several 
days that could deplete storage during a long period of high demands. In Section 5.5 below, we run 
simulations over 100 draws from the Markov process, and observe a number of these events, which 
lead to lost load even when storage is optimised with perfect foresight. This implies that the Markov 
approach is able to capture this risk. Nonetheless, annual transition matrices may allow the system 

8.  Load data are taken from ENTSO-E. These values do not cover all the load in Germany, because industry’s produc-
tion for own consumption and German railways are not included, since hourly values are not available. Annual data from 
ENTSO-E or BMWI Energiedaten which include these loads are in a range of 530 to more than 600 TWh. For the purpose of 
the paper, this is not of major importance. Wind and solar generation are the sum of TSO estimates from Amprion, 50Hertz, 
TenneT and Transnet BW. All data have been accessed via http://www.pfbach.dk/firma_pfb/time_series/ts.php.

Table 1: �Benchmarks of Simulated Residual Load in Germany  
(2011–2015)

Load Wind Solar Residual Load

Average annual total (TWh) 480 63 34 382
Day Mean (GW) 1316 174 94 1047
Hourly Mean (GW) 55 7 4 44
Max (GW) 79 33 26 78
Min (GW) 29 0 0 4
Renewable share of Load (%) 13 7

http://www.pfbach.dk/firma_pfb/time_series/ts.php
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to move from high through medium to low residual demand too easily,9 and using seasonal matrices 
would keep the winter system mainly in a state of medium or high demand with more serial correla-
tion. This is a matter for future research; in this paper, we next explain our optimisation approach 
with a simple example.

9.  The issue is that the same absolute demand level might represent either a summer day of above-average demands 
or a winter day of below-average demands. In summer, it is very unlikely that the demand would get higher, and probable 
that it will fall; the opposite is the case in winter. Annual transition matrices allow the demand to either rise or fall. Separate 
seasonal transition matrices would produce longer sequences of low-medium (summer) and high-medium (winter) demands. 

Figure 1: �Load Duration: German Data 2011–2015 (continuous line), Stationary 
Distribution of the 24h-Markov Process in 5 GW Steps (bars)

Figure 2: �Interpolated Discrete Densities of the Stationary Distributions of the 24-hour 
Residual Load Markov Process, with 0.5%, 5%, 20%, 50%, 80%, 95% and 99.9% 
Quantiles.
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4. CASE 1: “MINIMAL” ENERGY SYSTEM MODEL

We start with a small-scale model to give intuition for the use of storage, since we are not 
aware of any analytical solution of the optimization over Markov chains. In our model electricity is 
generated by a base load and a peak load technology. The peak load technology has double the vari-

Table 2A: Stationary Distributions [%] of Residual Load Levels by Time of the Day
Residual 

Load Residual load distribution by hour of the day [% per hour]

GW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

80 0.1
75 0 0 0 0 0 0 0 0 0 1 1 0
70 1 2 2 1 1 1 1 1 1 2 5 5 4 0
65 0 7 8 6 5 5 4 4 4 5 7 7 9 10 5 1 0
60 5 14 13 10 9 8 7 7 7 7 7 9 13 16 16 9 3 1 0
55 0 0 0 0 2 16 18 18 15 12 11 10 9 8 8 10 15 20 22 23 22 14 4 1
50 4 3 3 5 10 20 17 17 17 16 16 14 13 13 15 17 19 18 17 20 25 25 15 7
45 14 11 12 15 22 17 10 11 16 18 18 17 17 17 17 17 15 13 13 16 19 26 27 19
40 28 26 27 28 25 12 10 11 12 13 15 16 15 15 15 13 11 10 10 11 13 18 28 31
35 29 30 29 25 20 12 9 9 9 10 11 12 13 12 11 11 9 8 5 5 7 8 14 23
30 14 17 17 15 11 9 7 6 7 7 8 9 10 10 9 9 6 3 2 2 3 4 8 11
25 7 8 8 7 6 4 4 3 4 5 5 6 7 8 7 5 2 1 0 1 2 2 3 5
20 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 2 1 0 0 0 0 0 1 2
15 1 1 1 2 1 1 1 1 0 1 1 1 2 2 1 1 0 0 0 0 0 1
10 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
5 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

Mean 36 35 35 36 39 43 47 48 47 45 45 43 42 42 43 45 49 51 52 50 48 45 41 38

Zeroes represent values of less than 0.5%. Each column sums up to 100.

Table 2B: Expected Load and Corresponding Generation
Expected Residual Load Generation without storage

Residual Load Frequencies Duration Technologies Capacities Break even

GW % % GW %

80   0.002     0.002 Lost Load 5   0.03
75   0.13     0.13 C Turbine 5
70   1.08     1.21 C Turbine 5
65   3.60     4.81 C Turbine 5
60   6.67   11.48 C Turbine 5 15.5
55 10.80   22.29 C Cycle 5
50 14.45   36.74 C Cycle 5 42.5
45 16.46   53.20 Coal 5
40 17.18   70.38 Coal 5 73.8
35 13.72   84.10 Lignite 5
30   8.45   92.55 Lignite 5 92.9
25   4.51   97.06 Nuclear 5
20   1.87   98.93 Nuclear 5
15   0.81   99.74 Nuclear 5
10   0.23   99.97 Nuclear 5
  5   0.03 100.00 Nuclear 5

Sum 100 Total 80

The “expected frequencies” column gives the mean value across each row (and also sums to 100). 
The “expected duration” column gives the cumulative percentage of periods in which residual load 
is at or above the level given in that row. The next columns give the type of generator that would be 
selected to serve each load block in a model without storage, on the basis of costs presented in Table 
6 below, which lead to the break-even load factors (at which adjacent technologies have equal costs) 
shown in the final column.
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able cost of the base load technology, but much lower fixed costs (Table 3). Losing load involves no 
fixed costs, but four times the variable costs of peak load generation. Total costs are the sum of the 
expected per-period variable cost multiplied by 100 periods and fixed cost. The bottom row gives 
the break-even load factors at which the two adjoining technologies would have equal total costs.10 
For these parameters, it is efficient to shed load instead of building peak capacity that would have 
a load factor of less than 3%, and base load capacity should run with a load factor of 75% or more.

It is assumed that residual load can take discrete values from 1 to 5 and follows a mean-re-
verting and persistent Markov process like the one estimated in the previous section (Table 4).  
Without storage generation equals residual load and it is straightforward to determine the expected 
load duration as stationary probabilities of the process: (100, 93.6, 74.5, 23.4, 4.3) [in % starting 
with the lowest level]. The screening-curve approach then gives optimal capacities as 2 base load 
units and 3 of peaking, with no load lost, which we write as the vector (2,3,0). Total system costs 
are 637. 

