

# An economic assessment of Perth's hydrogen fuel cell buses

#### Colin Cockroft

Research Institute for Sustainable Energy (RISE), Murdoch University, WA, Australia

And

Anthony Owen School of Economics University of New South Wales, NSW, Australia

### Sustainable Transport Energy for Perth (STEP)





### **Perceived Advantages**



- Reduced Air Pollution
- Reduced Greenhouse Gases
- Sustainable transport fuel
- Reduced dependence on imported sources of energy
- Greater energy efficiency

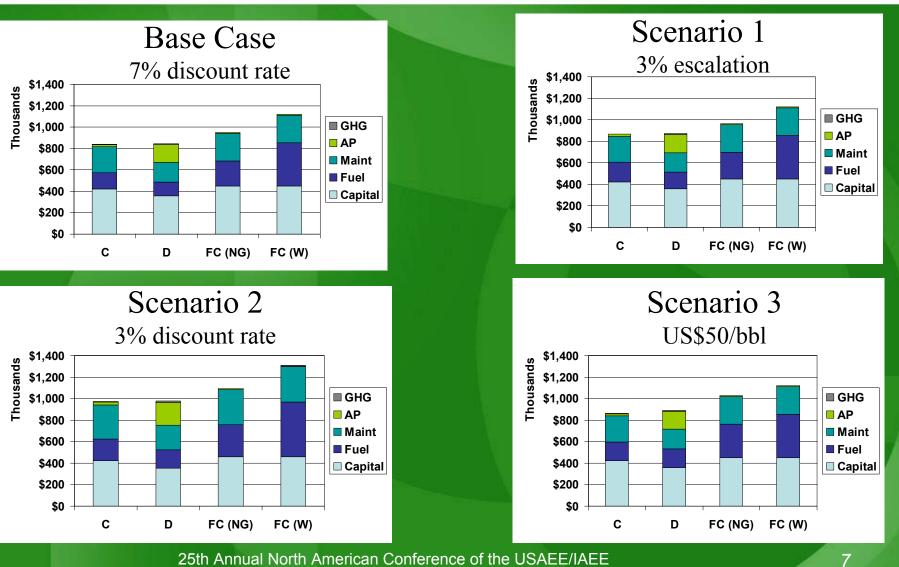


## Total Societal Life Cycle Costs (\$/vehicle) = Initial cost of vehicle + PVLC (Operating Costs) + PVLC (Emissions) + PVLC (full fuel cycle subsidies – full fuel cycle taxes).

### Method



- Capital Costs
  - Diesel
  - CNG
  - Fuel Cell Full economies of scale
- Fuel Costs
  - Steam Methane Reforming
  - Onshore Wind and Electrolysis
  - Mature industry assumptions
- Externalities
- Oil Supply Insecurity


### **Scenarios**



- Base Case
- Scenario 1
  - Diesel and CNG costs increase by 3% per annum
- Scenario 2
  - Discount rate of 3%
- Scenario 3
  - Oil price of US\$50/bbl
- Scenario 4
  - Break even fuel costs

Results





### Conclusions



- Sensitivity to discount rate
- Effects of externalities
- Reality check on capital cost and fuel cost targets
- Effect of oil price
- Cost of oil supply insecurity



### Back up slides



|                    | Future fuel/elec | Fuel         | Other prod.   | Transport    | Refuelling | Future supply |
|--------------------|------------------|--------------|---------------|--------------|------------|---------------|
|                    | resource price   | cost (\$/GJ) | costs (\$/GJ) | cost (\$/GJ) | (\$/GJ)    | cost (\$/GJ)  |
| Gasoline/diesel    | \$25-29/bbl      | 4-5          | 2             | <1           | 2          | 8-10          |
| Natural gas        | \$3-4/GJ         | 3-4          | n.a.          | <1           | 4          | 7-9           |
| H2 (gas) CO2 seq.  | \$3-5/GJ         | 3.8-6.3      | 1.2-2.7       | 2            | 5-7        | 12-18         |
| H2 (coal) CO2 seq. | \$1-2/GJ         | 1.3-2.7      | 4.7-6.3       | 2            | 5-7        | 13-18         |
| H2 (biomass)       | \$2-5/GJ         | 2.9-7.1      | 5-6           | 2-5          | 5-7        | 14-25         |
| H2 (wind-onshore)  | 3-4c/kWh         | 9.8-13.1     | 5             | 2-5          | 5-7        | 22-30         |
| H2 (wind-offshore) | 4-5.5c/kWh       | 13.1-18.0    | 5             | 2-5          | 5-7        | 27-37         |
| H2 (solar thermal) | 6-8c/kWh         | 19.6-26.1    | 5             | 2-5          | 5-7        | 32-42         |
| H2 (PV)            | 12-20c/kWh       | 39.2-65.4    | 5             | 2-5          | 5-7        | 52-82         |
| H2 (nuclear)       | 2.5-3.5c/kWh     | 8.2-11.4     | 5             | 2            | 5-7        | 20-27         |
| H2 (HTGR cogen.)   | n.a.             | n.a.         | 8-23          | 2            | 5-7        | 15-32         |
| Source: IEA (2003) |                  |              |               |              |            |               |