We now introduce storage with (energy and power) capacity of 3 units. The state of charge 
can take values from 0 to 3. Each state is now described by a residual load value and the state of 
charge. The state transition including the strategy defines a Markov Chain whose stationary distri-
bution can be determined by solving a linear equation system. We represent this strategy in Figure 
3. The level of demand is on the horizontal axis, and the state of charge at the start of the period 
on the vertical. The upper row of numbers in each circle give the state of charge at the start of the 
period and demand level—the top left circle (S3/D1) has storage of 3 units and demand of 1. The 
lower number gives the chosen level of generation in a strategy—some cells contain two numbers 
as we consider alternative strategies. Generation is equal to the level of demand, plus the amount 
of storage charging, less discharging. The arrows show the amount of charging or discharging and 
hence the state of charge in the next period, but do not represent the possibility that the level of de-
mand will change. The two cells with dotted outlines are never reached, given the strategy chosen.11 

10.  The break-even load factor (expressed as a fraction) equals (Fixed CostsA—Fixed CostsB) ÷ (Variable CostsB –Vari-
able CostsA) where Fixed Costs are annualised and the variable costs are the total amount for a whole year’s operation at full 
capacity.

11.  For example, the left-hand column, with a demand of 1, can only be reached after a period with demand of 1 or 2, but 
the strategy for periods with those demands gives a minimum storage level of 1 in the following period (from cell S0/D2), 
and so we would never get to cell S0/D1.

Table 3: �Technology Parameters and Break-even 
Utilization

Technologies Lost Load Peak Base

Fixed cost 0 18 93
Variable cost 8   2   1
Breakeven load factors 3% 75%

Table 4: Residual Load Transition Matrix 

( )

1/ 2 1/ 2 0 0 0
1/ 6 1/ 2 2 / 6 0 0

| 0 1/ 8 3 / 4 1/ 8 0
0 0 2 / 6 1/ 2 1/ 6
0 0 0 3 / 4 1/ 4

 
 
 
 =
 
 
 
 

i jProb D D

(load level 1,1 is in the upper left cell)
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A purely arbitrage-driven (“Full Arbitrage”) strategy without precautionary motives would 
attempt to equilibrate generation levels perfectly—in this case to 3 units of generation. If demand 
equals 2 units (the second column), 3 units can be generated and 1 placed into storage, shown by 
the vertical arrows pointing up. This is not possible if the storage is already full (in the top row) and 
so generation in that cell falls to 2 units. Similarly, with demand of 4 units (the fourth column), 1 
unit can be taken from storage (the vertical arrows pointing down), except in the bottom row, when 
storage is empty and a fourth unit must be generated. Only 1 unit can be generated in the top left 
cell, and 5 units of generation (possibly including “generation” by declaring a loss of load event) 
are required in the bottom right cell. This is the strategy represented by the black numbers and solid 
lines in Figure 3. It is straightforward to determine the stationary probability of each state, the ex-
pected level of output from each generator and hence optimal capacities, all shown in Table 5. As 
there is less variation in the resulting load compared to the model without storage, a unit of peak 
load generation is substituted by base load, giving capacities (3, 2, 0). Total costs are reduced by 1%. 
The right-hand column of the probability matrix shows that the storage is fully charged for 40.8% 
of the time, and fully discharged for 38.6%.

We now consider deviations from the “full arbitrage” charging strategy that reduce the risk 
of high generation levels and further reduce costs. With change A (Figure 3), generation in cell S2/
D5 is increased to 4 (the second number, in grey) so that discharging is reduced by 1 unit (the grey 
dashed line). Thus, if in the next period residual load would stay at 5 then generation level 5 could 
be avoided. This changes the stationary probabilities and the load duration: the probability to reach 
generation level 5 is reduced by a third of the level with full arbitrage. In the same way, it is possible 
to modify the full arbitrage strategy by changes A, B and C (Figure 3) and determine the resulting 
load duration and costs (Table 5). 

Figure 3: Strategy as a Function of Residual Load and State of Charge

Graph visualizing a strategy = the change in state of charge defined for any state as arrows. A, B and C (etc.) indicate local 
changes in the strategy. The graph is a pre-step to the complete graph of the Markov Chain that also includes the residual 
load transitions. The lower numbers give the state-specific generation after charging/discharging. Dotted states are not 
reached.
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With these changes, the probability of an empty storage falls from 38.6% to 9.5%—par-
ticularly, the probability of reaching load level 5 with an empty storage halves from 3.5% to 1.9%. 
Thus, losing load appears sufficiently rare to be acceptable and generation capacity is reduced to 
four units. This comes at the cost that generation in the states S0/D3, S1/D4 and S2/D5 increases 
from 3 to 4. Additional changes to the strategy (D, E, F and G; Figure 3) further halve the probability 
of reaching load level 5 with an empty storage. Total costs are 1.4% lower than with the “full arbi-
trage” strategy. This strategy (found with the algorithm described in Appendix I, checked by brute 
force) proves to be optimal. Further changes to the strategy could reduce the loss of load probability 
below 0.7% but the storage would be discharged less. This means it less frequently substitutes for 
peak generation, reducing the benefits of having the storage. This means that making the strategy 
more precautionary is not the best option.

The attractiveness of precautionary strategies depends on VoLL. Deviations D, E, F and G 
reduce the loss of load probability by 1.2%, but they also reduce the 100-period output of the base-
load generators by 3.9 units (= (79.5%–76.1% + 94.1%–93.6%) x 100). The precautionary strategy 
gives a greater probability of entering a low-demand state with high levels of storage, when the 
baseload generators cannot all run. Since peaking generators with a variable cost of 2 are used to 
charge that storage, instead of baseload generators with a variable cost of 1, the change adds 3.9 to 
generation costs. Reducing lost load by 1.2 units gives a net saving of 7.2 (VoLL of 8 per unit, less 
the variable cost of the peaking generator, which is 2 per unit). If VoLL were lower, however, equal 
to 5 or less, those four deviations (taken together) would not be worthwhile, since the net saving 
from avoiding lost load has fallen to 3 per unit. Over 100 periods, the three deviations would save 
3.6 from avoiding lost loads, less than the 3.9 cost of substituting peaking for baseload generation.

If VoLL were higher, on the other hand, precautionary strategies might also be sub-optimal. 
Adopting deviations A-G gives a loss of load probability of 0.7%, in return for saving the 18-unit 
cost of a peaking generator. If VoLL were 32, the net cost of a unit of lost load would be 30, and 
the expected cost of unserved energy over 100 periods would be 21. That makes the precautionary 
strategy presented here worse than the full arbitrage strategy with enough generating capacity to 
always serve the load.

Hence, there is a window of VoLL such that precautionary storage strategies together with 
the substitution of generation capacity are optimal. But can we expect this window to include real-
istic levels of VoLL and persist under more realistic conditions? This question is addressed in the 
next section. 

Table 5: Results from the Simple Model, given Storage Strategies:
“Full Arbitrage” “Full Arbitrage” + A-C “Full Arbitrage” + A-G (optimal)

Stationary probabilities of the states and row total [%]

5.6 13.0 19.6 2.5 0 40.8
0.3 1.7 5.9 2.0 0.4 10.3
0.4 2.0 5.9 1.7 0.3 10.3
0 2.5 19.6 13.0 3.5 38.6

� �
� �
� �
� �
� �� �
� �

5.9 14.1 21.9 2.7 0 44.7

0.5 2.3 7.3 2.3 0.5 12.8

0 2.7 20 8.4 1.9 33.1

0 0 1.9 5.7 1.9 9.5

� �
� �
� �
� �
� �� �
� �

6.4 17.5 38.1 9.5 1.6 73.1

0 1.6 11.0 5.4 1.3 19.4

0 0.1 1.2 2.1 0.7 4.1

0 0 0.7 2.0 0.7 3.4

� �
� �
� �
� �
� �� �
� �

Expected Load duration for generators, taking account of storage (dis)charging, cumulated

 (100, 94.4, 81.0, 16.9, 3.5) (100, 94.1, 79.5, 20.3, 1.9) (100, 93.6, 76.1, 25.3, 0.7)

Optimal generation capacities (Base, Peak, Lost Load)

(3, 2, 0) (3, 1, 1) (3, 1, 1)

Total cost [%] relative to those without storage

–1% –1.8% –2.4%
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5. CASE 2: “REAL WORLD” ENERGY SYSTEM MODEL

We now apply our model to the German load data from Section 3 with generator cost data 
based on Schröder et al. (2013). In our central case, we analyse the impact of adding storage with a 
charging/discharging capacity of 30 GW and an energy capacity of 300 GWh (equivalent to 6 hours 
of average load in Germany; for an overview of storage potential in Europe see Ess et al. (2012)).

Table 6 presents the costs for five types of plant, with investment costs converted to an-
nuities at an interest rate of 9%. The bottom row gives the load factors at which two adjacent plant 
types have equal costs over the year. Nuclear plants (with low variable costs but the highest fixed 
costs) are the cheapest option if they can run at a load factor of more than 93%; lignite for load 
factors between 74% and 93%, and so on. We present our results in terms of costs over one year, 
scaling the representative 24 hours by a factor of 365. The grid size for the levels of residual demand 
is set to 5 GW. 

Table 6: Cost Data and Break-even Load Factors

Technology Nuclear Lignite Coal
Combined 

Cycle
Combust 
Turbine Lost Load

Variable Costa €/MWh   14   38   42   59 94 18,000
Fixed Costb €/kW-year 387 189 163 103 55           0
Breakeven load factor % 93 74 43 16 0.03=3h/a

Source: derived from Schröder et al. (2013).
a (Fuel + variable O&M)
b (Capital cost and fixed O&M)

Following e.g. Qiu and Girgis (1993), the social planner can decide upon capacity and 
production in a way that some demand is not met, incurring a cost of VoLL instead, if this reduces 
system costs. Therefore, losing load was modelled as the application of a virtual technology with 
variable costs of VoLL and without fixed costs. We calibrated it to a reliability target of 1 day per ten 
years or 3.5 hours per year (Enernex, 2006)12 by assuming that losing load ‘breaks even’ with the 
most expensive technology—a combustion turbine—for the highest 3.5 hours of load per year. The 
implicit VoLL exceeds the variable cost of the combustion turbine by 200 times. 

We run several versions of the model, with and without storage; with perfect foresight and 
with no ability to predict the future beyond the probability distributions of the Markov process. First 
(Section 5.1), we validate our discrete Markov process for demand by comparing the outcomes—
with perfect foresight in all cases—for the actual (continuous) loads and for the Markov process, 
with and without storage. We took 100 draws of the Markov process, ran the model (with perfect 
foresight) for each of these, and calculated the means of the results. We find a very close agreement 
in optimal capacities and in costs for the cases with no storage. The two cases with storage are 
slightly further apart, but still acceptable.

We then (Section 5.2) present three scenarios for the Markov process, our core results. 
First, we calculate the optimum strategy for a scenario with no storage. Second, we add 300 GWh of 
storage energy capacity, with 30 GW of power capacity, and find the optimal operating and invest-
ment strategy for storage and conventional generation. Conventional generating capacity is signifi-
cantly less than the maximum demand of 80 GW, and so the optimal storage strategy involves some 
precautionary storage, forgoing short-run arbitrage opportunities in order to retain energy in case of 

12.  As a rule of thumb for a system-wide loss of load, commercial users estimate it at several thousand €/MWh. For a 
literature review see London Economics (2013a,b) or Growitsch et al. (2013).
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a prolonged period of high demand. We discuss this scenario in some detail, as it contains our main 
results on how precautionary storage would work in practice. We also compare it with a scenario in 
which we optimise storage, holding conventional generation capacities constant, and find that just 
over half the value of storage comes from the ability to adjust the capacity mix in response to the 
new output-duration curve.

We follow these with four additional scenarios (Section 5.3) for the Markov process, vary-
ing first the energy and then the power capacity of storage. This allows us to calculate how the value 
of storage varies with each dimension of capacity. For the scenarios that we tested, the value of 
storage is more sensitive to its energy capacity than to its power capacity. 

In Section 5.4, we consider two scenarios in which it is considered socially unacceptable 
for the system operator to shed load, and so total generating capacity is held at the level of maximum 
demand (80 GW). One scenario has no storage capacity, while the other adds our base-case amount 
of storage (300 GWh and 30 GW). This storage is used for optimal arbitrage and not for precau-
tionary reasons, since there is always enough generation capacity (the model assumes there are no 
outages). While there are still benefits from adjusting the mix of capacity types, the overall gain 
from storage is roughly halved compared to scenarios where occasionally losing load is optimal. 

Finally, in Section 5.5 we compare our results under uncertainty with the perfect foresight 
findings based on Markov simulations of residual load as validated in Section 5.1. We find that the 
value of storage under uncertainty is 27% lower than in the model with perfect foresight.

The results are presented in Tables 7A and 7B. Each scenario is numbered from 1 to 15 
according to its order in those tables; we use the abbreviation PF for scenarios with perfect foresight, 
and MPS for the Markov Process Strategies. The PF scenarios are further distinguished by the use of 
the original continuous load (PF-C), the actual load rounded to 5-GW steps (PF-RC) and by running 
the Markov process to generate (perfectly foreseen) time series (PF-M). We show the energy and 
the power capacity of the storage with two numbers—scenarios with 0/0 have no storage, whereas 
our base case, 300/30, has 300 GWh of energy capacity and a maximum charge/discharge rate of 30 
GW. Two suffixes show the cases of optimal storage operation for fixed generation capacities (KF) 
and when it is not acceptable to lose load (NLL).

5.1 Validation of Residual Load Generated by a Markov Process

We first validate our Markov process model, comparing results for generation capacities 
and costs against those based on the original load data, assuming perfect foresight. There are two 
steps which might distort our results. First, the data is discretised in 5 GW steps; second, we replace 
the actual sequence of discretised demands with the Markov transition matrices. We need to ensure 
that neither step leads to significant changes. The first step is tested by optimising the model of equa-
tions 4–8 against the original and the discretised loads, first without and then with storage. To test 
the second step, we use the Markov process to generate 100 5-year runs of residual loads, optimise 
the model against each run, and take the average. We solve the deterministic model using CPLEX 
in GAMS; a typical deterministic run takes 2 minutes on a standard laptop. As well as validating the 
model against a more traditional approach, these perfect foresight runs can be compared with our 
later results to show the effect of ignoring uncertainty.

The results without storage (1. PF-C 0/0, 2. PF-RC 0/0 and 3. PF-M 0/0) in the top three 
rows of Tables 7A and 7B are very similar. Optimal capacities differ by less than 2 GW and total 
costs by less than 0.1%. This could be expected as the optimal system defined by equations 4–8 
depends on the residual load duration only—and the stationary Markov process distribution fits the 
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empirical load duration very well, as already discussed in Section 3. Without storage, the optimal 
generation capacity is 75 GW. The occasional loss of 5 GW of load is accepted; the probability of 
an 80 GW residual load is 0.0023%, below the level of 0.035% at which load-shedding breaks even 
with peaking capacity.

With storage and perfect foresight, the differences between 4.PF-C 300/30 and 5.PF-RC 
300/30 caused by rounding are equally small. However, the runs of the Markov process reported 
in 6.PF-M 300/30 do not contain any seasonal patterns, and this reduces generation capacity com-
pared to PF-RC 300/30 by 5 GW of combustion turbines, from 65 GW to 60 GW. This helps reduce 
the total cost of generation by 1.4% compared to 5.PF-RC 300/30. The cost estimates across the 
scenarios with storage therefore remain close, but the value of storage depends on the difference 
between these estimates and those from scenarios without storage. The estimated value of storage 
under perfect foresight (in the final column of Table 7B) is not much affected by rounding, but it 
does increase by 25% (from 4.4 to 5.6 Euro/kWh of storage capacity) when we use the non-seasonal 
Markov process to generate our load series. Intuitively, the Markov process removes seasonal au-
tocorrelation and gives more short-term variability that can be exploited by the storage and results 
in an overestimation of its value. The estimated costs and capacities are close enough, however, to 
support our view that the Markov residual load process is a sensible way to introduce uncertainty 
into an electricity model.

Table 7A: Scenarios of Storage Management and Capacity Adjustment
Storage Generation [GW]

Scenario Code GWh GW Nuc. Lig. Coal C.C. C.T. Total Lost Load

Perfect Foresight results—validation

1. PF-C 0/0   0   0 27   9   9 10 19 75   3
2. PF-RC 0/0   0   0 25 10 10 10 20 75   5
3. PF-M 0/0   0   0 26   9 10 10 20 75   3
4. PF-C 300/30 300 30 34   6   6   5 13 63   0
5. PF-RC 300/30 300 30 35   5   5   5 15 65   0
6. PF-M 300/30 300 30 34   6   5   5 10 60   0*

Core results—optimization with Stochastic Markov Process for residual load

7. MPS 0/0   0   0 25 10 10 10 20 75   5
8. MPS 300/30 KF 300 30 as above

9 .MPS 300/30 300 30 30   5 15   0 10 60 20

Sensitivity: 
Varying storage energy capacity (holding storage power constant) with stochastic residual load

10. MPS 150/30 150 30 30 10   5   5 15 65 15

19. MPS 300/30 300 30 30   5 15   0 10 60 20

11. MPS 450/30 450 30 30   5 15   0 10 60 20

Sensitivity: 
Varying storage power capacity (holding storage energy constant) with stochastic residual load

12. MPS 300/10 300 10 30 10   5   5 15 65 15
13. MPS 300/15 300 15 30   5 15   0 10 60 20

9. MPS 300/30 300 30 30   5 15   0 10 60 20

Sensitivity: 
No need for precautionary storage as conventional capacity kept equal to maximum demand

14. MPS 0/0 NLL   0   0 25 10 10 10 25 80   0
15. MPS 300/30 NLL 300 30 30 10   5   5 30 80   0

* The mean amount of lost load is very close to zero, but there are a few runs where 5 GW of load is occasionally shed
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Table 7B: Scenarios of Storage Management and Capacity Adjustment

Scenario Code Comment
Variable 

Cost
Fixed 
Cost

Total 
Cost

Storage 
Value

€/MWh Mio € Mio € €/kWh

Perfect Foresight results—validation

1. PF-C 0/0 Continuous residual load 2011–15 26.41 15,829 25,923
2. PF-RC 0/0 As above rounded to 5 GW steps 27.69 15,317 25,900
3. PF-M 0/0 Av. Markov residual load process 27.10 15,544 25,896
4. PF-C 300/30 Continuous residual load 2011–15 21.43 16,309 24,500 4.7
5. PF-RC 300/30 As above rounded to 5 GW steps 20.82 16,636 24,592 4.4
6. PF-M 300/30 Av. Markov residual load process 21.34 16,093 24,244 5.6

Core results—optimization with Stochastic Markov Process for residual load

7. MPS 0/0 Optimal cap. with no storage 27.69 15,317 25,899
8. MPS 300/30 KF
9. MPS 300/30 Opt. storage management Capacities fixed

Capacities adjusted
26.30
23.89

15,317
15,547

25,368
24,676

1.8
4.1

Sensitivity: 
Varying storage energy capacity (holding storage power constant) with stochastic residual load

10. MPS 150/30 Power constraint 30 GW 24.35 15,649 24,954 6.3

9. MPS 300/30 Power constraint 30 GW 23.89 15,547 24,676 4.1

11. MPS 450/30 Power constraint 30 GW 23.36 15,547 24,475 3.2

Sensitivity: 
Varying storage power capacity (holding storage energy constant) with stochastic residual load

12. MPS 300/10 Power constraint 10GW 23.93 15,649 24,793 3.7
13. MPS 300/15 Power constraint 15GW 23.93 15,547 24,692 4.0

9. MPS 300/30 Power constraint 30 GW 23.89 15,547 24,676 4.1

Sensitivity: 
No need for precautionary storage as conventional capacity kept equal to maximum demand

14. MPS 0/0 NLL Not acceptable to lose load 27.64 15,590 26,155
15. MPS 300/30 NLL 23.32 16,599 25,511 2.1

Storage is valued by the system cost savings (including investment) relative to the storage capacity.

5.2 Optimisation of the Stochastic Base Case

We now turn to the case of uncertain residual load, based on the diurnal transition probabil-
ities derived in Section 3, with 300 GWh storage and 30 GW un-/loading capacity (9.MPS 300/30). 
The solution algorithm is presented in the appendix, but consists of optimising the operation of gen-
eration and storage as a cost-minimising Markov Decision Problem for fixed capacities, obtaining 
the expected duration curve for generation, and adjusting generation capacities to be optimal for this 
duration curve. The process then iterates until an optimal solution is found (and checked by direct 
comparisons against neighbouring capacity mixes). We implemented our algorithm in Mathematica; 
our central case with storage took 45 minutes on a standard laptop, including some pre-processing 
time. We compare the results to the optimal solution of the stochastic model without storage (7.MPS 
0/0), which depends only on the load-duration curve and is identical to that for the rounded loads 
(2.PF-RC 0/0) presented in the previous section. 

The optimal strategy with storage reduces non-intermittent generation capacity by 15 GW 
from 75 GW to 60 GW (Table 7A). This means that 20 GW of discharge from storage would be re-
quired to meet the peak demand of 80 GW—well within the 30 GW that we have assumed.13 There 

13.  We continue to use the higher power capacity in most of our scenarios to ensure that it does not suddenly become a 
binding constraint affecting the solutions we obtain.
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is a positive, but very small, probability of a post-storage load of more than 60 GW, which would 
occur if a low level of stored energy coincided with a high demand. This probability is low enough 
that accepting the risk of losing load is better than building additional generating capacity.

Moving from the load-duration to the pattern of load over time, Figure 4 confirms that the 
mean pre-storage residual load has the same structure as shown in Figure 2. There is an overnight 
trough, with a morning and a (higher) evening peak separated by a period of intermediate load. 
Figure 2 confirms that there is significant variability around all of these means—in particular, the 
highest possible value of 80 GW was seen at 5 pm, well before the highest mean value at 8 pm. 

On average, storage operation conforms to intuition: loading during the low residual load 
time from midnight until 7 am raises the mean SOC (the top line of Figure 4) from 230 GWh to 
270 GWh. Shaving the 9 am peak reduces the mean SOC to 260GWh, offset by small amounts of 
charging (in expectation) during the afternoon low load around 3 pm. The evening peak gives an-
other period of unloading from 6 pm, with the expected SOC falling back to 230 GWh at midnight. 
The mean post-storage residual load varies far less than the residual load before storage. Thus, it 
confirms the stabilization reached by the storage operation during the day.

Besides these elements of the storage strategy to exploit the expected diurnal scarcity pat-
tern, there are significant strategy elements built in to further deal with the uncertain development of 
the residual load. These elements can be identified by taking a closer look at the aggregate distribu-
tion of storage levels (shown in Figure 5) and the optimal storage strategies.

The SOC is distributed unequally with a median at 85% of the storage capacity (the right-
hand set of lines in Figure 5); close to its upper capacity limit and far away from its lower capacity 
limit.14 This is achieved by establishing a (time-varying) lower threshold SOC that is almost never 
undercut. Figure 6 shows that this threshold is highest (190 GWh) at 8 am, ready for the start of the 
higher-load daytime hours, and lowest at 10 pm (with a value of 110 GWh) when several hours of 
night-time recharging can be expected to follow.

The genesis of this threshold can be derived by examining the optimal charging strategy 
for the high-demand hour 18, shown in Figure 7. In the top right part of the Figure, the storage is 

14.  The differences to the optimal storage operation under perfect foresight will be discussed in Section 5.5.

Figure 4: �Expected Loads and State of Charge (SOC) in the Markov model and SOC in one 
Draw of the Perfect Foresight model based on the Markov Process.
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nearly full and is effectively following a “full arbitrage” strategy. The row of numbers level with the 
230 GWh point on the vertical (state of charge) axis shows that as load rises from 45 GW to 70 GW, 
the storage switches from 5 GW of charging to 20 GW of discharging. The amount of conventional 
generation needed remains at 50 GW, shown in the corresponding area of Figure 8. In both figures, 
states with a very low probability of occurring, given the optimal strategy, are blank. 

Moving down Figure 7, if the store holds less energy, the optimal strategy involves less 
discharging. For example, with a pre-storage load of 60 GW, the optimal strategy with a state of 
charge (an SOC) of 150 GWh or more is to discharge 10 GW and generate 50 GW. If the SOC is 140 
GWh or less, it is best to stop discharging and meet the entire load from generation. This reduces 
the probability of reaching a future load of 65 GW or more (which is greater than the generation 
capacity with this strategy) with insufficient stored energy to avoid lost load.

Figure 5: �Aggregate Distribution of the Storage Level at 8 AM (dashed) and 12 PM (dotted), 
and Diurnal Average (solid)

Figure 6: Lower Level of the State of Charge (solid curve) and Average Load (dashed curve).
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Figure 7: Optimal Charging Strategy in Hour 18

States with probability ≤ 1 in 3x10–6 are blank; lost load marked by white hatching.

Figure 8: Non-intermittent Generation Resulting from the Optimal Charging Strategy

Lost load marked by white hatching
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Similarly, for a pre-storage load of 65 GW, the optimal strategy switches from discharging 
15 GW with an SOC of 180 GWh or more to discharging just 5 GW with an SOC of 170 GWh or 
less. For a load of 55 GW, the strategy even switches to charging (by 5 GW, the maximum possible) 
if the SOC falls to 95 GWh or less. Note that these changes occur long before the SOC has fallen so 
low that higher discharges are physically impossible; we are seeing precautionary storage. Figure 
8 shows that this results in many states with generation of 60 GW, even though the storage could 
physically have been discharged by enough to reduce generation to 50 GW. 

The bottom right corner of Figure 7 shows a few states with cross-hatching, in which some 
load is lost because the sum of generation and storage discharge is less than demand. All of these 
states are rare; the overall probability of losing load is less than 0.004%. In most of these states, the 
amount of stored energy is so low that it is physically impossible to discharge enough electricity to 
fill the gap between demand and generation—consider the case of an empty store and load of 65 
GW when generation capacity is only 60 GW. The diagram does imply that load would be lost in a 
period with demand of 75 GW and an SOC of 15 GWh, which could be physically met by draining 
the store. However, as a 75GW load in hour 18 is certain to be followed by a load of either 70 GW or 
75 GW in hour 19, then load must be lost in one of those two periods and it does not matter which. 

One other feature of the operating strategy deserves comment. In the same way that storage 
is operated to give generation of 50 GW if the residual load is high and the SOC good enough, the 
area at the centre of the top of Figure 8 shows a range of demands for which generation is kept at 30 
GW. Figure 7 reveals that while the very lowest loads lead to charging (unless the store is already 
full), discharging is seen for a load of 35 GW or 40 GW. This would reduce the output from the 7th 
generation unit (which is a lignite unit with a variable cost of €38/MWh) and must imply a high 
probability that the store can be refilled later at a time when a nuclear unit with a variable cost of 
€14/MWh is the marginal generator. For the lowest SOC likely to be seen with a load of 40 GW, the 
store does switch to charging, giving generation of 45 GW, but Figure 8 shows that there are very 
few states with generation at this level at this time. 

While Figures 7 and 8 do not show the probability of reaching each state, or the strategy 
for any other hours, Figure 9 shows the overall load-duration curves, with and without storage. The 
post-storage load-duration has long horizontal segments at 30 GW, 35 GW and (in particular) 50 
GW—there is a 48% probability that generation will equal 50 GW. There is also a 7% probability 
that the full 60 GW of generating capacity will be in use, whereas without storage, the probability 
of needing the last 10 GW of (optimal) capacity was under 1.5%. 

The generation duration curve allows us to identify the optimal capacity mix, although it 
should be remembered that the capacity mix and storage strategy are jointly determined. The dashed 
vertical lines show the break-even points between different generation types, from Table 6. The 
right-hand vertical line and lowest horizontal line show that 30 GW of nuclear capacity is optimal, 
since generation is 30GW or more for more than 93% of the time. The second pair of lines show that 
the 74th percentile of generation is 35 GW, giving an additional 5 GW of Lignite capacity. Note that 
the 16th and 43rd percentiles of generation are identical, at 50 GW, and so there is no need for CCGT 
capacity in this equilibrium. The tenth tranche of capacity runs enough for coal to be the cheapest 
option; the eleventh for so little time that a combustion turbine is cheapest. This particular result is 
brought about by the specific numbers in our case study; we do not claim that it is general. Finally, 
there is a very small probability that “generation” (including lost load) exceeds 60 GW at times of 
high demand and depleted storage, but this is sufficiently rare that it is optimal to keep generation 
capacity at 60 GW. 

Overall, optimal storage operation and capacity adjustment reduced total cost by 4.7%. 
Putting it another way, the value of storage is 4.1 € /kWh of storage capacity (comparing scenarios 
7.MPS 0/0 and 9.MPS 300/30 in Table 7B). We also optimised the operation of storage while hold-
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ing generation capacity constant (scenario 8.MPS 300/30 KF), finding that this gave 44% of the cost 
savings, implying 56% are enabled by generation capacity adjustments.

5.3 Sensitivity of the Results with respect to Storage Capacity

How does changing the amount of storage affect its value? An extension of the energy 
capacity from 300 GWh to 450 GWh (11.MPS 450/30) holding the un-/loading capacity constant 
at 30 GW, did not change optimal generation capacities. However, the additional storage capacity 
allowed more arbitrage, decreasing variable costs from 23.89 Euro/MWh to 23.36 Euro/MWh. This 
induced a total cost decline of 0.8%. The average value of storage declined from 4.1 Euro/kWh to 
3.2 Euro/kWh, or by 22%. 

Halving the storage capacity to 150 GWh (9.MPS 150/30) made it impossible to sustain 
the same precautionary operation as with 300 GWh. Therefore 5 GW less of the generation capacity 
could be substituted with the storage. Also, the levelisation of the load was less complete, so that 
5 GW of combined cycle capacity remained operational instead of being substituted by coal and 
lignite. Therefore, fixed costs could not decrease as much as in the 300 GWh case and the variable 
cost of 24.35 Euro per MWh exceeded the 300 GWh storage case (23.89 Euro/MWh). Total cost 
savings fell by 22%, but the per-kWh average value of storage capacity increased by 54% from 4.1 
Euro/kWh to 6.3 Euro/kWh. The marginal value of storage energy capacity declines rapidly from 
6.3 Euro/kWh (for the first 150 GWh) over 1.9 Euro/kWh (the next 150 GWh) to 1.4 Euro/kWh (the 
third 150 GWh). 

So far, the simulations have been run with constant storage power capacity of 30 GW. This 
exceeds requirements as the distribution of charging and discharging amounts (for scenario 9.MPS 
300/30) in Table 8 reveals. While in 31.9% of all cases the storage is neither charged nor discharged, 
the probability of an un-/loading speed greater than ±15 GW is less than 0.03%. Therefore, a re-
duction of the un/loading speed limit to ±15 GW (13.MPS 300/15) does not induce capacity adjust-
ments, even though peak load of 80 GW can no longer be served by the combination of maximum 

Figure 9: �Load- and Generation-Duration Curves, and the Optimal Generation Capacity 
Mix.



Optimal Storage, Investment and Management under Uncertainty / 21

Open Access Article

unloading and a generation capacity of 60 GW. However, these rare cases increase variable costs 
from 23.89 Euro/MWh to 23.93 Euro/MWh and the average value of storage decreases slightly, by 
0.1 Euro/kWh to 4.0 Euro/kWh. 

A significant effect only occurs if the un-/loading speed is limited to ±10 GW (12.MPS 
300/10). In this case only 15 GW of generation capacity can be substituted by the storage instead of 
20 GW (MPS 300/30). This reduces the average value of storage from 4.1 Euro/kWh to 3.7 Euro/
kWh. 

5.4. Sensitivity of the Results with respect to the Lost Load Option

The discussion at the end of Section 4 showed that load shedding becomes uneconomic if 
the VoLL is either close to peak generation costs or if it is extremely high. In both cases the precau-
tionary motive disappears and the storage is used for arbitrage only. We simulated the case of a very 
high VoLL by omitting the option to lose load.

Without storage, (14.MPS 0/0 NLL), this increases total costs by 1% (compared to 7.MPS 
0/0) because another 5GW of combustion turbines have to be installed, even though very rarely 
used. Storage (15.MPS 300/30) is used for arbitrage only with no need for precautionary storage, 
which reduces the threshold storage level and extends the potential to change the post-storage resid-
ual load. Compared to scenario 9.MPS 300/30, 10 GW of the coal generation capacity is substituted 
with 5GW of lignite (more intensively used) and 5 GW of Combined Cycle capacity (with a lower 
load factor).

Total costs decrease by 2.5% with variable cost of 23.32 Euro/MWh—the lowest among 
all stochastic scenarios—but higher fixed costs. Without capacity substitution however, the value 
of storage halves to 2.1 Euro/kWh compared to the base case. This reinforces the observation that 
arbitrage alone is not an efficient usage of storage and that around half of its value stems from its 
precautionary operation.

5.5. Comparison to Perfect Foresight Optimization Results

Finally, we compare the value of storage under perfect foresight of residual load (from 
3.PF-M 0/0 and 6.PF-M 300/30) with its value under uncertainty (from 7.MPS 0/0 and 9.MPS 
300/30). This allows us to estimate the impact of the stepwise information processing on the optimal 
storage strategy and capacity decisions.

Without storage the average of the perfect foresight results (3.PF-M 0/0) closely fit the sto-
chastic optimization results (7.MPS 0/0). Installed capacity differs by less than 1 GW—aside from 
lost load with 2 GW.15 Total costs differ by 0.1% only.

With storage (6.PF-M 300/30) generation capacity could be reduced to 60 GW—the same 
value achieved with limited foresight (9.MPS 300/30)—but furthermore lost load could be avoided 

15.  The results for 3.PF-M 0/0 give an average lost load of 3GW, suggesting that 5 GW of load is lost in 60% of our runs 
and none in the others. This is inevitably different from the 5 GW steps of the Markov process.

Table 8: Probability distribution of un-/loading speeds.
Un-/loading speed [GW]

Probabilities % –30 –25 –20 –15 –10 –5 0 +5 +10 +15 +20 +25 +30

MPS 300/30 0 0 0.02 1.6 10.7 23.3 31.9 19.4 9.7 3.2 0.07 0 0
PF-M 300/30 0 0.2 1.3 4.2 9.9 17.2 32.2 19.7 10.9 3.4 0.9 0.1 0.03
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completely. This is achieved by a more ‘case specific’ storage operation that only reserves storage 
at times when high residual loads actually follows. This gives a more equal distribution of SOCs 
(shown in Figure 5). Table 8 shows that there is also a small probability of using more than 20 GW 
of un-/loading capacity to better match storage to the pattern of load. Storage allows the industry to 
take further advantage of lower-cost generators, with more nuclear capacity (and Combined Cycle) 
in 6.PF-M 300/30 than in 9.MPS 300/30, and less coal capacity. This improved storage handling 
and the capacity adjustments increase the storage value from 4.1 Euro/kWh under uncertainty to 5.6 
Euro/kWh with perfect foresight. Models with too much foresight are likely to significantly over-es-
timate the value of electricity storage.

6. CONCLUSION

We analyse the optimal operation of storage and generation, and generation capacity 
choices, when the load net of wind and solar output is uncertain. This uncertainty is modelled as a 
Markov process, and the operating decisions are the solution to a Markov Decision Problem. Our al-
gorithm chooses the least-cost generation capacity mix for the resulting duration curve of generator 
outputs, and iterates to a revised Markov Decision Problem until the solution converges. 

This model is quantified with residual load (net of wind and solar generation) modelled as a 
diurnal Markov process from the residual load transitions in Germany in 2011 to 2015, with contem-
porary cost data for non-intermittent generation technologies and 300 GWh of storage (equivalent to 
six hours of average residual load). In this “real world” case, storage substituted for 15 GW of peak 
generation capacity. Uncertainty over the future evolution of demand made it optimal to keep the 
storage at a high charge level for most of the time to minimise the risk of a series of high-demand 
periods leading to the loss of load—we call this precautionary storage. Models with perfect foresight 
(or perfect foresight within a scenario) allow for more arbitrage and exaggerate the value of storage 
–our central estimate for the Markov model gives a value of €4.1/kWh of storage capacity, 27% be-
low the perfect foresight estimate of €5.6/kWh. It is easier to forecast loads than we assume, which 
would tend to reduce the difference, but we also make no allowance for generation outages, which 
might increase it. Over the range of values that we simulated, we found that the value of storage is 
very sensitive to its power (GWh) capacity, but relatively insensitive to its energy (GW) capacity 
for charging and discharging.

Will current electricity market designs give the right incentives for storage? The “Euro-
pean” paradigm of an energy-only market (Green, 2008) relies on the prospect of high peak prices 
to give incentives for investment in generation capacity. As noted by an anonymous referee, “pre-
cautionary” storage can be seen as arbitrage against the occasional risk of extreme prices when load 
might be lost. Under the energy-only paradigm, storage operators would calculate the expected 
profits to be made from precautionary and from normal arbitrage, and maintain a suitably high level 
of charge.

Several of the electricity markets in the US include a capacity market to provide stronger 
incentives. The fear is that an energy-only market would lead to “missing money” as peak prices 
rarely rise to the levels necessary to recover generators’ full costs. Various designs of capacity 
market provide another revenue stream, and several European countries (amongst others) are also 
providing extra support. Storage operators are already allowed to participate in the British capacity 
market, and their power capacity is de-rated to reflect the risk that they might run out of energy. 
While the capacity market rules include penalties for not delivering electricity when it is needed, 
would these be strong enough to guarantee the right amount of precautionary storage if short-term 
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arbitrage opportunities are available? One possibility comes from the “strategic reserve” model in 
which a few generators are held out of the market by the system operator until the loss of load looks 
likely; an equivalent for storage could require the state of charge to be kept at or above our “thresh-
old” level unless specific permission was given. 

The modelling in this paper could be extended in various ways. It would be straightfor-
ward, but would considerably extend solution times and storage requirements, to use a finer reso-
lution when discretising the load data (e.g. 2.5 GW rather than 5 GW steps). Second, it would be 
desirable to introduce seasonal patterns of demand alongside the daily patterns of time inhomo-
geneity presently included in the model. One risk facing countries with a high proportion of wind 
generation is that a long-lived “cold and calm” weather pattern of low wind speeds would deplete 
energy storage and lead to power cuts. Our Markov chain approach can create this kind of (residual) 
demand pattern, but allowing the transition matrices to vary with the season might represent this 
risk more accurately.

Third, the Markov process based on observed residual load transitions actually understates 
the knowledge of the decision makers. Forecasts of wind speed, in particular, have reached a signifi-
cant level of predictability. There is thus more—but not infinite—foresight in the real world than we 
have considered here. In follow-up work (Geske and Green, 2018), we propose a way to deal with 
this problem in an accurate manner based on the modelling approach in this paper.
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APPENDIX: DETAILS OF THE NUMERICAL SOLUTION

The nonlinear optimization problem (3) has a 2-block structure in capacities and the storage 
strategy. In these cases, “the alternating minimization or projection algorithm has been extensively 
used …”.16 It consists of the division of an optimization problem into a sequence of two simpler 
ones. The limit of the optimal strategies are stationary points of the sequence. Sufficient uniqueness 
conditions for the optimality of the limit of the sequence can be provided. With capacities k and the 
storage strategy π  the algorithm that can be applied to solve (3) is:

1.  Choose initial capacities 0 ∈k K.
2. � Determine the optimal storage strategy π n given capacities 1−nk  and the optimal capacity 

response nk  to storage strategy 1π −n

( )1arg min  ,ππ π∈Π −∈n nC k  (10)

( )1arg min  ,π∈ −∈n k K nk C k  (11)

3.  If the series ( ) 1,π
≥n n nk  converges the limit is a solution candidate to the (3).

Problem (10) is a Markov decision process and (11) a long-term capacity optimization 
problem. For both conditions of existence and solutions are available (e.g. for the MDP: Ross, 
1983). In detail, the appeal of the decomposition to the nonlinear joint strategy and capacity optimi-
zation problem17 (3) is that (10) can be discretized and solved as a linear problem and (11) can be 
solved directly via the screening curve approach. That means given the optimal storage strategy 1π −n  
an expected residual load duration [ ]1π −nRLD  can be derived and from this residual load duration, 
the optimal capacities [ ]( )1π −=n nk Screening RLD .

For the solution of the MDP (10) several numerical options are available. We favour the 
seldom-applied linear programming approach18 as the solution of (11) via the screening curve ap-
proach requires the post-storage expected load-duration, that is the stationary probabilities of the 
state of charge and residual load. The latter can be derived directly from the solution of the LP. So, 
the iterated cumbersome discretization of the optimal policy with respect to the state space and the 
(probably) more difficult and time-consuming computation of stationary probabilities of iteration 
schemes (e.g. policy iteration) can be avoided. These advantages (in addition to robustness with re-
spect to step shape of the marginal costs and the simplicity to integrate storage capacity constraints) 
come at the cost of a problem size that grows exponentially as the discretization is refined. Let the 
optimal strategy derived by the LP be ( )π =n nLP k . Details of this solution can be found in the next 
section.

To determine the optimal capacity we started with an equal share capacity equipment 0k  
whose elements total to peak load. With this capacity equipment we determined the optimal storage 
strategy ( )0 0π = LP k . The next stage capacity equipment [ ]( )1 0  π=k Screening RLD  converged, 
to a closed-by suboptimal steady state. To avoid this it proved sufficient to analyse total costs of 
all neighbouring capacities of 1k . To be specific the neighbourhood capacities N  of a capacity 

( )1 1 1, , , , ,+= … …i i Ik k k k k  are the elements of the set

16.  Niesen, Shah and Wornell, 2009; overview: O’Sullivan, 1998
17.  For a direct approach see Cai et al 2017.
18.  One of the few applications of the LP approach to stochastic optimization problems can be found in Trick and Zinn 

1993 and 1997.
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( ) ( ) { }{ }1 1: , , ,  1, , 1, ,0,ε ε ε µ µ+= … + − … = … − ∈ + −i iN k k k k i I

with the smallest capacity unit µ (which was 5 GW throughout). We then solved  
( ) ( )( )

1
min , .∈k N k C LP k k 19

 To guarantee optimality, the global optimum was determined by brute 
force for a few early cases to understand the problem. The algorithm is presented as a flow diagram 
in Figure 10.

Linear Programming solution of stationary Markov decision processes:

With the discrete states {1,...,| ̂S|} in 5 GWh steps and demand {1,…,|D|} in 5 GW steps the 
set of admissible actions A in a state (S,D) are

( )( ) { },ˆ ˆ, | , |1 1= ∈ ≤ + ≤ ≤ + ≤A S D k S s s S S s D k  1  (13)

We need a decision rule to choose the probability of choosing each alternative action 
s∈A(S,D) in state (S,D), which we denote as ( )( ), ,d S D s . Applied to the storage problem, (Ross, 
1983) proves that from the solution of the linear program:

( )( ) ( ) ( )
( )( ) ( )

, , , , ,

max , , |
∈

+∑d S D s S D s A S D

d S D s C D s k  (14)

19.  The non-convexity is most probably caused by the discretization of the problem, as perturbations of the storage strat-
egy may only pay off if the capacity response is sufficient and capacities need to be fully utilized—not possible if capacities 
are adjusted by screening. 

Figure 10: Flow Diagram of the Algorithm to Solve the Stochastic Optimization Problem.
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( ) ( )
( )( )

, , ,

, , 1
∈

=∑
S D s A S D

d S D s  (15)

( )( ), , 0 ,≥ ∀d S D s S D  (16)

( )
( )( )

( )
( )( ) ( ) ( )( )

, , , ,

, , , , , , , ,  ,
′ ′ ′ ′∈ ∈

′ ′ ′= ′ ∀∑ ∑
s A S D S D s A S D

d S D s d S D s Prob S D S D s S D  (17)

( ) ( )( ) ( )|
, , , ,

0
′ = +

= 


′
′ ′

P D D S s S
Prob S D S D s

otherwise
 (18)

the decision rule can be derived as follows:

( )( ) ( )( )
( ) ( )( ),

, ,
| , .

, ,
′∈

=
′∑ s A S D

d S D s
Prob s S D

d S D s
 (19)

MDPs (discretized as we use them in the LP approach) can be interpreted as minimum-cost 
flow problems (MCFP). Their states correspond to the nodes of an MCFP, the discrete actions to 
pipelines directing a flow of probabilities respectively a liquid, that is conserved at each state (node). 
The actions are selected as pipes to minimize the costs of their usage. This interpretation enables the 
graphical representation of the MDP as pipeline system that is exploited in section 4. 20

The LP framework has a further advantage. While it does not allow for a straightforward 
deviation of the optimal strategy, the determination of the load duration given a strategy requires 
only the computation of the stationary probabilities of a Markov Chain. It is thus straightforward to 
analyse variations of elements of the optimal strategy separately and quantify contributions to the 
optimal solution—for specific cases. This feature greatly deepens the understanding of the optimal 
strategy.21 

The algorithm was implemented with Mathematica. The code is available as an online 
appendix.

20.  We used Wolfram’s Affine-Scaling Interior Point method, which is “on par with several commercial network simplex 
algorithms for multi-commodity network problems” (Lauschke, 2011). A solution of the LP with a network simplex algo-
rithm—known to be the fastest approach for this set of problems—was unnecessary for a problem of our difficulty.

21.  It might be considered as an intuitive substitute to the analytical analysis of first order conditions in a Bellman equa-
tion based approach. The latter is generally not suited to give any insights into the structure of the stationary probabilities and 
hence the expected load duration.




